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Abstract—We consider a spatially distributed demand for
electrical vehicle recharging, that must be covered by a fixed set
of charging stations. Arriving EVs receive feedback on transport
times to each station, and waiting times at congested ones, based
on which they make a selfish selection. This selection determines
total arrival rates in station queues, which are represented by a
fluid state; departure rates are modeled under the assumption
that clients have a given sojourn time in the system. The resulting
differential equation system is analyzed with tools of optimiza-
tion. We characterize the equilibrium as the solution to a specific
convex program, which has connections to optimal transport
problems, and also with road traffic theory. In particular a
price of anarchy appears with respect to a social planner’s
allocation. From a dynamical perspective, global convergence to
equilibrium is established, with tools of Lagrange duality and
Lyapunov theory. An extension of the model that makes customer
demand elastic to observed delays is also presented, and analyzed
with extensions of the optimization machinery. Simulations to
illustrate the global behavior are presented, which also help
validate the model beyond the fluid approximation.

Index Terms—Electrical vehicle charging, optimization, trans-
portation networks, distributed algorithms/control.

I. INTRODUCTION

The application of optimization tools to operate spatially
distributed facilities has a very rich and extensive history.
Perhaps the oldest such research is optimal transport, that goes
back to Monge in the 18th century (see, e.g. [20]): the problem
concerns a planner’s decision on how to efficiently transport
mass between demand and supply spatial distributions.

More recently, the operation of engineered networks often
resorts to optimization, e.g. for power dispatch in the electric
grid [12], or routing in communication networks [1]. These
decisions must dynamically adapt to changing conditions and,
as networks grow to enormous scale, distributed decisions
become imperative. Designs which meet these challenges may
sometimes be found through a combination of differential
equations and convex optimization machinery, as was the case
for resource allocation in the Internet [7], [11].

A key question in distributed network operation is: to what
degree may control be imposed on individual units or, on the
contrary, are these agents making their own selfish decisions?
A prominent instance of the latter case is routing in road traffic
networks [21]: if properly informed, drivers naturally select
paths of the least latency, which results in a congestion game,
whose equilibrium was classically analyzed by Wardrop [24].
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This solution, while not centrally planned, can nevertheless
be characterized in terms of a suitable optimization problem,
which has been helpful to understand the Price of Anarchy,
i.e. the gap between this equilibrium and the social welfare
optimum [18], and to propose means (e.g. tolls) to mitigate
it. While much of this classical analysis concerns equilibrium,
dynamic studies of road traffic networks are also extensive,
see e.g. [5] and references therein.

In this paper we consider a new application area, the
operation of an Electrical Vehicle (EV) charging infrastructure.
In particular, we are interested in public facilities situated
in parking lots, where EV chargers are made available for
temporary use [13]. This development has motivated an ac-
tive area of research, within which we distinguish different
problems: (i) the operation of a single facility of this kind, in
particular the scheduling of charging opportunities taking into
account EV deadlines and installation limitations [10], [25];
(ii) integration of EV charging to the smart grid [14], [23]; (iii)
facility location problems, i.e. where to deploy EV charging
[9], [15].

Our focus here is on the operation of a spatially distributed
infrastructure made up of several charging stations, to effi-
ciently serve a distributed demand for EV recharging. At a
high level, this appears to be an optimal transport problem:
demand follows a certain spatial distribution, and supply is
offered in another; the optimal allocation assigns demand to
stations while minimizing the overall required travel.

Charging demand does not, however, materialize in a batch;
rather, we have a dynamic situation in which requests for
service arise asynchronously over time at different spatial
locations. Selecting an adequate station for each request must
consider both the transport cost and station congestion. With-
out the transport component, such load balancing decisions
have been studied extensively in computer networks, where
routing is in charge of a central dispatcher (see e.g. [22]). Here
we must incorporate the transport aspect and, importantly,
compulsory routing is not assumed.

Rather, drivers will select a station to obtain the fastest
possible service, similarly to selfish routing for road traffic.
Indeed, our results have some parallels with this literature, but
also distinguishing features. The road traffic problem considers
a network of links in which all traffic is affected by selfish
routing, and delays are a static function of link flows1. Here
we are analyzing an overlay on the road system, in which
a small portion of vehicles takes part; from this perspective,

1Some models also include vehicle densities in links as variables [4], [5],
and sometimes PDE effects [3]; these are beyond our scope.
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transport delays are exogenous, they depend on distance and
background traffic but not on EV routing decisions. On the
other hand, routing will affect congestion at charging stations;
we assume congestion delay information is fed back, together
with transport delays, to the selfish routing agents.

Our contributions are as follows:

• We present a differential equation model for the evolution
of station queues, driven by spatially distributed demand
for charge and selfish decisions on station assignment.
A non-standard feature is the treatment of departures:
rather than require that jobs remain until completion (i.e.,
complete charge), for public charging facilities it is most
natural to assume that EVs depart after a given sojourn
time. This assumption impacts both queue evolution mod-
els and the calculation of queueing delays. These waiting
times, superimposed to the transport delays, determine
the selfish routing flows and thus the full dynamics.

• We characterize the dynamics by introducing a suitable
convex optimization, variant of the optimal transport
problem: equilibrium points are proved to correspond
to optima, and global convergence to equilibrium is
established. Our results differ from other such character-
izations in the selfish routing literature [18], [21], due to
our delay model as a function of the queue states. Proofs
require extensive use of Lagrange duality, together with
specialized refinements of Lyapunov-LaSalle theory.

• We compare the resulting equilibrium with the socially
optimal allocation, exhibiting the gaps between the two
that lead to a price of anarchy. Again, while this coin-
cides conceptually with classical selfish routing, there are
differences in the specifics.

• We extend the model to allow for elasticity in the demand:
as a function of the experienced delays, some drivers
may choose not to participate in the recharge system.
These modified dynamics are also related to optimization:
introducing a utility function to model customer patience,
we show that the equilibrium maximizes a certain surplus
objective in the input rates. Proofs require the invocation
of minimax theory for a suitably chosen convex-concave
function. Global convergence is also established.

• Simulation studies are carried out with a concrete instance
of stations in the plane, to illustrate the resource allo-
cation and its comparison with optimal transport. These
experiments are based on discrete, stochastic demands,
demonstrating the approximate validity of our model
beyond the fluid abstraction.

A preliminary version of some of our results appeared in
the conference paper [16]. There we used a discontinuous,
switching model for selfish routing, which made the dynamic
study challenging. Here we employ a smooth approximation
to switching, which allows for a complete mathematical treat-
ment within the realm of ordinary differential equations.

The rest of the paper is organized as follows. We first collect
in Section I-A some notation and background material. In Sec-
tion II we motivate the problem and develop our differential
equation model. In Section III we present the connection to
convex optimization, and the resulting interpretations. Section

IV covers the version with demand elasticity. Simulations are
presented in Section V, and conclusions given in Section VI.
Some technical proofs are collected in the two Appendices.

A. Preliminaries and notation

We cover here some notation and background material from
convex analysis. Rn is the standard n-dimensional space, and
Rn

+ = {x ∈ Rn : xj ≥ 0 ∀j} the non-negative orthant; ∆n =
{δ ∈ Rn

+ :
∑n

j=1 δj = 1} is the unit simplex.
Matrix variables X = (xij) ∈ Rm×n are represented in

uppercase, and we will use the notation xi = (xij)
n
j=1 ∈ Rn

to represent the i-th row vector of matrix X .
Both convex and concave functions f : Rn → R will

appear; if they are differentiable, ∇f denotes the gradient.
A basic non-smooth concave function φ : Rn → R is

φ(y) = min
j

(yj) = min
δ∈∆n

n∑
j=1

yjδj . (1)

We will extensively use a smooth approximation to the
minimum, a “log-sum-exp” function with parameter ϵ > 0:

φϵ(y) := −ϵ log

(∑
j

e−yj/ϵ

)
. (2)

This function may be called a “soft-min”, given the bounds:

min(yj)− ϵ log(n) ≤ φϵ(y) ≤ min(yj). (3)

φϵ(y) is concave, and its gradient ∇φϵ(y) =: δ(y) is an
element of the unit simplex ∆n, with components

δj(y) =
e−

yj
ϵ∑n

k=1 e
− yk

ϵ

; (4)

these are largest for the minimizing coordinates of y.
Introduce finally the negative entropy function

H(δ) =

n∑
j=1

δj log(δj), δ ∈ ∆n. (5)

H is strictly convex, non-positive and lower bounded over
the unit simplex. It is connected to log-sum-exp by convex
(Fenchel) duality, as stated in the following (see e.g. [2]):

Lemma 1: For y ∈ Rn
+,

φϵ(y) = min
δ∈∆n

[ n∑
j=1

yjδj + ϵH(δ)
]
.

Furthermore, the unique minimizing δ(y) is given by (4).
Note that as ϵ → 0+, the optimization above approaches

the one in (1), consistently with the approximation (3).

II. DYNAMIC MODEL

We consider a set of EV charging stations, indexed by j =
1, . . . , n, occupying certain locations in the territory. We will
not make explicit reference to this geometry, it will be encoded
in the transport costs to be specified. Each station has capacity
(number of charging spots, assumed all identical) cj .

Vehicles demanding service are distributed in space. While
conceivably there could be a continuum of locations from
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which a service request could arise, a natural simplification
is to consider a discrete set of locations i = 1, . . .m; for
instance, this could be the set of city corners, and we associate
the demand location to the closest corner. Typically, m≫ n.

The relative positions of demand locations i and stations
j are reflected in a matrix K = (κij) of transport costs.
In this paper we assume cost has units of travel time, and
is exogenous, determined by distance and background traffic.
This is an appropriate assumption if the vehicles participating
in recharging are a minor portion of the overall traffic.

The decision to be implemented is an assignment of demand
to supply, i.e. of charging requests to stations, that takes into
account travel costs. As a starting point for our discussion, it
is useful to consider first an optimal transport problem2:

min
∑
ij

κijξij , subject to (6)

ξij ≥ 0 ∀i, j;
∑
j

ξij = ηi ∀i;
∑
i

ξij = σj ∀j.

In this discrete version of the Monge-Kantorovich [20] prob-
lem3, ηi and σj would be given, respectively demand and
supply quantities at each location, satisfying global balance
(
∑

j σj =
∑

i ηi), and one seeks a transport plan {ξij} of
minimum cost. This is a static, one shot allocation decision.

In our application, instead, demand is dynamic: charging
requests arrive over time, and are assigned upon arrival to
a station, chosen with real-time information on the system.
In addition to travel cost, current station congestion must be
considered. Moreover, instead of a global planner we will have
decentralized decisions consistent with selfish incentives.

In our fluid model, the rate ri ≥ 0 of requests/sec arising
at each location i will be an exogenous quantity. Initially it
will be fixed, later in Section IV we will introduce elasticity
in the demand process. The model will determine a matrix
variable X(t) = (xij(t)), representing the rates of requests
from location i directed to station j, as a function of time.
These will satisfy the balance conditions

xij ≥ 0,
∑
j

xij = ri for each i = 1, . . .m,

of analogous form to the demand-side constraints in (6), but
here in units of rates. It is convenient to introduce also the
variables δij = xij/ri, denoting the fraction of requests from
location i sent to station j. For each fixed i, δi = (δij)

n
j=1 is

a vector in the n-dimensional unit simplex ∆n.
In contrast with optimal transport, here we do not fix

the rates on the supply side, i.e. the EV/sec served at each
station; this will be a consequence of routing decisions. If
transportation costs were the only consideration, the natural
assignment would be for EVs to choose the cheapest (closest in
travel time) station. For a concrete visualization: if travel costs
κij are proportional to Euclidean distance, this would mean
breaking up demand spatially in accordance to the Voronoi
cells (see e.g. [2]) associated with station locations; Section V
has illustrative pictures.

2Here and henceforth, for brevity we will often omit the index ranges i =
1, . . .m, and j = 1, . . . n.

3Also called the Hitchcock problem in the transportation literature [21].

However, station congestion should also influence the al-
location decision. At each station j, denote by qj the corre-
sponding queue of EVs, whether or not they have a charging
spot. In fluid terms, the queue dynamics are described by

q̇j =
∑
i

xij − dj , j = 1, . . . , n; (7)

dj denotes the departure rate from the queue. Different models
for departures could apply. In [16] we considered two options:
either EVs depart when service is completed, or they depart
after a certain sojourn time. In this paper we focus on the
second option, which is most appropriate for public charging
facilities, used by customers in combination with their other
activities. We assume customers have a time budget for the
recharge operation, and upon its expiration they will depart
from the system, irrespective of the amount of service ob-
tained; a partial recharge is still valuable. This differs from the
case of home charging or charging of fleets, where a charge
target would typically be required.

In practice, drivers would have different sojourn times,
which could be modeled as random. For our fluid formulation,
we will denote by T the mean sojourn time across the
population, and use the following expression for the departure
rate as a function of queue occupation:

dj(qj) =
qj
T
. (8)

The above is a version of Little’s law in queueing theory
[1], a basic conservation law between mean queues, rates
and sojourn times. It is valid under very general conditions
assuming balance between arrival and departure rates. Here
we are applying it to departure only, allowing for a mismatch
with arrivals during the transient regime. In Section V we will
test this transient model through simulations.

In reference to (7), note that since dj(0) = 0, and xij ≥ 0,
non-negativity of queues is automatically preserved.

Remark 1: Eq. (7) applies the input rate directly to the
queues, neglecting transport delays; including them would
yield a delay-differential equation. From the point of view of
the equilibrium analysis to be carried out below, this change
would be inconsequential. However it would significantly
complicate the convergence analysis, hence we do not consider
this effect. Our simpler model is approximately valid provided
transport delays are much smaller than the time-scale of
sojourn times.

If the queue qj is below capacity, then all assigned vehicles
have a corresponding slot, so there are no delays to receiving
service, other than travel. On the contrary, if qj > cj there will
be an additional waiting time, which we proceed to model,
assuming a first-come first-serve queueing policy. An arriving
EV must wait for the time until the excess assignment qj − cj
is cleared by the departure process. Our model for waiting
delay is thus4:

µj :=
[qj − cj ]

+

dj(qj)
= T

[
1− cj

qj

]+
, (9)

where we have invoked (8). The function µj(qj) is depicted
in Fig 1 below.

4Henceforth, [·]+ = max{·, 0}.
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cj

µj(qj) := T
[
1− cj

qj

]+

qj cj

βj(qj) =
1

T

∫ qj

0
µj(σ)dσ

qj

Fig. 1. Delay model (9) and penalty barrier function (12).

Consequently, an EV arriving at location i, if choosing
station j, will be subject to a total delay to service of
κij + µj . Note that both terms have compatible units of
time. The main assumption that completes our model is that
the information κij + µj is available to drivers, who then
make a selfish decision. Note, from a practical perspective,
that time travel information is currently accessible through
smartphone technology. Expanding on this, a service could be
deployed through a mobile application, by which subscribers
communicate bidirectionally with the stations to receive the
waiting time information, and allow for stations to keep track
of their customer queues.

Let yi = κi + µ be the vector of delays observed from
location i to all stations, i.e. yij = κij +µj , j = 1, . . . , n. The
natural selfish choice is j ∈ argmin(yij), i.e. minimizing delay
to service. We analyzed this model in [16], which involves
switching, i.e., differential equations with a discontinuous
field. While some of the analysis can be carried out in this
setting, convergence proofs are technically challenging.

In this paper we develop a smoother alternative, correspond-
ing to the “soft-min” approximation described in Section I-A:
routing fractions from location i will follow the expression (4),
corresponding to yi = κi + µ; smaller delays are favored, but
in a less drastic fashion. Such “logit” choice based on delay is
a common model in the selfish routing literature (see [21]); it
can be justified when there is noise in the delay information.
Specifically, the routing fractions from location i are:

δij(K, µ) =
e−

κij+µj
ϵ∑

k e
−κik+µk

ϵ

. (10)

The preceding equation closes the feedback loop, leading to
the overall dynamics:

q̇j =

m∑
i=1

xij −
qj
T
. j = 1, . . . n. (11a)

µj(qj) =T

[
1− cj

qj

]+
, j = 1, . . . n. (11b)

xij =riδij , i = 1, . . .m, j = 1, . . . n,

with δij(K, µ) in (10). (11c)

The model has input parameters T , cj , ri, κij . For the analysis
to follow we assume constant transport costs, and thus omit
henceforth the dependence on K in (10).

We observe first that the above differential equation has
a globally Lipschitz field. Indeed, the mapping xij(µ) is

continuously differentiable in Rn, and thus admits a global
Lipschitz constant over the bounded set µ ∈ [0, T )n, which
is the range of the function µ(q) in (11b). The function
µj(qj) is not everywhere differentiable, but admits a global
Lipschitz constant T/cj . Thus X(µ(q)) is globally Lipschitz;
substitution into (11a) gives a globally Lipschitz field in q.

As a consequence, given an initial condition q(0), solutions
to (11) exist, are unique, and defined for all time. In the
following section, we will analyze their behavior invoking
tools of convex optimization.

III. OPTIMIZATION CHARACTERIZATION

We begin by introducing a barrier function, which expresses
a soft version of the capacity constraints. Let:

βj(qj) :=

∫ qj

0

[
1− cj

σ

]+
dσ (12)

=

{
0 qj ≤ cj ,

qj − cj − cj log
(

qj
cj

)
, qj > cj .

This is a convex, monotonically increasing function, also
shown in Fig. 1.

We are now ready to introduce our convex optimization
problem in the variables X = (xij) and q = (qj):

min
∑
i,j

κijxij +
∑
j

βj(qj) + ϵ
∑
i,j

xij log

(
xij
ri

)
(13a)

subject to: xij ≥ 0 ∀i, j;
∑
j

xij = ri ∀i; (13b)

∑
i

xij =
qj
T
, ∀j. (13c)

Let C(X, q) be the cost function in (13a). Its first term is
analogous to the transportation cost in (6); without the other
terms, this amounts to the optimal transport of demands ri
to supplies qj/T , in units of (arrival and departure) rates. In
contrast with (6), however, the departure rates involve free
decision variables qj , penalized by the barrier cost (12).

The other difference in (13a) is the final perturbation cost
(for small ϵ > 0), which can be expressed in terms of the
negative entropy of the routing fractions:

ϵ
∑
i,j

riδij log(δij) = ϵ
∑
i

riH(δi). (14)

For each i, riH(δi) is minimized for uniform routing fractions.
Thus, including this penalty softens the selfish routing choice.
In the duality-based analysis that follows, using the tools
of Section I-A we show this perturbation term is directly
associated with the soft-min routing choice in (10).

Remark 2: The final term in (13a) is written for ri > 0; we
could exclude a priori locations i with ri = 0. In expression
(14) these terms drop out automatically: the penalty term goes
to zero as demand disappears, a feature which will be relevant
for the elastic case in the following section.

Proposition 2: The optimization problem (13) is feasible,
and has a unique optimal point (X∗, q∗).

Proof: For feasibility, (13b) can be satisfied by any
split xij of the demands ri > 0, and the free variable
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qj can accommodate (13c). For existence/uniqueness of the
minimum, one can consider an equivalent problem in X by
replacing qj from (13c) into the cost term βj(·). The resulting
function of X is strictly convex (due to the negative entropy
term), over a compact domain (13b): thus there is a unique
minimum X∗, and consequently q∗ due to (13c).

The main result of this section is that the optimization (13)
characterizes the load balancing dynamics (11): the optimal
point is a globally attractive equilibrium of the dynamics. To
prove this will require the use of Lagrange duality, as follows.

A. Lagrangian and Equilibrium Characterization

Introduce the Lagrangian of Problem (13) with respect to
constraints (13c):

L(X, q, µ) =
∑
i,j

κijxij +
∑
j

βj(qj) + ϵ
∑
i,j

xij log

(
xij
ri

)

+
∑
j

µj

[∑
i

xij −
qj
T

]
(15a)

=
∑
i,j

xij

[
κij + µj + ϵ log

(
xij
ri

)]
︸ ︷︷ ︸

L1(X,µ)

(15b)

+
∑
j

[
βj(qj)− µj

qj
T

]
︸ ︷︷ ︸

L2(q, µ)

. (15c)

Suggestively, we have denoted the multipliers by µj ; the
optimum of the convex program (13) will correspond to a
saddle point of this Lagrangian (minimum in (X, q), maximum
in µ). We state the following result.

Theorem 3: The following are equivalent:
(i) (X∗, q∗, µ∗) is the saddle point of the Lagrangian L in

(15).
(ii) (X∗, q∗, µ∗) is an equilibrium point of (11), under con-

stant ri.
In particular, the dynamics have a unique equilibrium point.

Proof: First observe, focusing on (15a), that for the
maximum over an unconstrained µ to be finite requires primal
feasibility of (13c), i.e., equilibrium of (11a):

µ∗ ∈ argmax
µ

L(X∗, q∗, µ) ⇐⇒
∑
i

x∗ij =
q∗j
T
, j = 1, . . . n.

(16)

We now look at the minimization over (X, q), treating both
terms in (15b) and (15c) separately.

For the minimization of L1(X,µ) we must consider the
remaining constraints (13b) on X , which decouple across i.
Invoking the routing fractions δij = xij/ri we write

L1(X,µ) =
∑
i

ri

∑
j

δij(κij + µj) + ϵH(δi)

 . (17)

To minimize each term in square brackets over the unit
simplex, we apply Lemma 1 for the vector yi = κi + µ. The
result is the log-sum-exp expression5

φi
ϵ(µ) := φϵ(κ

i + µ) = −ϵ log

∑
j

e−(κij+µj)/ϵ

 , (18)

achieved at δi(µ) = (δij(µ))
n
j=1 ∈ ∆n, which follows

precisely the expression (10). We thus conclude that

X∗ ∈ argmax
X

L1(X,µ
∗) ⇐⇒ x∗ij = riδij(µ

∗), (19)

with δij(µ) in (10).

Finally, we consider the minimization of L2(µ, q) which is
unconstrained in q, and decoupled over j; we minimize each
term separately. Let

D2j(µj) = inf
qj
[βj(qj)− µjqj/T ]. (20)

We have the following cases:
• If µj < 0, or µj ≥ T , D2j(µj) = −∞.
• If µj = 0, D2j(µj) = 0, achieved at qj ∈ (−∞, cj ].
• If 0 < µj < T , the unique minimizing qj is obtained by:

β′
j(qj) =

[
1− cj

qj

]
=
µj

T
⇐⇒ qj =

Tcj
T − µj

. (21)

We can encompass the two cases with finite minimum by the

relationship µj = T
[
1− cj

qj

]+
between µj ∈ [0, T ) and the

minimizing qj . From here we conclude that

q∗ ∈ argmax
q
L2(q, µ

∗) ⇐⇒ µ∗
j = T

[
1− cj

q∗j

]+
. (22)

The left-hand sides of equations (16), (19), and (22) are the
saddle point conditions (i). The corresponding right-hand sides
are the equilibrium conditions (ii) for the dynamics (11).

For the last statement, since the primal variables (X∗, q∗)
at a saddle point are optima, we can invoke Proposition 2 to
show they are unique. Note that µ(q∗) from (11b) must be
unique as well.

B. Dual function

As additional conclusion of the preceding analysis, let us
make explicit the dual function

D(µ) = inf
X,q

L(X, q, µ) = inf
X
L1(X,µ)︸ ︷︷ ︸
D1(µ)

+ inf
q
L2(q, µ)︸ ︷︷ ︸
D2(µ)

.

Referring back to (17) and (18), we have

D1(µ) = min
X∈(13b)

L1(X,µ) =
∑
i

riφ
i
ϵ(µ);

we further note that D1(µ) is a differentiable function of µ ∈
Rn, and its gradient takes the form:

∇D1(µ) =
∑
i

ri∇φi
ϵ(µ) =

∑
i

riδ
i(µ) =

∑
i

xi(µ), (23)

5This new notation emphasizes the dependence on the variable µ; the super-
index i in φi

ϵ(µ) indicates the displacement of µ by the fixed vector of
transport costs κi from location i.
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where the last expression is based on (11c).
Secondly, in reference to (21), substitution of the minimiz-

ing qj into [βj(qj)− µjqj/T ] gives a minimum of

D2j(µj) = cj log(1− µj/T ), (24)

and this formula also covers the case µj = 0. Therefore:

D2(µ) =
∑
j

cj log
(
1− µj

T

)
, for 0 ≤ µj < T. (25)

This function is differentiable in the interior of the domain,
but the boundary µj = 0 requires some special care, as we
will see in the convergence analysis below.

The overall dual function, with domain µ ∈ [0, T )n, is:

D(µ) =
∑
i

riφ
i
ϵ(µ) +

∑
j

cj log
(
1− µj

T

)
. (26)

Proposition 4: D(µ) is strictly concave and has a finite
maximum D∗ over µ ∈ [0, T )n, achieved at a unique µ∗ ∈
[0, T )n.

Proof: D1(µ) is concave (not strictly), and D2(µ) is
strictly concave in [0, T )n (this follows directly from each
component D2j). Thus, D(µ) is strictly concave. Since
D2j(µj) → −∞ as µj ↑ T , there is a global maximum
D∗ = D(µ∗) with µ∗ strictly within [0, T )n, unique due to
strict concavity. This is also consistent with the uniqueness of
µ∗ in the saddle point, shown in Theorem 3.

C. Interpretation and Price of Anarchy

Equilibrium points for our model of dynamic station assign-
ment have been shown to be solutions of a certain modified op-
timal transport problem. We now provide some interpretations
of the result, and connections to the selfish routing literature
[18], [21]. For simplicity, we will ignore in the discussion the
entropy regularization term in the cost and focus on

C0(X, q) :=
∑
i,j

κijxij +
∑
j

βj(qj); (27)

our equilibrium (X∗, q∗) optimizes (approximately as ϵ→ 0)
this convex function, subject to constraints (13b)-(13c).

The first term above has a natural interpretation. Recall that
κij represents the travel times, and xij the rates, between
arrival location i and station j. Therefore,

∑
i,j κijxij will be

the total number of EVs currently in travel towards a charging
station, a natural transport cost to be minimized.

The second term, based on βj(·) in (12), does not have
such a transparent form. From a social welfare perspective,
the congestion cost to add would be the total number of EVs
waiting at stations without a charging spot:

∑
j [qj − cj ]

+. The
natural social welfare cost would thus be:

Cs(X, q) =
∑
i,j

κijxij +
∑
j

[qj − cj ]
+
. (28)

We remark the following:
• Cs(X, q) is also convex; in fact it is piecewise linear6.

Using slack variables zj , the social planner’s solution to

6We could obtain strict convexity over the domain, and thus a unique
optimal point for Cs(X, q), by adding an entropy term as in (13a).

the station assignment problem can be solved by means
of the linear program:

min κijxij +
∑
j

zj ,

subjet to (13b), (13c), zj ≥ 0, zj ≥ qj − cj .

• Cs(X, q) ≥ C0(X, q). Indeed, by (12) we have

Cs(X, q)− C0(X, q) =
∑
j

[qj − cj ]
+ − βj(qj)

=
∑
j

cj log

(
qj
cj

)
1qj>cj .

Note that the right-hand side above is zero in the absence
of congestion (qj ≤ cj ∀j). A consequence is that if the
equilibrium (X∗, q∗) of our dynamics (which minimizes C0,
again ignoring the entropy term) involves no congestion, then
it must also minimize Cs(X, q): selfish routing achieves global
welfare in this case.

However, if station congestion appears, there is a difference
between both costs, the equilibrium (X∗, q∗) will no longer
be socially optimal. This Price of Anarchy appears for similar
reasons as in road traffic models [18]. To see this, rewrite the
social congestion cost at station j (using (9)) as:

[qj − cj ]
+
=
∑
j

[
1− cj

qj

]+
qj =

1

T

∑
j

µjqj ,

and compare it to the corresponding barrier term in (27):

βj(qj) =
1

T

∫ qj

0

µj(σ)dσ.

A similar variation appears in the road traffic literature, where
latencies are taken to be static functions of link flows. The
product of latency and flow is the natural welfare cost, whereas
the integral of the latency function is the cost that characterizes
the Wardrop equilibrium in terms of optimization.

The difference here is that the congestion delays (sensitive
to routing decisions) reside at stations, not links. The state
variables in our problem are station queues rather than flows,
with an integrator in between. The relevant optimization prob-
lem thus differs from the classical one of Beckmann (see e.g.
[19]), set purely in the domain of (primal) flow variables. Our
barrier functions work with queues, and our analysis requires
Lagrange duality, both for the equilibrium characterization
obtained above, and for the convergence results to follow.

Remark 3: This distinction has parallels in Internet conges-
tion control [7], [11] based on optimization. In that case, so-
called “primal” models are posed entirely in terms of flow
variables, whereas “dual” models include the fluid queues. The
former are analyzed in the original flow variables, the latter in
the space of multipliers. To our knowledge, a dual formulation
has not been used so far in the context of selfish routing.

Example 1: We illustrate the Price of Anarchy through a
toy example, solved numerically. There are two stations with
capacities c1 = 20, c2 = 40, and a single source location.
Transport times are κ1 = 1, κ2 = 10, sojourn time is T = 60.
We increment the demand r upward from zero, and compare
the equilibrium with the socially optimal solution.
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Fig. 2. Rate splitting for the socially optimal (left) and selfish (right) routing
policies as a function of input rate, for Example 1.
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Fig. 3. Cost comparison for the socially optimal and selfish routing policies.

In this simple case, xi = qi/T so we can write the social
welfare cost as a function of rates:

Cs(x1, x2) = κ1x1 + κ2x2 + [Tx1 − c1]
+
+ [Tx2 − c2]

+
.

In Fig. 2 (left) we plot the optimal breakup of rates as a
function of r; initially, x1 = r so all traffic is sent to the closest
station. Upon reaching r = 1/3 this station fills (rT = c1);
and after that it becomes optimal to set x2 = r−1/3, i.e. send
excess traffic to station 2. This is clear from the expression
above: since κ2 < T , it is cheaper to pay the transport cost to
station 2, than the congestion cost at station 1. After r = 1,
both stations are full, so congestion cost is inevitable and also
indifferent to station choice. Therefore, travel costs dictate that
further increases in traffic must be sent again to station 1.

Now consider the plot (on the right) of equilibrium rates for
the selfish routing case. At low loads, there is no congestion
and the solution is socially optimal. After queue 1 reaches
capacity, selfish routing will continue to prefer station 1 until
its queueing delay µ1 equates the difference κ2 − κ1 in
transport delays. This happens at r := r0 ≈ 0.4; excess
rates beyond this value will start choosing station 2 as in the
socially optimal solution; but the waiting cost µ1 · r0 implies
inefficiency. Station 2 congests at r = r0 + 2/3, after which
selfish routing spreads the additional increase between both
stations; this is required to maintain the indifference condition
κ1 + µ1 = κ2 + µ2, and again implies some inefficiency.

Fig. 3 shows, as a function of r: the cost C0 characterizing
the selfish equilibrium, the resulting social cost Cs, and the
optimum social cost Copt

s . There is no price of anarchy at
low loads; in the intermediate region inefficiency appears, for

the most part constant at (κ2 − κ1)r0. There is a single point
of efficiency again when both stations reach congestion, after
which we observe a roughly linear gap in cost (constant price
of anarchy) between both solutions.

D. Convergence
Beyond the characterization of the equilibrium, we will

establish that it is globally attractive under the dynamics (11).
From the Lipschitz nature of the field we know that from
any initial condition q(0), the trajectory q(t) is well-defined
for all time, and continuously differentiable. From this we
can introduce the functions µ(q(t)) and D(µ(q(t))); a key
step of the convergence analysis will be to prove the latter is
monotonically increasing along trajectories.

These composite functions are not, however, differentiable.
In particular the formula µj(qj) = T [1− cj/qj ]

+ is not
differentiable at qj = cj (see Fig. 1). Similarly, if we compose
it with D2j(µj) in (24) we obtain:

D2j(µj(qj)) =

{
0, qj ≤ cj ;

cj log
(

cj
qj

)
, qj > cj ;

(29)

this (non-positive) function is not differentiable at qj = cj .
Nevertheless, both µj(qj) and D2j(µj(qj)) are Lipschitz

functions; composing them with the smooth q(t) will yield
absolutely continuous functions µj(qj(t)) and D2j(µj(q(t)));
time derivatives exist almost everywhere, and the functions are
integrals in time of their derivatives. We will denote by µ̇j and
Ḋ2j these derivatives, and let T ⊂ R+ be the set of times for
which they are well-defined for every j. The complement of
T has Lebesgue measure zero.

Lemma 5: For every t ∈ T , we have

Ḋ2j(t) =
−cj

T − µj
µ̇j(t); (30)

furthermore, if qj(t) ≤ cj , then µ̇j = Ḋ2j = 0.
Proof is given in Appendix A. We now get to the monotonicity
result.

Proposition 6: Consider a trajectory q(t) of (11). For any
t ∈ T defined above, the dual function (26) satisfies:

d

dt
D(µ(q(t))) =

∑
j:qj(t)>cj

Tcj

[
q̇j
qj

]2
≥ 0. (31)

Consequently, D(µ(q)) is non-decreasing along trajectories
q(t) arising from the dynamics (11).

Proof: We differentiate separately each term of the dual
function; since D1(µ) is differentiable we apply the chain-rule
and the gradient in (23) to obtain:

Ḋ1 = ⟨∇D1(µ), µ̇⟩ =
∑
i

⟨xi(µ), µ̇⟩ = ⟨q̇ + q/T , µ̇⟩;

here ⟨·, ·⟩ is the standard inner product in Rn, and we have
invoked (11a). Note that µ̇ is well-defined within T .

Now consider D2(µ), and apply Lemma 5 to obtain:

Ḋ2 =
∑
j

Ḋ2j =
∑
j

−cj
T − µj

µ̇j

=
∑

j:qj(t)>cj

−qj
T

µ̇j = −⟨q/T , µ̇⟩.
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For the third step we have used two facts: first, according to
Lemma 5 we may ignore in the sum terms where qj(t) ≤ cj ,
since µ̇j = 0 in that case. Second, for j where qj(t) > cj , we
substitute µj = T (1− cj/qj) from (11b).

Adding both derivatives and cancelling terms we find

Ḋ = ⟨q̇, µ̇⟩ =
∑
j

q̇j µ̇j =
∑

j:qj(t)>cj

q̇jµ
′
j(qj)q̇j

=
∑

j:qj(t)>cj

Tcj
q2j

[q̇j ]
2; t ∈ T .

Again we have removed terms with qj ≤ cj , and in the
rest we may apply the chain rule. This establishes (31)
almost everywhere. Integrating in time and invoking absolute
continuity, D must be non-decreasing along trajectories.

Since D(µ(q(t))) is non-decreasing and bounded above,
it must approach a finite limit as t → ∞. We will show
that this limit must be the global maximum D(µ∗), and our
trajectory converges to the unique equilibrium. We state the
corresponding result.

Theorem 7: Any trajectory (q(t), X(t), µ(t)) of (11) con-
verges asymptotically to the equilibrium point (X∗, q∗, µ∗).

The proof is based on a Lyapunov-LaSalle type argument
[8] with the function D(µ(q)), exploiting (31) to characterize
points where Ḋ = 0. Some non-standard modifications are
required, details are given in Appendix B.

IV. ELASTIC DEMAND

In this section we add a new ingredient to the formulation:
instead of having a rigid quantity ri of EVs per second seeking
charge from each location i, we consider the fact that demand
itself is sensitive to the delays of the installation. Namely, if
τi is the delay that EVs from location i experience before
receiving service, some customers may not be willing to wait
this much and desist from entering the system.

To model this phenomenon, assume that arriving customers
at location i have a willingness-to-wait characteristic, which
is a random variable Ti with complementary cumulative dis-
tribution function pi(τi) = P(Ti > τi). Ti is assumed to be
absolutely continuous, so pi(τi) is continuous, decreasing from
1 to 0 as τi moves in the range [0,∞).

Randomness reflects customer heterogeneity; now, for a
deterministic fluid model, we will not incorporate stochasticity
at the individual EV level but rather consider its effect in large
numbers. In this sense, if r̄i is the (fixed) maximum rate of
requests originating at i, this rate will be “thinned” by the
probability pi(τi), giving

ri(τi) = r̄ipi(τi). (32)

Example 2: Assume that Ti is a uniform random variable
in the interval [0, T ], where T is the sojourn time. In that case
we have the linear thinning ri(τi) = r̄i [1− τi/T ]

+
, that shuts

down demand as τi reaches T .
Remark 4: While this method accommodates heterogeneity

in customer willingness-to-wait, we are not making explicit
the heterogeneity of sojourn times. In practice, these two
features might have correlation as customers with more urgent
charging needs must accept longer sojourn and waiting times.

To account for such correlations requires a stochastic approach
which is currently beyond our scope.

It will be useful to interpret (32) as a demand curve that
specifies the quantity ri as a function of the “price” τi. In
microeconomic language, this is equivalent to introducing an
increasing, concave utility function Ui(ri), and stating that the
rate is chosen according to

ri = argmax
ri≥0

[Ui(ri)− τiri]. (33)

Assuming differentiability, the above amounts to the first
order condition U ′

i(ri) = τi; this should be the inverse function
of (32).

Example 3: Continuing with the uniform example, we find
the corresponding utility. U ′

i(ri) must be linear, decreasing
from T to zero in the interval [0, r̄i]. Therefore:

Ui(ri) =

{
Tri

(
1− ri

2r̄i

)
0 ≤ ri ≤ r̄i;

T r̄i
2 , ri > r̄i.

Note that utility will saturate (demand will satiate) at ri =
r̄i; to simplify matters we will assume the following property,
which holds in the example above:

Assumption 1: Ui(ri) is strictly concave within the interval
ri ∈ [0, r̄i].

A. Dynamics under elastic demand

We now incorporate the elastic demand feature into the
framework of Section II. We need to specify the appropriate τi
for which to apply the expression (32). Under selfish routing
to the station(s) with smallest travel + waiting time, the delay-
to-service experienced would be

τi = min
j

(κij + µj) = φ(κi + µ),

invoking the notation (1). Once again, for smoothness reasons
we will use instead the log-sum-exp approximation (2) to the
minimum, namely:

τi(µ) = φϵ(κ
i + µ) = φi

ϵ(µ), (34)

recalling the notation (18). We are now ready to formulate the
new dynamic model, incorporating into (11) the elastic rate
thinning in (32):

q̇j =

m∑
i=1

xij −
qj
T
, j = 1, . . . n. (35a)

µj(qj) =T

[
1− cj

qj

]+
, j = 1, . . . n. (35b)

xij =riδij(µ), i = 1, . . .m, j = 1, . . . n,

with δij(µ) in (10); (35c)

ri =r̄ipi(φ
i
ϵ(µ)). (35d)

As in the case of (11), by substitution the above dynamics is
equivalent to a differential equation q̇ = f(q) with a globally
Lipschitz right-hand side; the assumptions on pi(·) preserve
this feature. Hence, we again have unique solutions, defined
for all time. We will also analyze the new dynamics through
convex optimization.
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B. Equilibrium characterization

We reconsider the cost function in (13a), denoted here by

C(X, q, r) :=
∑
i,j

κijxij +
∑
j

βj(qj) + ϵ
∑
i,j

xij log

(
xij
ri

)
.

As compared to Section III, we now include as variable the
vector of demand rates r, with domain R := Πn

i=1[0, r̄i]; zero
rates are included, in this regard we refer to Remark 2.
C(X, q, r) is not a jointly convex function with this new

variable, due to the entropy term; nevertheless, convexity holds
for the solution of Problem (13) as a function of r.

Proposition 8: Let C(r) be the minimum of C(X, q, r) over
(X, q) satisfying (13b)-(13c) . Then C(r) is convex.

Proof: From our analysis of duality in the previous
section, for each r we have C(r) = maxµD(r, µ), where

D(r, µ) =
∑
i

riφ
i
ϵ(µ) +

∑
j

cj log
(
1− µj

T

)
,

the dual cost in (26), making explicit its (linear) dependence
on r. The maximum over µ of this family of linear functions
is convex in r.
The optimal cost for a vector of demand rates is naturally
combined with the total associated utility:

ψ(r) := C(r)−
∑
i

Ui(ri). (36)

Minimizing the convex function ψ(r) is equivalent to maxi-
mizing −ψ(r), a social suprlus (utility minus cost); we will
show that our dynamics converges to such optimal demand
rates. To pursue the analysis, it is convenient to introduce

W (r, µ) : = D(r, µ)−
∑
i

Ui(ri), (37)

=
∑
i

[riφ
i
ϵ(µ)− Ui(ri)] +

∑
j

cj log
(
1− µj

T

)
,

defined for (r, µ) ∈ R×[0, T )n. Note the following properties:
• For fixed r, W (r, µ) is strictly concave in µ ∈ [0, T )n.
W (r, µ) → −∞ when µj ↑ T . From Proposition 8 we
also obtain: ψ(r) = maxµW (r, µ).

• For fixed µ, W (r, µ) is convex in r ∈ R; under Assump-
tion 1, it is strictly convex.

We now identify the saddle points of W (r, µ).
Proposition 9: There exists a unique (r∗, µ∗) ∈ R×[0, T )n,

such that

W (r∗, µ) ≤W (r∗, µ∗) ≤W (r, µ∗) ∀r ∈ R,µ ∈ [0, T )n.

Furthermore, r∗ = argminψ(r).
Proof: Existence of a saddle point for a convex-concave

function is a minimax result, of which there are multiple
versions; in this case with bounded domains it can be found in
[17] (Corollary 37.6.1). Uniqueness of the saddle point follows
from strict concavity/convexity. For the final statement, note:

ψ(r∗) = max
µ

W (r∗, µ) =W (r∗, µ∗)

≤W (r, µ∗) ≤ max
µ

W (r, µ) = ψ(r).

We are now ready for our main result on equilibrium:
Theorem 10: The following are equivalent:
(i) (r∗, µ∗) is the saddle point of W in (37), and given r∗,

(X∗, q∗) are the solution to the optimization (13).
(ii) (X∗, q∗, µ∗, r∗) is an equilibrium point of (35).

In particular, the dynamics have a unique equilibrium point.
Proof: Start from (i). At the saddle point (r∗, µ∗) we have

r∗ = argminrW (r, µ∗). From (37) we see that

r∗i = argmin
ri

[riφ
i
ϵ(µ

∗)− Ui(ri)]

= argmax
ri

[Ui(ri)− riφ
i
ϵ(µ

∗)] = r̄ipi(φ
i
ϵ(µ

∗));

in the last step we used the characterization of the utility
function in (33). This equation is consistent with (35d). Given
r∗i , we can invoke Theorem 3 to identify the saddle conditions
for (q∗, X∗, µ∗) with the equilibrium of (35a)-(35c). Therefore
we have (ii).

Now start with (ii). For the given r∗, we know from
Theorem 3 that (q∗, X∗, µ∗) are primal-dual optimal for the
optimization (13); in particular µ∗ is dual optimal,

µ∗ = argmax
µ

D(r∗, µ) = argmax
µ

W (r∗, µ).

Finally, (35d) implies r∗ = argminrW (r, µ∗) (these steps are
reversible). Therefore (r∗, µ∗) is the saddle point of W , and
we have (i).

Uniqueness of the equilibrium follows from the uniqueness
of (r∗, µ∗) and the application of Theorem 3 for the remaining
variables.

The previous result provides an interpretation of the equilib-
rium of the elastic dynamics, extending the one from Section
III-C. Indeed, if we consider jointly the two statements in con-
dition (i), what the equilibrium achieves is the minimization
of the cost C(X, q, r)−

∑
i Ui(ri) over all available degrees

of freedom. Thus the dynamics achieve a specific welfare
optimization, in which:

• The utilities in question are directly related to the elastic
thinning rule in (32).

• The cost portion C(X, q, r) carries, again, the natural cost
of transportation, a (negligible) regularization term, and
the barrier terms βj(qj). As in Section III-C, these exhibit
a deviation with the respect to the waiting cost. Thus
there may be inefficiency with respect to the natural social
welfare optimization under elastic demand.

C. Convergence
Again, we show that our equilibrium is globally attractive

under the dynamics (35). The analysis parallels Section III-D,
based on the monotonicity of a certain function along trajec-
tories of our dynamics. Here the function in question will be

D(µ) := min
r
W (r, µ) = D1(µ) +D2(µ) (38)

=
∑
i

U∗
i (φ

i
ϵ(µ)) +

∑
j

D2j(µj).

For the first term above we have introduced the Fenchel
conjugate

U∗
i (τi) := min

ri
[τiri − Ui(ri)] (39)
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of the concave utility function [17]. The above minimum is
achieved at ri(τi) = r̄ipi(τi). Since the latter function is
continuous, it is not hard to show that U∗

i (τi) is differentiable
and non-decreasing in τi > 0, with derivative ri(τi). In (38),
this function is composed with the smooth function φi

ϵ(µ).
Therefore the first term D1 in (38) is differentiable in µ, with

∇D1(µ) =
∑
i

r̄ipi(φ
i
ϵ(µ))δ

i(µ) =
∑
i

xi(µ),

where we have substituted expressions from the dynamics
(35); this formula is completely analogous to (23) for the
inelastic demand case. The second term D2(µ) in (38) is
identical to (26). Therefore we are in a position to replicate
the analysis of the previous section.

In particular, D(µ(q(t))) will be absolutely continuous
along trajectories of the dynamics, and we can identify a set
T of times (whose complement has zero Lebesgue measure)
where Lemma 5 holds, as well as the following extension of
Proposition 6. The proof is analogous and is omitted.

Proposition 11: Consider a trajectory q(t) of (35). For any
t ∈ T defined above, the dual function (38) satisfies:

d

dt
D(µ(q(t))) =

∑
j:qj(t)>cj

Tcj

[
q̇j
qj

]2
≥ 0. (40)

Consequently, D(µ(q)) is non-decreasing along trajectories
q(t) arising from the dynamics (35).

Note, from the strict concavity of W (r, µ) in µ, that D(µ)
in (38) is strictly concave. Also, from the min-max inequality

max
µ

D(µ) = max
µ

min
r
W (r, µ)

≤ min
r

max
µ

W (r, µ) = min
r
ψ(r) = ψ(r∗),

we conclude that D(µ) is upper bounded by the optimal cost.
There is equality above at the (unique) saddle point (r∗, µ∗),
so we conclude that D(µ) achieves its maximum (only) at µ∗.
These are analogous properties to the ones we had for D(µ) in
the previous section, leading to following convergence result.

Theorem 12: Any trajectory (q(t), X(t), µ(t), r(t)) of
(35) converges asymptotically to the equilibrium point
(X∗, q∗, µ∗, r∗) characterized in Theorem 10.

The proof is very similar to the one for Theorem 7, and is
omitted due to space limitations.

V. STOCHASTIC SIMULATIONS

In this section we present simulations of the selfish load bal-
ancing dynamics. A first objective is illustrating in a concrete
geometric example the properties of the equilibrium (optimum
of Problem (13)), and the convergence of trajectories. A
separate purpose is validating our fluid model as representative
of more realistic conditions: in particular, we will simulate a
stochastic system generated by EVs arriving randomly in time
and space, with random sojourn times, and stations assigned
through selfish routing. We also include delays, distinguishing
the event of arrival into the system from the arrival at the
station queues. We focus on the inelastic (fixed demand) case.

Our spatial domain is a square region, where recharge
requests arrive as a Poisson process of overall rate r = 3

EVs/min, spawning at a random spatial location with uniform
distribution. Sojourn times are independent and exponentially
distributed with mean T = 90 min., so the total number of
EVs present in steady-state is rT = 270 on average. We fix 5
charging stations with cj = 50 slots each, at random positions.
Since rT >

∑
j cj , there is overall congestion; it will affect

stations asymmetrically due to their locations.
Travel times κij are modeled as the Euclidean distance

divided by a speed v, chosen such that the travel time horizon-
tally across the region is 50 minutes. With the given station
locations, the maximum time to reach the closest station is
approximately 30 min. On the left side of Fig. 4 we plot the
station positions as well as the Voronoı̈ cells that break up the
plane if we use the closest station criterion.

Fig. 4. Charging station positions, minimum distance cells and attraction
regions in equilibrium.

In Fig. 5 we plot the station occupation resulting from our
spatial stochastic simulation, using the Julia library EVQueues
[6]. The selfish policy is applied, so that vehicles upon arrival
are directed to the station that provides minimum delay to
service. We also plot for comparison the computed numerical
solutions of the fluid model (11): since the model uses a finite
set of arrival locations, we discretize the space to a uniform
grid of 10000 points. Note that the fluid model correctly
captures both the transient and steady-state behavior of the
stochastic system, and converges to the predicted equilibrium,
the solution of Problem (13), shown with dotted lines.

Initially, all stations are uncongested and EVs route them-
selves to the closest station. Station load is thus proportional to
the area of the respective Voronoı̈ cells, so it is asymmetric. In
particular the easternmost station (labeled by 1) gets congested
first: as its queueing delay builds up, neighboring stations
start to receive more traffic; inflection points in the respective
fluid trajectories signal this event. As the simulation progresses
other stations reach congestion in succession, except for Sta-
tion 5 (southwest point) which stays below capacity.

In steady state, Station 1 operates with q1 ≈ 62, i.e. 12
requests in waiting, a queueing delay of µ1 ≈ 17.4 min. The
remaining congested stations reach queueing delays µ2 ≈ 8.9,
µ3 ≈ 6.4, and µ4 ≈ 5.4 minutes, while µ5 remains at 0.

The effect of these delays in steady-state routing is observed
by plotting the attraction regions, on the right of Fig. 4. Con-
gested stations see their regions shrink, while less congested
stations cover additional ground to compensate. Indifference
curves can be shown to be arcs of hyperbolas in this case.
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Fig. 5. Time evolution of station occupations for the stochastic system and
fluid approximation (thick lines). The predicted equilibrium of Theorem 3 is
shown in dotted lines.

VI. CONCLUSIONS

Network resource allocation calls for an interplay between
dynamics and optimization. Besides helping design control
mechanisms for engineered systems with centrally adjudicated
resources, optimization has also been applied successfully to
characterize congestion games between selfish agents.

In this paper we have analyzed the operation of spatially
distributed EV charging resources. Rather than a static, cen-
trally planned optimal transport we have considered dynamic,
selfish assignment by EV drivers endowed with delay infor-
mation. We have proposed a dynamic model and analyzed its
equilibrium and dynamics with tools of convex optimization.

Natural lines for future research are: (i) Quantitative as-

sessment of the price of anarchy, and its possible mitigation
through more active control; (ii) Dynamics beyond constant
demand (transients, tracking of daily variations); (iii) Stochas-
tic versions of the queueing model and/or the geometry, for a
more thorough analysis of variability.

APPENDIX A
PROOF OF LEMMA 5

We must establish the identity (30) for functions µj(qj(t))
and D2j(µj(qj(t))) at times when they are both differentiable.
This includes all t : qj(t) ̸= cj , since at these points µj(qj)
from (9) and D2j(µj(qj)) from (29) are both differentiable,
and so is qj(t). In this case, (30) just follows from the chain
rule, recalling that D2j(µj) = cj log(1−µj/T ). Furthermore,
if qj(t) < cj both sides of (30) are zero.

It remains to consider the case qj(t) = cj , where µj(qj) and
D2j(µj(qj)) are not smooth, they have finite but unequal lat-
eral derivatives. Still, we are assuming t ∈ T so the composite
functions µj(qj(t)) and D2j(µj(qj(t))) are differentiable. For
this to happen their derivatives must be zero, as follows from
a basic fact from differentiation, stated as Lemma 13 below
(proof omitted for brevity). So (30) holds in this case too.

Lemma 13: Let f : R → R be continuous, f(c) = 0 and
with different lateral derivatives f ′(c−) ̸= f ′(c+). Let q :
R → R be differentiable, q(t0) = c. If the composite function
g(t) = f(q(t)) is differentiable at t0, then q̇(t0) = ġ(t0) = 0.

APPENDIX B
PROOF OF THEOREM 7

The function V (q) = D(µ(q)) is well-defined over q ∈
Rn, and bounded, with a maximum V ∗ = D(µ∗) achieved
at q = q∗, the equilibrium queues. Furthermore, V (q) is non-
decreasing along trajectories q(t) of the dynamics (11). These
elements suggest using V as a Lyapunov function to establish
convergence. A few difficulties arise, however: when some
µ∗
j = 0, it is not true that V (q) = V ∗ only at equilibrium q.

Furthermore, we have to deal with non-differentiability. Thus,
we develop a specialized variant of the LaSalle principle [8].

We begin by noting that the dynamics in q(t) have a
compact positively invariant set [0, rT ]n, where we denote
r =

∑
i ri. Indeed, since (11c) implies xij(t) < ri ∀ t, we

obtain from (11a) the inequality

T q̇j <
∑
i

Tri − qj = Tr − qj .

For qj ≥ rT we have q̇j < 0; this implies a trajectory starting
from qj ∈ [0, rT ] cannot exceed the upper limit. In fact,
a slight refinement of this argument implies that from any
initial condition outside [0, rT ]n, this set is reached in finite
time. Hence, it suffices to analyze the dynamics with initial
conditions within this invariant set.

Consider q(0) ∈ [0, rT ]n, and the resulting trajectory q(t).
From Proposition 6 we know that V (q(t)) is monotonically
non-decreasing, let its limit be V̄ .

Let L+ be the Ω-limit set of the trajectory, itself an invariant
set under the dynamics. By continuity, V (q) ≡ V̄ for q ∈ L+.
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Now consider an auxiliary trajectory, q̃(t), with initial
condition q+ ∈ L+. We conclude that

V (q̃(t)) = D(µ(q̃(t))) ≡ V̄ =⇒ d

dt
D(µ(q̃(t))) ≡ 0.

In reference to (31), this implies that ˙̃qj = 0 almost every-
where, for any j : q̃j(t) > cj ; these congested queues must
be at equilibrium, and will satisfy µ̇j ≡ 0. But non-congested
queues (q̃j(t) ≤ cj) also satisfy µ̇j = 0 by Lemma 5; therefore
µ(q̃(t)) ≡ µ̃, constant. Consequently, the rates X(µ̃) defined
by (11c) are also constant.

Stations with µ̃j = 0 (q̃j(t) ≤ cj) might not be at equi-
librium; however they receive a constant input rate

∑
i xij(µ̃)

and evolve according to the first-order linear dynamics

˙̃qj =
∑
i

xij(µ̃)− q̃j/T.

This ODE has solutions that converge exponentially to q∗j =
T
∑

i xij(µ̃) ∈ [0, cj ], an equilibrium. Thus, all queues reach
equilibrium in the trajectory q̃(t); since the equilibrium is
unique from Theorem 3, we conclude from this exercise that
necessarily µ̃ = µ∗, the dual optimal price, and V̄ = V ∗ =
D(µ∗).

Return now to the original trajectory q(t). We know that
V (q(t)) = D(µ(q(t))) → D(µ∗); since D(µ) is strictly con-
cave, with a unique maximum, we must have µ(q(t)) → µ∗.

Consequently, the input rate
∑

i xij(µ(q(t)) to the j-th
station converges to the optimal rate

∑
i x

∗
ij . For the stable first

order system (11a), it follows that the output qj(t) converges
to the resulting equilibrium: qj(t) → q∗j for all j.
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