
Timer-based pre-fetching for increasing hazard rates

Andres Ferragut
Universidad ORT Uruguay

Montevideo, Uruguay

ferragut@ort.edu.uy

Matias Carrasco
Universidad ORT Uruguay

Montevideo, Uruguay

carrasco@ort.edu.uy

Fernando Paganini ∗

Universidad ORT Uruguay
Montevideo, Uruguay

paganini@ort.edu.uy

ABSTRACT
Caching plays a crucial role in today’s networks: keeping
popular content close to users reduces latency. Timer-based
caching policies (TTL) have long been used to deal with
bursts of requests, and their properties are well understood.
However, in some scenarios the traffic is more regular. In this
work, we define a dual of the TTL policy, dubbed Timer-
based Pre-fetching, particularly well suited for these scenar-
ios. We also show how the optimal timers can be computed
for a large class of request processes.

1. INTRODUCTION
The notion of local storing (caching) of data has received

increased attention in recent years with the emergence of
cloud and edge computing architectures. In particular, [5]
considered timer-based (TTL) policies fed by general arrival
processes, and provided a tractable way to analyze these
caching systems. Building upon this work, in [3, 4] the au-
thors derived the optimal TTL caching policy under very
general hypotheses for the request processes.

A key result in [3] is that the optimal policy depends
on the hazard rate function of the inter-request times (see
also [6] for a related result for replacement-based policies).
Under a decreasing hazard rate (DHR) assumption, a con-
vex optimization problem can be formulated to compute the
optimal timers. Furthermore, suitable fluid limits for large
scale systems are derived, yielding explicit expressions for
the hit probability. However, when hazard rates are increas-
ing (IHR), the optimal timer policy is just a static policy
that stores the most popular contents at all times [3].

In this work, we propose a new policy better suited to the
IHR case: timer-based pre-fetching, and show that we can
greatly improve the hit probability by speculatively retriev-
ing the content, in anticipation of future arrivals.

2. CACHING AND STATIONARY ARRIVALS
Consider a local memory or cache system, where requests

from a catalog of N (equally sized) items are received. The
cache has limited memory, and thus aims to locally keep
available a subset of size C < N , which can then be served
with lower latency. The natural objective is to maximize
the hit probability by choosing the appropriate items.

∗This work was partially supported by AFOSR US under
grant #FA9550-23-1-0350.

MAMA Workshop 2024. June 14, 2024, Venice, Italy
Copyright is held by author/owner(s).

t0τ−2 τ−1 τ0 τ1

X ∼ F X̂ ∼ F̂ X̂ ∼ F̂

Figure 1: Inter-arrival and age distributions.

We model requests for item i as a stationary point process
in R [1], with a given intensity λi (average requests per time

unit). Their sum Λ :=
∑N

i=1 λi is the total intensity of
requests, and pi := λi/Λ is the probability of a given request
being for item i, i.e. its relative popularity.

For a stationary point process in the real line there are two
main distributions: the inter-arrival distribution Fi(t), i.e.
if Xi is the time between arrivals, then Fi(t) = P (Xi ⩽ t)
and E[Xi] = 1/λi. However, this magnitude is synchronized
with the process: when the process is sampled at an arbi-
trary point in time (e.g. 0 due to stationarity), the random

variable X̂i measuring the time since the last request follows
the age distribution [1]:

F̂i(t) := P
(
X̂i ⩽ t

)
= λi

∫ t

0

1− Fi(s) ds. (1)

Moreover, the time to next request also follows the same
distribution, and this is why F̂i is also known as the residual
lifetime distribution associated to Fi. An example of this
sampling effect is shown in Fig. 1.

Finally, another relevant magnitude in our analysis is the
hazard rate function (also known as failure rate). If Fi has
density fi, its hazard rate is defined as:

ηi(t) =
fi(t)

1− Fi(t)
, (2)

and serves as a local measure of the likelihood that the cur-
rent interval is exactly of length t, given that the elapsed
time of the interval is at least t.

2.1 Timer based caching policies
Timer based (TTL) caching policies work as follows: upon

arrival of a request for item i, the item is stored in the
cache (if not already present) and a timer of length Ti is
started (or reset). When the timer expires, the content is
removed. See Figure 2 for an example. This policy subsumes
static policies (just choose Ti = 0 or ∞). It also provides
a good approximation for the classical least-recently-used
(LRU) policy, due to the “Che approximation” [2], which
corresponds to choosing a homogeneous timer for all items.

In [3, 4], the authors formulate an optimization problem



t

T T T

τk τk+1 τk+2 τk+3eviction

Figure 2: TTL caching policy for a single item.

to characterize the optimal timers as a function of the inter-
arrival distributions Fi, and conclude that:

• For decreasing hazard rates, the problem can be shown
to have a unique non-trivial solution, which amounts
to choose timers that equalize the hazard rates of the
underlying request processes.

• For constant hazard rates (i.e. Poisson arrivals) or in-
creasing hazard rates, the best caching policy is the
static policy of keeping the C most popular objects at
the cache at all times.

The above results are expected: decreasing hazard rates
correspond to bursty traffic, where requests are clustered
in time, and thus caching can provide benefits. However,
if traffic is purely random (Poisson) or more regular, then
timer based caching cannot improve over the static policy.

This leads to the following question: can we improve per-
formance in the case of increasing hazard rates? A positive
answer is given hereafter.

3. TIMER BASED PRE-FETCHING
We now introduce our policy: the key insight is that, un-

der the increasing hazard rate assumption, the likelihood of
a subsequent request for item i decreases immediately upon
the item being requested. Therefore, removing this item
from memory and only retrieving it at a later time may im-
prove performance. We now make this precise.

Consider the following policy: after a request for item
i, we remove it from memory if it was already present, and
start a timer Ti. At timer expiration, we fetch the item again
and store it on memory. If a new request arrives before this,
we will have a miss and the timer is reset. Otherwise, the
item will have been pre-fetched for the next arrival, and we
will have a hit. We call our policy timer based pre-fetching
and its behavior is depicted in Fig. 3. An important obser-
vation is that the analysis of the hit probability decouples
among the processes, as in the case of TTL caching.

The steady state hit-probability of item i for the afore-
mentioned policy can be readily computed by observing that:

P (item i hit) = P (Xi > Ti) = 1− Fi(Ti).

Also, the steady state occupation probability can be com-
puted by observing that item i is stored at time t = 0 iff its
last request was more than Ti units of time before, i.e.:

P (item i in memory) = P
(
X̂i > Ti

)
= 1− F̂i(Ti),

where F̂i is defined in (1). Note that the average memory

occupation is therefore E
[∑

i 1{X̂i>Ti}
]
=
∑

i 1− F̂i(Ti).

We can now formulate the optimal timer problem:

maxTi⩾0

∑N
i=1 λi(1− Fi(Ti)), s.t.:

∑N
i=1(1− F̂i(Ti)) ⩽ C,

or equivalently, by getting rid of the constant terms:

minTi⩾0

∑N
i=1 λiFi(Ti), s.t.:

∑N
i=1 F̂i(Ti) ⩾ N − C.

t

T T T

τk τk+1 τk+2 τk+3pre-fetching

Figure 3: Timer pre-fetching policy for a single item.

The above Problem is closely related to Problem 1 in [3]. We
are now minimizing the miss rate, subject to the number of
non-stored items being larger than N − C on average.

Using the fact that F̂i is increasing, consider the (mono-

tonically increasing) change of variables ui = F̂i(Ti); here
ui ∈ [0, 1] is the probability of not being stored. The above
problem can be rewritten as:

Problem 1 (Optimal timer based pre-fetching).

min
ui∈[0,1]

N∑
i=1

λiFi

(
F̂−1
i (ui)

)
, s.t.:

N∑
i=1

ui ⩾ N − C. (3)

3.1 Increasing hazard rates
Let us compute the gradient of the objective function us-

ing eq. (1) and the inverse function theorem:

∂

∂ui
λiFi ◦ F̂−1

i (ui) =
λifi(F̂

−1
i (ui))

λi

(
1− Fi(F̂

−1
i (ui))

) = ηi(F̂
−1
i (ui))

(4)
with ηi as in (2).

From (4), it follows that if the Fi have increasing haz-
ard rates, the objective function in Problem 1 is a convex
optimization program. In this case, we can introduce a mul-
tiplier θ for the constraint and write its Lagrangian as:

L(u, θ) =
N∑
i=1

λiFi

(
F̂−1
i (ui)

)
+ θ

(
N − C −

N∑
i=1

ui

)

=

N∑
i=1

[
λiFi

(
F̂−1
i (ui)

)
− θui

]
+ θ(N − C). (5)

We are now ready to prove:

Theorem 1. Provided that the distributions Fi satisfy the
IHR property, there exists a unique threshold θ∗ > 0 and
timers T ∗

i such that the optimal timer based pre-fetching pol-
icy defined by Problem 1 is given by:

ηi(T
∗
i ) ⩾ θ∗,

whenever T ∗
i < ∞ (pre-fetching). The inequality is strict if

and only if T ∗
i = 0, i.e. the content is always stored.

Proof. Starting from the Lagrangian (5), let us impose
the KKT conditions for optimality. We first minimize over
ui ∈ [0, 1], where the problem decouples over i:

min
ui∈[0,1]

λiFi(F̂
−1
i (ui))− θ∗ui

By using (4), the gradient of the objective is ηi(F̂
−1
i (ui))−θ∗

and its increasing by hypothesis. Therefore, if ηi(F̂
−1
i (0)) =

ηi(0) ⩾ θ∗, the above optimum is attained for u∗
i = T ∗

i = 0

and the content is always stored. If instead, ηi(F̂
−1
i (1)) =

limt→∞ ηi(t) < θ∗, the optimum is attained for u∗
i = 1 (T ∗

i =



∞) and the item is never stored. In the remaining cases, the
optimum is interior and satisfies:

ηi(F̂
−1
i (u∗

i )) = ηi(T
∗
i ) = θ∗.

Finally, the optimal threshold θ∗ must satisfy the comple-
mentary slackness condition:

θ∗
(
N − C −

∑N
i=1 u

∗
i

)
= 0. (6)

Note that in the optimum of Problem 1, we cannot have
strict inequality in the constraint, because in that case the
objective can be improved by lowering some u∗

i . Therefore,
the second term in (6) must be 0 and θ∗ must satisfy:

N∑
i=1

u∗
i =

N∑
i=1

F̂i(T
∗
i (θ

∗)) = N − C, (7)

with T ∗
i (θ

∗) constructed as before.

Theorem 1 shows that, under the IHR property, the op-
timal policy is a threshold policy: there exists a threshold
θ∗ such that an item is stored in the local memory if and
only if its current hazard rate is greater than the thresh-
old. The items with ηi(0) ⩾ θ∗ are always stored, the items
with ηi(∞) < θ∗ are never stored, and the remaining items
are pre-fetched after a time T ∗

i since the last request, where
their hazard rate reaches the threshold. The underlying idea
being that the hazard rate is the marginal utility of storing
some object in the local memory with a fixed budget C.

3.2 Constant and decreasing hazard rates
For constant hazard rates, the arrivals become Poisson

and Problem 1 becomes linear. It is easy to see that in
this case the policy degenerates to the static policy where
T ∗
i = 0 for the C most-popular objects, which remain in

memory forever. If instead the hazard rates are decreas-
ing, we have the following result, which can be proved using
similar arguments to [4, Theorem 1]:

Theorem 2. Provided that the distributions Fi satisfy the
DHR property, the optimal timer based pre-fetching policy is
to statically store the C most popular contents.

The result of Theorem 2 is expected in light of the discussion
of Section 2: when arrivals have the DHR property, traffic
is bursty and pre-fetching does not help, i.e. caching makes
more sense for DHR and pre-fetching for IHR traffic.

4. A PARAMETRIC EXAMPLE
To illustrate the gains obtained by the pre-fetching policy,

consider the following example: the inter-arrival times Xi

follow the Erlang distribution with k−stages, i.e.

fi(t) =
1

(k − 1)!
(kλi)

ktk−1e−λikt, t ⩾ 0,

where we have chosen the parametrization so E[Xi] = 1/λi.
k = 1 corresponds to a Poisson process; as k increases, the
inter-arrival times become more regular. We have:

Lemma 1. If X follows the aforementioned Erlang distri-
bution, the hazard rate function satisfies:

ηi(t) = kλiB(kλit, k − 1),

where B(A,C) is the classical Erlang blocking probability
from the M/M/C/C queue. Note that in particular ηi(t)
is strictly increasing for k ⩾ 2.

Figure 4: Hit rate comparison for timer-based pre-
fetching, static storage (optimal caching) and LRU
caching.

In this particular case, we can numerically solve Problem
1 via convex optimization, with the help of Lemma 1 to
compute the gradient. As a particular example, consider a
system catalog of size N = 10000 and capacity C = 1000.
The total arrival rate is normalized to be Λ = 1 and relative
popularities follow a Zipf(β), distribution, i.e. λi ∝ i−β , a
common model for object popularities.

In Fig. 4, we plot the optimal hit probability as a function
of the parameter β, for an Erlang distribution with k =
5 stages. As a comparison, we plot the hit rate for the
static most popular policy, and the simulated hit rate of the
classical LRU caching policy.

5. FINAL REMARKS
As we can see from the above example, for regular pro-

cesses, classical caching ideas can deliver poor performance.
Our main contribution is to highlight the role of the hazard
rate function and provide a new timer-based pre-fetching
policy to handle these scenarios.

Several lines of future work remain open: in particular
how to estimate the timers based on previous data, and
obtaining analogues of the classical caching policies that can
be applied for pre-fetching.

6. REFERENCES
[1] P. Brémaud. Point process calculus in time and space.

Springer, NY, 2020.

[2] H. Che, Y. Tung, and Z. Wang. Hierarchical web
caching systems: Modeling, design and experimental
results. IEEE Journal on Selected Areas in
Communications, 20(7):1305–1314, 2002.

[3] A. Ferragut, I. Rodriguez, and F. Paganini. Optimizing
TTL caches under heavy tailed demands. In Proc. of
ACM/SIGMETRICS 2016, pages 101–112, June 2016.

[4] A. Ferragut, I. Rodŕıguez, and F. Paganini. Optimal
timer-based caching policies for general arrival
processes. Queueing Systems, 88(3–4):207–241, 2018.

[5] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley.
Performance evaluation of hierarchical TTL-based
cache networks. Computer Networks, 65:212–231, 2014.

[6] N. K. Panigrahy, P. Nain, G. Neglia, and D. Towsley. A
new upper bound on cache hit probability for
non-anticipative caching policies. ACM Trans. Model.
Perform. Eval. Comput. Syst., 7(2–4), November 2022.


