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Motivation
A bit of history...

Several queueing systems have service and timing requirements.

Examples:
Computing tasks with real-time constraints.
Item delivery problems in logistics.
Emergency response.
etc. etc. etc.

This has led to a long and rich history of research about queues with
abandonments [Barrer, 1957; Stanford, 1979; Baccelli et al., 1984].
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Motivation
Recent developments...

One of the most used policies is Earliest-Deadline-First (EDF)

Give priority to tasks with more urgent deadlines.

Through fluid limits and diffusion approximations, establish performance:

[Decreusefond and Moyal, 2008] establish EDF fluid limits in the single server case.

[Kruk et al., 2011] provides diffusion approximations.

[Moyal, 2013] establish some optimality properties of EDF.

[Kang and Ramanan, 2010, 2012] analyze the many-server case.

[Atar et al., 2018, 2023] establish asymptotic performance.

and many others...
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Motivation

Common assumption

Customers renege only in the queue, and not during service.

We call this the call-center scenario:

Akin to waiting for the customer-help line to pick your call while you listen to
annoying music.

The underlying idea is that when a task reaches service, it will stay until completion.

Key performance metric: number of satisfied tasks (or reneging probability).
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Motivation
Partial service queues

In several queueing systems:

Tasks may abandon during service.

More importantly, all service provided may be useful.

We call this setting queues with partial service.

Some examples:

Electrical vehicle charging: customers leave the system with a partial charge.

LLM inference: longer computation times lead to better answers, but these may be
interrupted to deliver a quick response.

File transfers over the Internet, that can be resumed later.
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Key points of this talk

Provide some suitable representation of the state space and dynamics of these
partial service queues.

Analyze several interesting policies under a suitable fluid model.

Compute the main performance metric here: attained work.

Last but not least: show that the simple LCFS policy exhibits the same performance
than EDF in this setting, without using deadline information.
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Setting

Consider an M/G/C system where:

Tasks arrive as a Poisson process of
intensity λ.

Each task i has two characteristics
(marks):

Si: service time (at rate 1).
Ti: sojourn time or deadline.

(Si, Ti) are independent across jobs.

Follow a common distribution G(σ, τ),
possibly correlated.

λ

Queue

C servers

Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 10/43



Setting

Consider an M/G/C system where:

Tasks arrive as a Poisson process of
intensity λ.

Each task i has two characteristics
(marks):

Si: service time (at rate 1).
Ti: sojourn time or deadline.

(Si, Ti) are independent across jobs.

Follow a common distribution G(σ, τ),
possibly correlated.

λ

Queue

C servers

Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 10/43



Setting

Consider an M/G/C system where:

Tasks arrive as a Poisson process of
intensity λ.

Each task i has two characteristics
(marks):

Si: service time (at rate 1).
Ti: sojourn time or deadline.

(Si, Ti) are independent across jobs.

Follow a common distribution G(σ, τ),
possibly correlated.

λ

Queue

C servers

Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 10/43



Partial service queues
Definition

Partial service queue

Customers depart whenever Si is attained or the timer Ti expires.

In particular, they may leave during service.

Key performance metrics:
Sa: amount of service attained.

Equivalently, Sr := S − Sa, amount of service reneged.

Problem: we have to keep track of remaining service and deadlines simultaneously!
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System load

Before proceeding, it is useful to define the system load:

ρ := λE[min{S, T}].

Interpretation: the mean number of customers on a system with C = ∞.

What we expect in a large scale fluid model:
If ρ < C (underload), all tasks can be served, Sa = min{S, T}.
If ρ > C (overload), demand curtailing will occur. How? It depends on the
policy...
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System evolution
Remaining service times

σ

τ

Remaining service

R
em

ai
ni
ng

ti
m
e

Consider the remaining time space.

Policy defines how tasks are served.

May depend on any combination of (σ, τ).

State descriptor:

Φt =
∑
i

δ(σi(t),τi(t))
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System evolution
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System evolution
Remaining service times

σ

τ

Remaining service

R
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Sr

Leaves with some unfinished work Consider the remaining time space.

Policy defines how tasks are served.

May depend on any combination of (σ, τ).

State descriptor:
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System evolution
Remaining service times

σ

τ

Remaining service

R
em

ai
ni
ng

ti
m
e Or is fully served Consider the remaining time space.

Policy defines how tasks are served.

May depend on any combination of (σ, τ).

State descriptor:

Φt =
∑
i

δ(σi(t),τi(t))
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Example: Earliest-deadline-first

σ

τ

Remaining service

R
em

ai
ni
ng

ti
m
e New arrival

Reneging customer

τΦ

Serve the C most urgent customers.

Corresponds to taking:

rΦ(σ, τ) = 1{τ⩽τΦ}

with

τΦ := sup{τ ⩾ 0 : Φ(R+ × (0, τ ]) < C}.
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Fluid model dynamics

Replace Φt by a (fluid) measure µt .

Now mass drifts along the field:

rµ(σ, τ) =
(
−rµ(σ, τ)

−1

)
With rµ satisfying:

0 ⩽ rµ ⩽ 1∫∫
rµ(σ, τ)µ(dσ, dτ) ⩽ min{µ(R2

++),C}.

Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 15/43



Fluid model dynamics
Transport PDE

If µt admits a density f (σ, τ ; t) with respect to the Lebesgue measure, it corresponds to:

∂f
∂t

+∇ · [rµt f ] = λg

a transport equation.

Example: EDF

∂f
∂t

=
∂f
∂σ

1{τ<τµt } +
∂f
∂τ

+ λg
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EDF Fluid model equilibrium

Imposing equilibrium we get:

τµ∗ = τ∗ becomes a constant.

The measure µ∗ must satisfy:

∂f
∂σ

1{τ<τ∗} +
∂f
∂τ

+ λg = 0.

Linear PDE that can be easily solved by the method of characteristics.
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Solving the EDF transport equation

g(σ, τ)

σ

τ

Remaining service

R
em

ai
ni
ng

ti
m
e

τ∗

f (σ, τ)

Characteristic trajectory
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EDF in overload
Fluid model equilibrium

Theorem
Assume that ρ > C and the equation

λE[min{S, T , τ∗}] = C

has a unique solution τ∗ > 0. Consider the measure µ∗ given by the following density:

f (σ, τ) = λ

[∫ (τ∗−τ)+

0
g(σ + u, τ + u)du +

∫ ∞

(τ∗−τ)+
g
(
σ + (τ∗ − τ)+ , τ + u

)
du

]
.

This measure is a fluid equilibrium for the EDF policy, and

τ∗ = sup {τ ≥ 0 : µ∗(R++ × (0, τ ]) ≤ C} .
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EDF performance in equilibrium

Let us compute the rate at which work
is reneged.

Compute the rate at which mass exits
with Sr < σ0.

σ

τ

τΦ

σ0

Proposition

∫ τ∗

0
f (0, τ)dτ +

∫ σ0

0
f (σ, 0)dσ = λP (S −min {S, T , τ∗} < σ0) .

i.e. Sa = S − Sr = min{S, T , τ∗}.
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What if we do not know the deadlines?

Deadlines are often hard to estimate in practice.

Moreover, tasks may under-report their deadline to get priority!

What about deadline-oblivious policies?
Can we model them?
What is their performance?

Problem: we need a new state-space...
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Attained service state descriptor

x

y

Attained service

El
ap

se
d
ti
m
e

Consider the elapsed time space.

Policy again defines how tasks are served.

May depend on any combination of (x, y).

State descriptor:

Φ̃t =
∑
i

δ(xi(t),yi(t))
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Attained service state descriptor

x

y

Attained service
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New arrival at rate λdt at (0, 0) Consider the elapsed time space.

Policy again defines how tasks are served.

May depend on any combination of (x, y).

State descriptor:
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Attained service state descriptor

x

y

Attained service

El
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r(x, y)
1

Moves along the field r =
(
r(x, y)

1

)
Consider the elapsed time space.

Policy again defines how tasks are served.

May depend on any combination of (x, y).

State descriptor:
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Attained service state descriptor

x

y

Attained service

El
ap

se
d
ti
m
e

Leaves the system at (x, y) Consider the elapsed time space.

Policy again defines how tasks are served.

May depend on any combination of (x, y).

State descriptor:

Φ̃t =
∑
i

δ(xi(t),yi(t))
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Example: Least-Attained-Service policy

x

y

Attained service

El
ap

se
d
ti
m
e

Departure

New arrival

xΦ̃ Serve the C least-served tasks.

Corresponds to taking:

rΦ̃(x, y) = 1{x⩽xΦ̃}

with

xΦ̃ := sup{x : Φ̃([0, x]× R+) ⩽ C}.
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Example: Last-Come-First-Served policy

x

y

Attained service

El
ap

se
d
ti
m
e

Departure

New arrival

yΦ̃

Serve the C more recent tasks.

Corresponds to taking:

rΦ̃(x, y) = 1{y⩽yΦ̃}

with

yΦ̃ := sup{y : Φ̃(R+ × [0, y]) ⩽ C}
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The hazard rate field

We have a new problem: what is the rate at which users leave the system?

Let Ḡ(x, y) = P(S > x, T > y) and define:

Definition (Hazard rate field)

h(x, y) = −∇ log Ḡ(x, y) i.e.

hx(x, y) = P(S ∈ [x, x + dx], T > S | S > x, T > y)

hy(x, y) = P(T ∈ [y, y + dy], S > T | S > x, T > y)

Interpretation: h stores the rate at which min{S, T} is attained due to S or T expiring.
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hx(x, y) = P(S ∈ [x, x + dx], T > S | S > x, T > y)

hy(x, y) = P(T ∈ [y, y + dy], S > T | S > x, T > y)

Interpretation: h stores the rate at which min{S, T} is attained due to S or T expiring.

Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 26/43



Fluid model dynamics

Replace Φ̃t by a (fluid) measure νt .

Now mass arrives at (0, 0) at rate λ.
Drifts along the field:

rν(x, y) =
(
rν(x, y)

1

)
With rν satisfying:

0 ⩽ rν ⩽ 1∫∫
rν(x, y)ν(dx, dy) ⩽ min{ν(R2

+),C}.
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Attained service transport equation

We now have all ingredients to formulate the dynamics of the system.

The transport equation in the elapsed service space is (informally):

∂ f̄
∂t

+∇ ·
[
rνt f̄

]
+ [rνt · h]f̄ = λδ(0,0).

where f̃ is the density of νt .

The above equation must be treated in weak form:
To account for the impulse mass at (0, 0) driving the system.
To allow solutions without a density as we shall see.
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Last come first served
Fluid equilibrium

Recall that LCFS can be modeled by:

rν(x, y) = 1{y<yν}

with
yν = sup {y ≥ 0 : ν(R+ × [0, y]) ⩽ C} .

Imposing equilibrium, ν∗, y∗ fixed, we have to solve:

∇ ·
[
rν∗ f̄

]
+ [rν∗ · h]f̄ = λδ(0,0).
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Solving the transport equation
Last come first served case

x

y

Attained service

El
ap

se
d
ti
m
e

r(x, y)

r(x, y)

y∗

Arriving mass
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Solving the transport equation
Last come first served case

x

y

Attained service

El
ap

se
d
ti
m
e

r(x, y)

r(x, y)

y∗

Mass is concentrated along a line!
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Deadline-oblivious policies in overload

Theorem
Assume that ρ > C and the equation

λE[min{S, T , z∗}] = C

has a unique solution z∗ > 0. Consider the measure ν∗ given by:

⟨φ, ν∗⟩ = λ

[∫ z∗

0
φ(u, u)Ḡ(u, u)du +

∫ ∞

z∗
φ (z∗, u) Ḡ(z∗, u)du

]
,

for all φ ∈ Cc(R2
+). Then this measure is the equilibrium measure for both the

Least-Attained-Service and Last-Come-First-Served policies.
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LAS/LCFS performance in equilibrium

Compute the rate at which mass leaves the system with less than x0 attained service:∫∫
[0,x0]×R+

ην∗(x, y)ν∗(dx, dy).

Proposition

Assume that ρ > C. Then∫
[0,x0]×R+

[
hx(x, y)1{y<z∗} + hy(x, y)

]
ν∗(dx, dy) = λP (min{S, T , z∗} ⩽ x0) .

So again the attained work is Sa = min{S, T , z∗}‼
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Graphical explanation

tak

Sk

Tk

ak + Tk

EDF profile

τ∗ Sa

tai

Si

Ti

ai + Ti

LCFS/LAS profile

z∗

Sa

Since τ∗ = x∗ = y∗ = z∗, performance is the same in all three policies‼!
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Simulations with correlated S and T

We finally validate our fluid approximation by stochastic simulations

In order to account for correlations, we take:

S = eU and T = eV with (U ,V ) ∼ N
((

0
0

)
,

(
1 0.9
0.9 1

))
.

In particular, the random variables U and V are correlated with normal
distributions, and therefore S and T are correlated with log-normal distributions.

In this case, E[min{S, T}] ≈ 1.36 can only be numerically estimated.

We choose λ = 120 and C = 100, then ρ ≈ 160 and z∗ ≈ 1.322.
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State space snapshots

0 2 4 6 8 10
0

2

4

6

8

10

Remaining service

R
em

ai
ni
ng

ti
m
e

Earliest-Deadline-First

In service
Not in service
τ∗

Blue dots are in service, red dots are not in service.Andres Ferragut, Universidad ORT Uruguay IFIP Performance 2025 – Amsterdam – November 2025 36/43



State space snapshots
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State space snapshots
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Attained work empirical CDF
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Even in the pre-limit system, performance is similar!
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Messages from the talk

Measure-valued processes are a powerful tool to model general service queues.

Partial service queues require two-dimensional measures.

Our proposed dynamics for fluid models are tractable and approximate the real
system.

Last-but-not-least: in this setting, deadline-oblivious policies can be used without
performance penalty!
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Future work

Analyze further policies using these tools (FCFS is easy for instance).

Establish process-level convergence to the fluid models (almost done!)

Devise new policies and/or analyze different settings:
Tasks stay until service completion, but we want to measure the average
tardiness, i.e. how late they depart.
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Thank you!

Andres Ferragut

ferragut@ort.edu.uy

https://aferragu.github.io
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