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Abstract—This paper studies partial differential equation
(PDE) models for the dynamics of peer-to-peer (P2P) file-
sharing networks. Using as independent variables time and a
fluid measure of residual work, our PDE model tracks the
population profile of the P2P swarm, allowing for general file-
size distributions. Focusing on the processor sharing discipline,
which we validate as an accurate model of homogeneous P2P
networks, we provide a series of analytical results invoking
tools of feedback control theory. We establish local stability
of the equilibrium, analyze variability around this equilibrium,
and compute transient response times, all of which are shown
to match tightly with simulation results for a full packet-level
implementation of the BitTorrent protocol. We also extend our
model to heterogeneous bandwidth scenarios, and to the case of
peers contributing to the system after they finish download.

Index Terms—Communication networks, peer-to-peer comput-
ing, stability.

I. INTRODUCTION

IN RECENT years, peer-to-peer (P2P) file sharing systems

such as BitTorrent [4] have become widespread, represent-

ing an important portion of total Internet traffic. The power

of P2P as a means of content distribution lies on the fact that

downloading peers contribute their upload bandwidth, so the

supply of capacity scales with demand.

This feature of self-scaling presents challenges when it

comes to modeling the evolution of the system over time.

Peer population dynamics is driven by the download rate the

network is able to provide, which in turn is determined by the

population size: understanding this feedback loop is key to

establishing that the P2P network reaches a stable, scalable

operation. Another modeling challenge is to describe the

resource allocation between peers: given the piece-exchange

mechanisms (e.g. BitTorrent’s tit-for-tat rules), is the global

result egalitarian or influenced by the amount of content

possessed? Finally, populations do not completely characterize

the dynamics, because job-sizes do not follow a memoryless

distribution. For instance, a swarm of peers interested in the

same content (e.g. a file) has a fixed, deterministic download

job size. Dynamic models must therefore track download

progress in addition to population.

In this paper we address these issues by constructing a

fluid model for a P2P file sharing system for general file

sizes, which may include a variety of resource allocation

disciplines. Based on a Partial Differential Equation (PDE),

the model keeps track of populations and download progress,
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and can be used to analyze both steady-state download profiles

and dynamic questions of stability, variability and transient

response. This fluid model is appropriate to describe the

average behavior of the system for large population sizes.

We begin in Section II by reviewing the structure of a P2P

file sharing system and some of the previous works on its

dynamics. In Section III we present our PDE model, focus-

ing on a processor sharing model for bandwidth allocation,

which we validate as accurate for the case of peers with

homogeneous network access parameters. For our dynamic

studies we consider here the case of a fixed number of server

peers (seeders in BitTorrent terminology) in the system, while

downloading leechers follow an arrival/departure process. We

characterize the equilibrium download profile, and establish its

local stability invoking tools of feedback control theory; we

also use such methods to evaluate the variability of populations

around equilibrium, and the transient times to empty the

system when there are no arrivals. All these mathematical

derivations are shown to match very closely with packet

level simulations performed in ns2, based on a complete

implementation of the BitTorrent protocol, and are shown to

improve on previously existing models.

In Section IV the model is generalized to several classes

of peers with heterogeneous upload bandwidth constraints.

Under a plausible model for bandwidth allocation among these

classes, we show that equilibrium and stability results extend

and again validate the results by packet-level simulations.

In Section V we extend our model to incorporate seeder

variability by modeling peers staying in the system after

completing download. We extend our stability and variability

results to this case and validate them by packet simulation.

Conclusions and lines of future work are presented in Section

VI. Partial results leading up to this paper were presented in

[9], [22].

II. BACKGROUND AND RELATED WORK

In a P2P system, content is disseminated by subdividing it

into small pieces or chunks, and enabling peers to exchange

such units bidirectionally. Thus every peer present is a server;

those who are also clients are referred to as leechers. Peers

present in the system only to altruistically distribute content

are referred as seeders, and possess an entire copy of the

content. Typically there is a common file or set of files of fixed

size in which all peers are interested (e.g. a swarm around a

single torrent). In this case, the job size each client demands

from the system is deterministic in nature. More generally, the

content may be a bundle of different files as proposed in [20].
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Here, the system stores a large directory and different peers

could have interest in downloading only a portion of it, which

introduces variability in the job size distribution peers demand

from the network.

Understanding the dynamics of peer populations has been

a topic of active research. In [28], a Markov chain model

for the populations of leechers and seeders is proposed,

assuming exponential transition times. Despite this simplifying

assumption, the model proves hard to solve explicitly and

numerical studies were given. A fluid version, with some

additional extensions, was studied in [24]; this ordinary dif-

ferential equation (ODE) model leads to explicit results for

the equilibrium of the system and its stability, and is a direct

predecessor to the PDE generalization to be pursued in this

paper. The case of heterogeneous peer rates was considered in

[3]. The main limitation of these models is that they summarize

the state of the system in the total number of leechers, giving

no information on download progress.

At the other extreme are Markov models which consider a

population variable for each subset of possessed pieces [13],

[18]; the number of state variables is thus huge, exponential in

the number of chunks (which is commonly in the hundreds).

For such an enormous state dimension it is harder to justify

the use of fluid limits, since in practice most subsets will have

empty population.

A successful application of such Markov models has been

to identify, via Foster-Lyapunov techniques, certain population

instabilities that may arise due to the scarcity of a certain

piece [11], [32]. These occur when the rate of new peer

arrivals exceeds the ability of seeders to inject new chunks.

However, these models assume leecher encounters are random,

and also the requested piece is random. Therefore, as one peer

approaches the end of the file, the probability of finding the

right peer to exchange is small, introducing a bottleneck that

leads to instability in some cases. While interesting, real world

implementations of BitTorrent include several mechanisms to

direct piece exchanges in a more efficient way. In particular,

BitTorrent systems spread information on chunk availability

(“have” messages) so peers can target their requests to peers

that have valuable pieces, and “rarest-first” policies of piece

selection are used to combat chunk rarity. In this regard, [19]

models the piece availability mechanisms of BitTorrent and

concludes that, in an homogeneous scenario, each piece takes

roughly the same time to download, and piece availability

is uniform. From an empirical perspective, [14] performs

extensive real-world studies using BitTorrent, which agree

with this conclusion.

In this paper we adopt an intermediate approach in which

remaining workload is used to index a population state, but

without taking into account the identity of individual chunks.

This will enable us to go beyond memoryless distributions

for job sizes, and thus improve the accuracy of predictions,

yet avoid the high complexity of full state models. A similar

approach was successfully applied in [23] in the context of

bandwidth-sharing networks. A related line of work to model

download progress in P2P is the use of multiple tandem

queues, as in [5], [15], [16], [19]. In particular, [7] shows

that modeling two download stages by ODEs provides an im-

provement in predictive power with respect to the single ODE

in [24]; this can be seen as a first discrete step in endowing

job sizes with a distribution of smaller variance than that of

an M/M queue. Our PDE model is the natural conclusion in

this progression, covering all job type distributions, including

the deterministic case with no variance in job size.

Another aspect of P2P that has received attention is the

resource allocation between leechers. A high-level discussion

of this design space is given in [8], see also [1], [2], [30]. In the

case of BitTorrent, this allocation is indirectly determined by

the tit-for-tat reciprocity mechanism introduced in [4] to avoid

free-riding. An alternative proportional reciprocity mechanism,

more amenable to analytic studies, was studied in [29] and

implemented in [17]; theoretical results on resulting allocation

under these strategies are given in [27]. A conclusion of these

studies is that for peers of homogeneous upload capacity, an

egalitarian download distribution results. We will incorporate

this assumption in the next section.

III. FLUID MODEL FOR A P2P SYSTEM

We introduce here our fluid model for the population of

leechers in a P2P system, using as state descriptor a function

valued state that keeps track of the download progress. As

discussed above, the main motivation to introduce download

progress in the state is to incorporate the possibility that job-

sizes come from a general distribution. In fact, if the content

consists of a single file, then the job size is the same for every

peer (deterministic). If the content is a bundle of files, peers

may be interested in different parts of it, which introduces

randomness in the demand.

As in [28], consider a P2P system where fresh peers arrive

as a Poisson process of intensity λ. Instead of assuming a

distribution of service time, it is natural here to model the

job size requirement:1 each peer n requires some amount of

content σn, which we assume random with complementary

cumulative distribution function (CCDF) H(σ) := P (σn >
σ). We assume that H is normalized such that E[σn] =
∫∞

0
H(σ)dσ = 1, which amounts to a choice of units.

Examples of H(σ) are the exponential case H(σ) = e−σ,

and the deterministic size case H(σ) = 1[0,1)(σ) where all

peers demand the same amount of content. We denote by x(t)
the total amount of leechers present in the system at time t.

As a first step we shall assume that the total number of

seeders in the system is fixed and equal to y0, whereas leechers

completing their download leave the system immediately. This

idealizes a rather common scenario in practice, where torrents

often rely mainly on a set of permanent, highly committed

seeders (publishers). In Section V we discuss how to include

seeder variability. We also assume that all participating peers

contribute the same amount of upload capacity into the system,

which we denote by µ (in files/second). In Section IV we

discuss how to generalize the model to heterogeneous upload

capacities.

For generally distributed job sizes, to characterize the

system state the total population x(t) does not suffice [25].

Instead, the state must keep track of the residual workload of

1Both are not interchangeable when service capacity per job varies in time.
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Fig. 1. Fluid state evolution.

each present peer. Let F (t, σ) be a function that counts the

number of leechers that at time t have residual workload larger

than σ. When the scale of the system is large, we can treat

F (t, σ) as a fluid (real) variable. If leechers are served at rate

r (possibly dependent on the population size), the evolution

equation for F (t, σ) is:

F (t+ dt, σ) = F (t, σ + rdt) + λH(σ)dt.

This evolution equation is better explained through Fig. 1.

The first term is due to downloading: after a short time dt, the

population profile F (t, ·) is transported towards zero at rate

r. The second term λH(σ)dt accounts for the fresh arrivals

above level σ, corresponding to the thinned Poisson arrival

process with probability H(σ).
Subtracting F (t, σ), dividing by dt and letting dt → 0 we

arrive at the following PDE state equation:

∂F

∂t
= λH(σ) + r

∂F

∂σ
.

A derivation of the above dynamics as a fluid limit of

stochastic processes is outside the scope of this paper. We refer

the reader to [10], [23] for a discussion on the connection

between stochastic fluid limits and PDE models. Here, we

shall focus on the fluid state descriptor and its predictions

of the system behavior, and validate its conclusions through

simulation experiments.

To completely specify our model, we must choose a suitable

rate function r. In principle, r = r(F, y, σ) may depend on the

current profile, the number of seeders and the download stage

(see [9]), and would be affected by the piece-exchange details

outside our model. Nevertheless, we will show evidence in

Section III-D that the following macroscopic assumptions are

approximately satisfied in the case of BitTorrent:

A1 The P2P sharing mechanism is efficient, in the sense

that the total upload bandwidth R̄up = µ(x+ y0) is

used for sharing.

A2 This available bandwidth is distributed evenly among

all downloading peers independently of their down-

load progress, i.e. the system behaves as a Processor

Sharing queue with state-dependent rates.

Under these assumptions, the downloading rate of a given

leecher when the population size is x is given by:

r = µ ·

(
x+ y0

x

)

;

and therefore, the complete dynamics for the system are

captured by the following PDE:

∂F

∂t
= λH(σ) + µ ·

(
x+ y0

x

)
∂F

∂σ
, (1)

with x(t) := F (t, 0), the total amount of leechers in the

system, and the boundary condition F (t,∞) = 0 for all t.
Recall that µ is the constant upload bandwidth contributed by

peers in the system, in files per second.

As an example, consider the case of exponentially dis-

tributed job sizes, H(σ) = e−σ. In that case, we can seek

a solution by separation of variables, i.e. F (t, σ) = x(t)e−σ .

Substituting in (1), we have

ẋ(t)e−σ = λe−σ − µ
x(t) + y0

x(t)
x(t)e−σ;

after canceling terms, we see that F is a solution provided

x(t) follows:

ẋ(t) = λ− µ(x(t) + y0). (2)

This is a version of the ODE dynamics proposed by [24],

specialized to the case of a fixed seeder population. This

indicates that the ODE model carries with it the assumption

of exponentially distributed jobs.

A practically more interesting case is when all peers demand

the same content, so job sizes are deterministic and H(σ) =
1[0,1)(σ). In this case, since no mass arrives beyond σ = 1
we can restrict the dynamics to σ ∈ [0, 1] leading to:

∂F

∂t
= λ+ µ ·

(
x+ y0

x

)
∂F

∂σ
, (3)

for 0 6 σ 6 1 with the boundary condition F (t, 1) = 0 at all

times. As we shall see, (3) will provide a better description of

the system in this case than the ODE dynamics (2).

A. Equilibrium and stability

Let us analyze the equilibrium of the dynamics (1). Denote

by ∗ the values of the system at equilibrium. Setting ∂F/∂t =
0 and integrating in the positive real line we have:

λ

∫ ∞

0

H(σ)dσ + µ

(
x∗ + y0

x∗

)∫ ∞

0

∂F ∗

∂σ
dσ = 0. (4)

Since we normalized the job size,
∫∞

0 H(σ)dσ = 1, and due

to the hypotheses on F ,
∫∞

0
∂F∗

∂σ
dσ = −F ∗(0) = −x∗. We

conclude that in equilibrium the number of leechers should

satisfy:

λ− µ(x∗ + y0) = 0. (5)

We now distinguish two cases, as a function of ρ := λ
µ

, which

can be interpreted as the system load, since 1/µ is the time

to upload a copy of the file. If ρ < y0, seeders alone can

cope with the load, in which case we have a seeder sustained

system. In this case, no equilibrium with positive x∗ exists

and the solution of the PDE approaches 0 as t → ∞.

The most important case is when ρ > y0: here the seeders

alone cannot cope with the load and the effect of P2P is

to stabilize the system through leecher contribution around
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a nonzero population. We have a globally sustained system,

and the number of leechers in equilibrium is:

x∗ = ρ− y0.

Substituting this value in the equilibrium condition, and using

the boundary condition F ∗(∞) = 0 we arrive at:

F ∗(σ) =

∫ ∞

σ

∂F ∗

∂σ
dσ = (ρ− y0)

∫ ∞

σ

H(s)ds.

The last term can be interpreted by recalling the concept of

residual lifetime distribution from renewal theory: Given a

stationary renewal process on the real line, with inter-event

distribution with CCDF H and mean 1, the distance to the

first event starting from any given point is distributed with

CCDF

H̄(σ) =

∫ ∞

σ

H(s)ds.

With this notation the equilibrium becomes simply:

F ∗(σ) = (ρ− y0)H̄(σ). (6)

Therefore the fluid equilibrium predicts that the system will

have x∗ = ρ − y0 leechers present, and with remaining

workloads distributed as the residual lifetimes2 associated to

H . This is consistent with known properties of processor

sharing systems in equilibrium [10]. If we specialize (6) to

the case of deterministic job sizes, it is easy to see that

H̄(σ) = 1 − σ for σ ∈ [0, 1]. Therefore, in equilibrium the

peers show a uniform download progress.

We now analyze local stability of the equilibrium (6),

introducing incremental variables δx, f as x = x∗ + δx and

F = F ∗ + f , and a perturbation signal n(t) in the arrivals as

an input to the system. With this notation, (1) becomes:

∂(F ∗ + f)

∂t
= (λ+ n(t))H(σ) + (r∗ + δr)

∂(F ∗ + f)

∂σ

By canceling the equilibrium terms and discarding higher

order terms, the linearization becomes:

∂f

∂t
= H(σ)n+ r∗

∂f

∂σ
+

∂F ∗

∂σ
δr.

Noting that δr = −µ y0

x∗2 δx and ∂F∗

∂σ
= −x∗H(σ) we have

∂f

∂t
= r∗

∂f

∂σ
+ µ

y0
ρ− y0

H(σ)δx +H(σ)n.

Denoting now by τ = 1
r∗

= 1
µ

ρ−y0

ρ
the equilibrium download

time, the linear dynamics becomes

∂f

∂t
=

1

τ

∂f

∂σ
+

1

τ
H(σ)

(
y0
ρ
δx+ τn

)

︸ ︷︷ ︸

u

. (7)

Identifying the feedback signal u from the previous equation,

we are led to the structure of Fig. 2, in which P is the infinite

dimensional system

P :







∂f

∂t
=

1

τ

∂f

∂σ
+

1

τ
H(σ)u,

δx = f(t, 0).

(8)

n ✲ τ ✲ ❣ ✲ P
u

y0
ρ

✛

✻

δx

Fig. 2. Linearized dynamics as a feedback loop, with injected noise.

We analyze the stability of the feedback loop using Laplace

transforms, which is non-trivial due to infinite dimensionality.

Theorem 1: The transfer function of subsystem P is

P̂ (s) =

∫ ∞

0

e−sτηH(η)dη, (9)

and the input-output transfer function is:

Q̂(s) =
τP̂ (s)

1− y0

ρ
P̂ (s)

, (10)

which is stable (analytic in Re(s) > 0).

Proof: To derive the transfer function of the subsystem

P , define f̂(s, σ) the Laplace transform in the time variable of

f(t, σ). Transforming (8) with zero initial conditions yields:

sf̂(s, σ) =
1

τ

∂f̂

∂σ
+

1

τ
û(s)H(σ).

This is now an ordinary differential equation in σ. It can

be readily verified that the solution of this equation with the

boundary condition f̂(s,∞) = 0 can be represented as:

f̂(s, σ) = û(s)

∫ ∞

0

e−sτηH(σ + η)dη,

and recalling that δ̂x(s) = f̂(s, 0), taking σ = 0 in the above

equation we get the desired result for P̂ (s). The expression

for Q̂(s) now follows by calculating the closed loop gain of

the feedback loop.

For stability, we will use the small-gain theorem (cf. [31])

which applies to transfer functions seen as operators, in

particular the H∞ (L2-induced) norm of P satisfies:

‖P̂ (s)‖H∞
= sup

ω∈R

|P̂ (jω)| = sup
ω∈R

∣
∣
∣
∣

∫ ∞

0

e−jωτηH(η)dη

∣
∣
∣
∣

6

∫ ∞

0

H(η)dη = 1.

where we recall that job sizes have mean 1. Since we are in

the case ρ > y0, the loop gain is
∥
∥
∥
∥
P̂ (s)

y0
ρ

∥
∥
∥
∥
H∞

6
y0
ρ

< 1;

the small-gain theorem implies that the closed loop transfer

function Q̂(s) in (10) is analytic in the closed right half-plane.

The system is thus locally stable.

2Despite the use of this standard terminology, we emphasize that the
independent variable here is workload, not time.
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B. Variability analysis

The feedback loop analysis performed above enables us

to also characterize the variability around the equilibrium

value. We consider the case of deterministic job sizes, with

H(σ) = 1[0,1)(σ), where the only source of variability

corresponds to peer arrivals. In this case, the noise signal

n(t) above represents variability in the Poisson arrival process,

which at time t can be modeled as
∫ t

0 (λ+n(τ))dτ . Here n(τ)
is a stationary process of power spectral density Sn(ω) ≡ λ.

Using this representation we can characterize the steady

state variance of δx. As a stationary process, the output varia-

tions δx will have power spectral density Sx(ω) = λ|Q̂(jω)|2,

where Q̂ is the input-output transfer function of the loop (10).

It turns out that:

‖Q̂‖22 =

∫ ∞

−∞

|Q̂(jω)|2
dω

2π
=

1

µ
,

and therefore the steady state variance of δx is given by:
∫ ∞

−∞

Sx(ω)
dω

2π
=

λ

µ
= ρ.

C. Transient analysis

We now analyze the predictive power of the PDE model

in a transient situation, away from equilibrium. An interesting

such scenario is when the arrivals are “turned off”, and thus the

system will empty in a finite time after all leechers complete

their download. We wish to evaluate this completion time.

The relevant model is (1) without the arrivals term:

∂F

∂t
= µ

(
x+ y0

x

)
∂F

∂σ
. (11)

As for the initial condition, we assume that F (0, σ) = ϕ(σ),
a strictly decreasing differentiable function of σ, with x0 :=
ϕ(0), the initial total number of leechers, and ϕ(∞) = 0.

Proposition 1: The time needed to empty a processor-

sharing P2P system with y0 servers and starting from an initial

condition ϕ(σ) is given by:

T =
1

µ

∫ ∞

0

ϕ(σ)

ϕ(σ) + y0
dσ. (12)

Proof: For this simplified system with no input, the PDE

model (11) with initial condition ϕ(σ) can be written in the

integral form

F (t, σ) = ϕ

(

σ +

∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ

)

,

valid for {t : x(t) > 0}. That this is a solution can be readily

verified by substituting in (11). Evaluating the preceding

expression in σ = 0 gives the following integral equation for

the number of leechers x(t):

x(t) = F (t, 0) = ϕ

(∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ

)

.

This is valid while x(t) > 0, and since ϕ is strictly decreasing

in this range we can solve for

ϕ−1(x(t)) =

∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ.

Differentiating in t we get the following autonomous differ-

ential equation for x:

(ϕ−1)′(x)ẋ = µ
(

1 +
y0
x

)

, x(0) = x0.

Applying separation of variables and integrating in [0, T ] gives

1

µ

∫ x(T )

x0

x

x+ y0
(ϕ−1)′(x)dx = T.

When x(T ) tends to zero we obtain the expression for the

completion time:

T =
1

µ

∫ 0

x0

x

x+ y0
(ϕ−1)′(x)dx.

Finally, the change of variables σ = ϕ−1(x) in the above

integral leads to (12).

It is worth specializing the above result to the case of

deterministic workloads of size 1, where (12) becomes:

T =
1

µ

∫ 1

0

ϕ(σ)

ϕ(σ) + y0
dσ. (13)

and we assumed ϕ(σ) = 0 for σ > 1. Noting that ϕ(σ) 6 x0

∀σ and the function ξ
ξ+y0

is increasing in ξ > 0, we have the

following:

Corollary 1: For deterministic job sizes, the completion

time T satisfies

T 6
1

µ

x0

x0 + y0
. (14)

In fact, the equality in the above expression is achieved when

the initial condition ϕ approaches the function x01[0,1)(σ), i.e.

when all the leechers start empty.

Note that in particular, T is bounded above by 1/µ, i.e. the

time for completion is finite, and is at most 1/µ, the time to

upload a copy of the file. This uniform bound holds regard-

less of the initial number of leechers! This again evidences

the scalability of P2P file exchange mechanisms: when the

demand is large, the supply scales to keep up with it.

Let us compare these results with the prediction of ODE

models which do not track download progress. In particular,

the model (2) with arrivals turned off becomes:

ẋ = −µ (x+ y0) , x(0) = x0.

With analogous (simpler) calculations, the completion time for

this model can be readily calculated as:

T ′ =

∫ x0

0

1

µ

1

x+ y0
dx =

1

µ
log

(

1 +
x0

y0

)

.

In particular the ODE model predicts T ′ → ∞ as x0 → ∞,

albeit logarithmically. We show in our simulations below that

this is pessimistic, and the time we found in (14) gives closer

predictions.

The analysis presented here is only one way of considering

the transient behavior, where the uplink bandwidth bottleneck

plays the crucial role, and thus the scalability of P2P is

exhibited. A complementary view of transients is that of

epidemic models, where download times are neglected and

propagation is controlled by the evolving peer connectivity,

see for instance [21]. Also, in the case of bundles of multiple

content files, [20], [26] analyze the possibility of a specific

content becoming unavailable due to peer departures.
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D. Simulations with fixed seeders, homogeneous leechers

In this section we offer simulation experiments that validate

the accuracy of the models presented so far. All simulations

were performed using the network simulator ns2 with the

BitTorrent library [6], which closely mimics the behavior

of the BitTorrent protocol, including individual chunk avail-

ability, tit-for-tat rules and transport layer connections [4].

The file size of interest is of 100 MB (deterministic) and is

subdivided in 400 small size chunks. Each peer may open

connections up to 40 other peers in the network, thus not

every peer interacts with every other. The physical uplink

bandwidth of clients is 256kbps; however a fraction of this is

spent in protocol overheads (TCP headers, BitTorrent control

messages, etc.), empirically we found in our simulations that

the useful bandwidth seen from the application layer is about

90% of the total. This amounts to choosing:

µ = 0.9×
256kbps

8× 100MB
= 2.8× 10−4s−1.

This means it takes ≈ 1h for a single peer to upload a full

copy of the file.

We begin by validating the assumptions that the bandwidth

sharing attained by BitTorrent is efficient, and can be well

approximated by a processor sharing discipline. To do so, we

simulated the system with a fixed number of seeders y0 = 25,

and leechers arriving empty at a rate λ = 1.6 arrivals/min.

Leechers that finish download depart immediately.

To measure the efficiency, we measure the total download

rate Rdown(t) by counting the total bits downloaded at inter-

vals of ∆t = 120s, and compare its behavior with R̄up(t) =
µ(x(t)+ y0), with x(t) the current leecher population. In Fig.

3 we plot the evolution of the ratio Rdown/R̄up, which is

close to 1 at all times, meaning the system fully utilizes the

available bandwidth, despite a varying population.

To evaluate the processor sharing hypothesis, we use the

Jain index [12], i.e. we compute the individual download rates

(r1(t), . . . , rx(t)) of the peers present in the system at time t
and define:

J(t) =
(
∑

ri(t))
2

x(t)
∑

ri(t)2
.

Recall that J(t) 6 1, with equality if and only if all download

rates are equal.

The second graph in Fig. 3 shows the evolution of the Jain

index, which stays most of the time with J > 0.9. Complete

fairness (J = 1) is not easy to attain, since the underlying

protocol incorporates complex mechanisms for peer discovery

and reciprocity (tit-for-tat rules and optimistic unchoking), and

works in a completely decentralized fashion.

To validate the uniformity of download rate across download

stages, we performed another experiment where we fix the

total population. The setting is as before, but instead of a

random arrival process of leechers, each departing peer is

replaced by a new fresh leecher. In this case x(t) = x0 = 75
leechers and y0 = 25 seeders. This enables us to fix the

population and thus the total available rate in the system,

isolating the piece-related effects from population variability.

In Fig. 4 we plot the received rate measured at different

download stages and compare it to the processor sharing
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Fig. 3. Evolution of a system with fixed seeders. Efficiency (download/upload
rate ratio) and Jain index of instantaneous download rates.
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Fig. 4. Received rate r rate across download stages for a system with fixed
total population.

allocation r = µ
(

x0+y0

x0

)

. We observe that there is a short

period at the beginning of download where the received rate

is lower, but immediately the system approaches the egalitarian

allocation. A microscopic explanation could be the following:

as soon as a leecher owns a modest amount of pieces, in

a diverse swarm it will find others interested in them and

therefore occupy its limited number of unchoke slots. In a

tit-for-tat environment, this implies the leecher’s “bargaining

power” becomes comparable to other peers with the same

access rate, regardless of the portion of file they possess;

thus obtained rates tend to equalize over the download. As

for the last piece, a slight but not significant lowering of the

rate is observed towards the end. Simulations across several

population sizes show that, provided the number of seeders is

not too small, the system behaves in this fashion. We refer the

reader to [5] for a discussion of the case when the number

of seeders becomes too small. We believe that these results

validate approximating the resource allocation by processor

sharing for homogeneous peers in the case of large swarms,

as those described by the fluid limit.

We now compare the fluid model (3) with the simulation

experiment. Again, we use λ = 1.6 arrivals per minute, 1/µ ≈
1h and y0 = 25. To capture the transient and steady-state

behavior, we take 16h of simulation time. The load of this

system is then ρ = λ
µ
= 100, and the equilibrium value for

the leecher population is x∗ = ρ − y0 = 75. In Fig. 5 we

plot the results compared against the trajectory predicted by

the model for the same parameters. The PDE model tracks

the evolution of the system during the transient, and correctly
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Fig. 5. Evolution of a system with fixed seeders: simulation and fluid model.
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Fig. 6. Time to finish service in a P2P system with varying initial leechers.

tracks the average of the steady-state population. Moreover,

from the analysis of III-B the steady state variance of x(t)
should verify E[(δx)2] = ρ, corresponding in this case to

a standard deviation of 10, whereas the measured standard

deviation in the simulation is ≈ 10.67. For comparison, the

ODE trajectory resulting from equation (2) is also shown. We

observe that, although the equilibrium population predicted is

the same, the transient is better captured by the PDE dynamics.

Finally we compare the time to empty the system, analyzed

in III-C. We start the P2P system with x0 leechers with no

initial content, and y0 seeders, which remain during the entire

simulation. Finishing peers leave the system immediately. The

time to finish service of the initial leechers is given by equation

(14) which in particular in this case is bounded by 1/µ ≈
60min. In Fig. 6 we plot the results for several initial values

of the ratio between leechers and seeders x0/y0. The time

to finish download predicted by our model is compared with

simulation results, showing good fit. We also plot the time T ′

predicted by the simpler ODE model, which is pessimistic.

This experiment emphasizes again the scalability of P2P

file-sharing, and the fact that to fully represent this feature

an ODE model does not suffice; information on download

progress plays a crucial role.

IV. UPLINK BANDWIDTH DIVERSITY

The model analyzed in Section III assumes an homogeneous

uplink bandwidth across all leechers participating in the sys-

tem. This is a strong assumption, since typically peers have

different access links and may also commit different amounts

of bandwidth to the P2P network. We now describe how to

generalize the preceding model to the case of heterogeneous

uplink bandwidths. For ease of exposition, we will only focus

here on the case where all peers want to download the same

content of fixed size. However, we note that the results extend

to the case of general job sizes.

Consider a P2P system where leechers are classified in n
groups according to their upload bandwidths, which we denote

by {µi}, measured in files per second. Leechers of class i
arrive at a rate λi, and request the download of the file. Assume

as before that there is a fixed number of seeders y0, each one

with uplink bandwidth µ0.3

Let as before Fi(t, σ), i = 1, . . . , n denote the amount of

leechers of class i that at time t have a pending download of

at least σ, and define xi(t) := Fi(t, 0) the total population of

class i. In the case of deterministic job sizes, we can restrict

ourselves to σ ∈ [0, 1] and the corresponding multi-class PDE

model for the system is now:

∂Fi

∂t
= λi + ri(F, y0)

∂Fi

∂σ
, σ ∈ [0, 1], i = 1, . . . , n.

To complete our model, we now choose ri, the rate of

service each class receives from the system, which comes from

two contributions. On one hand, the seeders’ portion, which

is split evenly among all participating peers, in a processor-

sharing fashion. On the other hand, each peer receives data

from fellow leechers. As analyzed theoretically in [8] and

by extensive simulations in [14], the tit-for-tat mechanism

of BitTorrent tends to cluster leechers in groups of similar

bandwidths, thus each will receive from other leechers roughly

the same amount of bandwidth it provides to the network. This

leads to the following model for the individual rates:

ri =
µ0y0
∑

j xj

+ µi. (15)

Plugging this rate into the PDE model gives the dynamics

∂Fi

∂t
= λi +

(

µ0y0
∑n

j=1 xj

+ µi

)

∂Fi

∂σ
, σ ∈ [0, 1]. (16)

A. Equilibrium and stability

We now analyze the equilibrium and stability of the dynam-

ics (16). As in Section III, we do so in the globally sustained

case, i.e. when the seeders alone cannot cope with the demand,

which for heterogeneous rates translates to:
∑

i

λi > µ0y0. (17)

Imposing equilibrium in (16) yields:

λi +

(

µ0y0
∑n

j=1 x
∗
j

+ µi

)

∂F ∗
i

∂σ
≡ 0,

which together with the boundary condition F ∗
i (1) = 0 implies

that F ∗
i (σ) = x∗

i (1− σ), where x∗ satisfies:

λi =

(

µ0y0
∑n

j=1 x
∗
j

+ µi

)

x∗
i i = 1, . . . , n. (18)

3Heterogeneous seeders could be included with essentially no change, this
is avoided for simplicity.
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Define

α =
µ0y0

∑n
j=1 x

∗
j

> 0, (19)

representing the equilibrium seeder bandwidth available per

leecher, and solve (18) for

x∗
i =

λi

α+ µi

. (20)

Summing (18) over i and substituting for x∗
i leads to an

equilibrium condition for α:

n∑

i=1

λi

α

α+ µi

= µ0y0. (21)

Denote the left-hand side of (21) as g(α). It is strictly

increasing in α > 0, g(0) = 0 and g(+∞) =
∑

i λi > µ0y0
by condition (17). Therefore, there exists a unique root α > 0
to (21). Substituting in (20), there is a unique point x∗ with

x∗
i > 0 that satisfies the conditions for equilibrium. It is

straightforward to show conversely that satisfying (20), (21)

is also sufficient, so the dynamics has a unique equilibrium.

We now analyze the local stability of this equilibrium

through linearization. Denote by δxi, δri the incremental

scalar variables, and fi(t, σ) = Fi(t, σ) − F ∗
i (σ); we have

fi(t, 1) ≡ 0 and fi(t, 0) = δxi. The linearization of (16) is:

∂fi
∂t

= r∗i
∂fi
∂σ

− x∗
i δri (22)

where the incremental rate is given by

δri = −
µ0y0

(
∑

j x
∗
j )

2

∑

j

δxj = −
α

∑

j x
∗
j

∑

j

δxj ,

with α from (19). The second term in (22) is now expressed

as −x∗
i δri = r∗i κi

∑

j δxj , where

κi :=
α

r∗i

x∗
i

∑

j x
∗
j

.

Note r∗i = α+ µi > α, so
∑

i κi < 1. Let us further denote

ui := κi

∑

j

δxj . (23)

It will also be convenient to define τi = (r∗i )
−1 =

x∗

i

λi

(equilibrium download time per peer). It follows that the

linearized dynamics is the feedback interconnection of:

• A set of parallel blocks Pi, with input ui and output δxi,

characterized by the infinite-dimensional dynamics

∂fi
∂t

(t, σ) =
1

τi

∂fi
∂σ

(t, σ) +
1

τi
ui(t), (24a)

δxi(t) = fi(t, 0), (24b)

0 ≡ fi(t, 1). (24c)

• The static mapping (23), represented in matrix form by

u = K11
T δx, (25)

where K is the diagonal matrix diag(κi) and 1 a column

vector of ones.
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Fig. 7. Two-class experiment. Peer populations for simulated BitTorrent,
PDE model (solid) and ODE model (dashed).

The block (24) is of the form (8), for deterministic job sizes,

hence its transfer function follows from (9), giving:

P̂i(s) =
1− e−τis

τis
,

In particular, it satisfies ‖P̂i(s)‖∞ = supω∈R
|P̂i(jω)| = 1. In

the present case, the loop transfer function K11
Tdiag(Pi(s))

is of rank one, so its input-output stability is equivalent to that

of the scalar loop gain

L(s) = 1
T diag(Pi(s))K1 =

∑

i

κiP̂i(s).

It follows that

|L(jω)| ≤
∑

i

κi|P̂i(jω)| ≤
∑

i

κi < 1,

hence input-output stability holds by a small-gain argument.

B. Simulations with fixed seeders, heterogeneous leechers

To illustrate and validate our analysis we report a packet-

level simulation of the BitTorrent algorithm. There are y0 = 20
seeders, the file size is 100MB and seeders have 512kbps of

uplink bandwidth, which accounting for protocol inefficiencies

gives µ0 = 5.3 × 10−4 files/sec (a copy is uploaded in ≈
30min). Leechers of two classes arrive with λ1 = λ2 = 1.5
peers/min, with µ1 = µ0, µ2 = 1

2µ0.

Fig. 7 shows the results of an 8-hour run, with an empty

initial condition. For comparison we include the traces of the

numerical solution of (16). We also include as a reference

an ODE version of the PDE model, including the rates in

(15). Both models show convergence to an equilibrium roughly

consistent with the experimental populations, with the PDE

version giving tighter transient predictions.

V. ENDOGENOUSLY GENERATED SEEDERS

In this Section we extend our previous model to the case

of peers finishing download and staying in the system to

contribute, as first proposed in the models of [24], [28]. As in

these references, we return here to the single class case with

homogeneous leecher upload bandwidths.
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Assume as before that peers arrive into the system with

rate λ, demanding job sizes of CCDF H(σ). When a leecher

finishes its service, it becomes a seeder, staying in the network

and contributing its upload bandwidth for some time. Let y(t)
the number of seeders present in the system at time t.

Under assumptions A1-A2, the service rate of leechers is

r = µ ·
(
x+y
x

)
, and the dynamics of the leecher population can

be captured by (1) as before, but now with variable y(t):

∂F

∂t
= λH(σ) + µ ·

(
x+ y

x

)

︸ ︷︷ ︸

r

∂F

∂σ
, (26a)

where again x(t) = F (t, 0). To model the seeder dynamics,

assume that each seeder departs the network at rate γ, then

we have:

ẏ = −r
∂F

∂σ

∣
∣
∣
∣
σ=0

− γy, (26b)

where the first term accounts for download termination.

The P2P system is thus represented by the combined dy-

namics (26a), (26b) in the state variables F (t, σ) and y(t).
Alternatively, one can replace y(t) by the variable:

z(t) = x(t) + y(t) = F (t, 0) + y(t),

the total population of the network. By evaluating (26a) in

σ = 0 and adding it to (26b) we deduce the following dynamic

equation for z:

ż = λ− γz + γx. (26c)

A. Equilibrium and stability

Denoting as before by ∗ the equilibrium values, and impos-

ing the equilibrium condition in (26c) we get:

λ− γz∗ + γx∗ = 0,

so in any equilibrium of (26) the number of seeders y∗ =
z∗ − x∗ should be y∗ = λ

γ
. Plugging the equilibrium values

in (26a) and integrating in the positive real line we get the

following condition for x∗:

λ− µ

(
x∗ + y∗

x∗

)

x∗ = 0. (27)

If γ > µ, there is an unique positive solution to the above

equation with y∗ = λ/γ, given by:

x∗ = λ

(
1

µ
−

1

γ

)

and in this case the equilibrium in (26a) yields:

F ∗(σ) = x∗H̄(σ)

where H̄ is the residual lifetime distribution associated to H .

Note also that the equilibrium rate satisfies r∗ = λ/x∗, which

yields the following expression for the mean download time:

τ =
1

r∗
=

1

µ
−

1

γ
. (28)

The condition γ > µ (or µ−1 > γ−1) can be interpreted

as follows: the mean time γ−1 a peer spends as a seeder is

insufficient to upload a full copy of the file (which takes µ−1);

n1 ✲

n2 ✲

G1

G2

❄❣
✻

✲ ❣ ✲u

G0

P

✛

✻

x̃

Fig. 8. Linearized dynamics with noise.

the extra time τ of upload must be provided when the peer is

a leecher; so we are again in a globally sustained case as in

Section III. If instead γ 6 µ no equilibrium with positive x∗

exists, consistent with the fact that in this case, the average

number of seeders can cope with the load, and the fluid model

converges to F ∗ ≡ 0.

In analogous fashion to Section III, we wish to analyze

the local stability of the globally sustained case. Once again,

we use incremental variables F = F ∗ + f , x = x∗ + δx,

z = z∗+ δz, and carry out similar operations as those leading

to (7), yielding the linearization:

∂f

∂t
=

1

τ

∂f

∂σ
+

1

τ
H(σ) (−µτδz + δx+ τn1)

︸ ︷︷ ︸

u

, (29)

where n1 is a perturbation introduced in the arrival rate. Since

there is randomness in the seeder departures, it makes sense

to introduce a second noise source n2 on the right-hand side

of (26b). When translated to the total population variable as in

(26c), we end up with an incremental equation that involves

both noise sources:

δ̇z = −γδz + γδx+ n1 + n2. (30)

As before we can express the dynamics as a feedback loop.

One of the components is the same infinite dimensional system

P of (8), reproduced here for convenience:

P :







∂f

∂t
=

1

τ

∂f

∂σ
+

1

τ
H(σ)u,

δx = f(t, 0).

As for the feedback term, in this case we have the first order

dynamics

δ̇z = −γδz + γδx+ n1 + n2;

u = −µτδz + δx+ τn1;

which can also be expressed in transfer function form

û(s) = Ĝ0(s)δ̂x(s) + Ĝ1(s)n̂1(s) + Ĝ2(s)n̂2(s);

Ĝ0(s) =
s+ µ

s+ γ
, Ĝ1(s) =

τ(s+ γ − µ)

s+ γ
, Ĝ2(s) = −

µτ

s+ γ
.

The feedback dynamics in transfer function form is depicted

in the block diagram of Fig. 8.

Theorem 2: The closed loop transfer function P̂ (s)Ĝ0(s)
from Fig. 8 has the small-gain property ‖P̂ Ĝ0‖H∞

< 1, and

therefore the closed loop transfer function is stable (analytic

in Re(s) > 0).
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Proof: Recall from Theorem 1 that P has transfer func-

tion P̂ (s) =
∫∞

0
e−sτηH(η)dη, which satisfies ‖P̂ (s)‖H∞ =

supω |P̂ (jω)| 6 1. Moreover, it is readily checked that this

supremum is attained at frequency ω = 0.

Analyzing now the transfer function Ĝ0, we see that it

corresponds to a lead-lag system with the zero at µ and the

pole at γ > µ. The modulus of the frequency response of this

system is thus increasing and we conclude that ‖Ĝ0(s)‖H∞ =
supω |Ĝ0(jω)| = 1, achieved as ω → ∞.

The feedback loop gain therefore satisfies ‖P̂ Ĝ0‖H∞ < 1,

since both terms have norm 6 1 attained at opposite ends of

the spectrum. By the small-gain theorem, the feedback loop is

stable. Furthermore, since Ĝ1 and Ĝ2 are both stable transfer

functions, the overall relationship

δ̂x(s) =
P̂ (s)

1− Ĝ0(s)P̂ (s)

[

Ĝ1(s)n̂1(s) + Ĝ2(s)n̂2(s)
]

is input-output stable.

B. Variability analysis

As before, we are interested in evaluating the variability of

populations around their equilibrium values, using the above

linear models and frequency domain computation.

Assume that the only sources of variability are the arrival

and departure noises n1, n2. As in the previous Section,

variability of the Poisson(λ) arrivals will be modeled by taking

n1 to be white noise of power spectral density λ. Note that

locally around equilibrium, departures also follow a Poisson

process of intensity γy∗ = λ, and thus n2 will have the same

fluid noise representation, independent of n1.

The resulting power spectral density for the output process

δx is given by

Sx(ω) = λ
|P̂ (jω)|2 · (|Ĝ1(jω)|

2 + |Ĝ2(jω)|
2)

|1− P̂ (jω)Ĝ0(jω)|2
. (31)

Integrating over frequency we have the population variance

E[δx2] =
∫∞

−∞
Sx(ω)

dω
2π . Similar calculations can be used to

the evaluate the variance around equilibrium for the number

of seeders E[δy2].
In Fig. 9 we plot the power spectral density in (31) for two

cases: the solid curve corresponds to deterministic job sizes,

where we have

P̂ (s) =
1− e−τs

τs
,

and the dashed curve is for exponential job sizes, where

P̂ (s) = 1
τs+1 . Note that in this case the model becomes finite-

dimensional since it can be reduced to an ODE through sepa-

ration of variables. The parameters are γ = 4µ in normalized

units (µ = 1). Both models coincide at low frequency, and the

infinite dimensional model predictably adds many high order

modes. Around the cutoff frequency, with most impact on

the variance, both models differ substantially, the PDE model

predicting more variability.

When job sizes are deterministic, the only sources of

variability are clearly the arrival and departure processes, in

particular the transition from leechers to seeders is endoge-

nously determined by the transport equation. In this case we
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Fig. 9. Bode plot of the power spectral density Sx; deterministic and
exponential case.
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Fig. 10. Evolution of the number of leechers and seeders in a globally
sustained P2P system.

expect the above frequency domain integral to provide a good

estimate of variance; below, we will validate its accuracy in

simulation. For job-sizes of general random distribution, this

additional variability must be accounted for; in particular it

does not suffice to express arrival noise as variations in the

Poisson rate affecting the mean distribution H(σ). Dealing

properly with this case remains open for future research.

C. Simulations with variable seeders

We now simulate the scenario where peers that finish

download remain in the system as seeders, departing after an

exponentially distributed time with parameter γ. The system

model is then (26), and we choose γ = 4µ, so seeders depart

on average after 15 min. Since γ > µ, the system is globally

sustained, and the equilibrium values for the population are

x∗ = 75, y∗ = 25. We simulate 16 hs. of system evolution to

capture transient and steady-state behavior. At time t = 0, the

system starts with no leechers and 100 initial seeders.

Results are shown in Fig. 10, for both leecher and seeder

populations. Again, the fluid model correctly tracks the tran-

sient and steady-state average behavior. To validate our pre-

dictions of variability, we numerically computed the frequency

integrals for the variance of x and y, with noise terms of

power λ. Using these variances, we plot the corresponding

95% confidence intervals for the system population around

equilibrium, showing good agreement with the simulation.
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VI. CONCLUSIONS

In this paper, we analyzed PDE models for population

evolution in a P2P file exchange network, capturing download

progress when the file of interest is of general distribution.

When the resource allocation policy is processor-sharing, we

derive results for local stability and variability around the

equilibrium in the cases of fixed and variable number of seed-

ers, and perform transient analysis. Simulations show good

agreement of the model with the behavior of BitTorrent under

homogeneous access parameters. We also extended some of

the results to the case of heterogeneous populations under a

suitable model of bandwidth allocation. Further analysis of

such generalized resource allocation remains open for future

work.
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