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The caching problem

Consider a local memory system that handles items
from a catalog of N objects.

Requests for objects arrive as a random process.

The memory (cache) can locally store C < N of them.

If item is in cache, we have a hit. Otherwise, it is a miss.

λ Cache

File 1

File 2

File 3
...

File N

Objective: for a given arrival stream, maximize the steady-state hit rate.
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A sequential approach

Consider a sequence of random variables Z1, Z2, . . . with values in {1, . . . , N}.

Consider also the set of feasible subsets:

C = {{i1, . . . , ik} ⊂ {1, . . . , N}, k ⩽ C}

A (causal) caching policy would be a sequence of maps πn deciding which contents to store:

πn(Z1, . . . , Zn−1) → C

In probabilistic terms, let Fn = σ(Z1, . . . , Zn), then πn is any C−valued Fn−predictable
process (Fn−1-measurable).
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A simple case
The Independent Reference Model (IRM)

Assume now that Zn are iid with distribution pi = P (Zn = i), where pi is the popularity of
content i. Wlog, we take p1 ⩾ p2 ⩾ . . ..

In this case, Zn | Fn−1 ∼ p, thus the hit probability at time n is:

P (Zn ∈ πn) = E
[
1{Zn∈πn}

]
= E

[
E
[
1{Zn∈πn} | Fn−1

]]
= E

[∑
i∈πn

pi

]
⩽

C∑
i=1

pi

Taking πn ≡ {1, . . . , C} achieves the bound.

Conclusion: under iid requests, the static “keep the most popular” policy is optimal.
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Practical policies: LFU and LRU

In practice, popularities are not known. This leads to the least-frequently-used (LFU) eviction policy:
Take πn as the most requested objects so far (remove the least frequently used).
In the long range, converges to the static policy.

Another popular eviction policy is least-recently-used (LRU), which treats πn as a list defined
recursively:

If Zn ∈ πn, serve the content, move Zn to the front of the list.
If Zn /∈ πn, fetch the content, put Zn in the front of the list, remove the last object in the list
(which is the least recently requested).

LRU adapts best to bursty traffic.
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The caching problem, take 2

Sequential models lack time information, which may be useful!

Point process approach [Fofack et al. 2014]:
Assume requests for item i come from a point process of intensity λi := λpi.

t

At each point in time we must decide which items must be stored locally.

If inter-request times are heavy tailed, this can model burstiness.

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 8/54



The caching problem, take 2

Sequential models lack time information, which may be useful!

Point process approach [Fofack et al. 2014]:
Assume requests for item i come from a point process of intensity λi := λpi.

t

At each point in time we must decide which items must be stored locally.

If inter-request times are heavy tailed, this can model burstiness.

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 8/54



Example: Pareto arrivals
Consider two items, with equal popularity...

Poisson arrivals:

t
Homogeneous

Heavy tailed arrivals (Pareto α = 2):

t
Bursty!

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 9/54



Some open questions...

What is the optimal causal policy in this framework?

Can we compute the optimal hit rate/hit probability?

What is its large scale behavior?

How typical policies compare to the optimal one?
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A bit of point process theory...

Let Φ = {τk : k ∈ Z} be a stationary point process representing request times:

tτ−1 τ0 τ1 τ20

i.e. Φ(B) =
∑

k 1{τk∈B} is a random counting measure.

Counting process:

Φ(t) =

{
Φ((0, t]) t > 0

−Φ((t, 0]) t ⩽ 0

Note: Φ(τk) = k

0

Φ(t)

t

Let Ft = σ(Φ(s), s ⩽ t) be its internal history.
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Two important distributions:

tτ−1 τ0 τ1 τ20

T0 ∼ F0

Inter-arrival distribution: F0(t) := P 0
Φ(τ1 − τ0 ⩽ t), E0

Φ[τ1] = 1/λ.

Age distribution: F (t) := P (−τ0 ⩽ t) = λ

∫ t

0
1−F (s)ds,

Note: here P 0
Φ is the Palm probability of the point process (conditioning on τ0 = 0).
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Stochastic intensity

Consider a simple stationary point process Φ with intensity λ, defined in some probability space
(Ω,F , P ). Let some filtration {Ft}t∈R be a history of the process.

Definition:
The random process λ(t) ⩾ 0 is a stochastic intensity for the history Ft iff it is a.s. locally
integrable, Ft−adapted and:

E [Φ((a, b]) | Fa] = E

[∫ b

a
λ(t)dt

∣∣∣∣Fa

]
for all a, b ∈ R.
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Stochastic intensity
Properties

Local interpretation:

E[Φ((t, t+ h]) | Ft] = λ(t)h+ o(h) P − a.s.,

So λ(t) acts as a local notion of intensity based on previous history.

Martingale interpretation:

Ma(t) = Φ(t)− Φ(a)−
∫ t

a
λ(s)ds

is a local (P,Ft) martingale for any a ∈ R.
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Stochastic intensity of a Poisson process

If Φ(t) is a Poisson process, then we know that

M(t) = Φ(t)− λt = Φ(t)−
∫ t

0
λdt

is a martingale, so the stochastic intensity of a Poisson process is just λ(t) ≡ λ.

The poisson process is the “white noise” of point processes.
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Stochastic intensity
A local notion of intensity...

However, if traffic is bursty, the stochastic intensity rises after arrivals:

λ(t)

λ

t

Note: for stationary processes, E[λ(t)] = E[λ(0)] = λ, the average intensity.
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Renewal processes
Let now Φ be a stationary renewal process, i.e. inter request times τk+1 − τk are iid ∼ F0.
Assume that F0 has a density, and define the hazard rate of F as:

η0(t) =
f0(t)

1− F0(t)

Theorem (Daley-Vere Jones, Chapter 7)
For a renewal process and its natural history, the stochastic intensity is:

λ(t) = η0(t− τ−(t)),

where τ−(t) is the last point before t:

τ−(t) = sup{τk : τk < t}
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Some examples...

λ(t) ≡ λ

t

Constant hazard rate → Poisson process.

λ(t)
λ

t

Increasing hazard rate → more periodic!

λ(t)
λ

t

Decreasing hazard rate → more bursty!
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Causal caching policies

Consider again a cache system fed by N independent request processes Φi(t) with stochastic
intensities λi(t).

Let Ft = σ({F (i)
t : i = 1, . . . , N}) their aggregate history.

Definition
A causal caching policy is an Ft−predictable stochastic process

π(t) : Ω× R → C

i.e. π(t) = {i1, . . . , ik} (with k ⩽ C) is the subset kept at time t, and only depends on the past
history of item requests.
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The hit process
Stochastic intensity

Focus now on a particular content i, its hit process is the point process given by:

Hi(B) =
∑
k∈Z

1{τ ik∈B}1{i∈π(τ ik)}

t

miss
hit

Now 1{i∈π(t)} is Ft-predictable, so the stochastic intensity of Hi is:

hi(t) = λi(t)1{i∈π(t)}

i.e., hi(t) = λi(t) while i is cached and otherwise 0.
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The hit process
The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

H =

N∑
i=1

Hi

And its stochastic intensity is just:

h(t) =

N∑
i=1

hi(t) =

N∑
i=1

λi(t)1{i∈π(t)}

The steady state hit rate of the policy is:

hit rate = λhit := E[h(0)]
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Maximizing the hit rate

In order to maximize λhit, consider the causal policy:

π∗(t) = {i1, . . . , iC} such that
∑

i∈{i1,...,iC}

λi(t) is maximized.

Then, for any causal policy π and for each realization:

h(t) =
∑
i∈π(t)

λi(t) ⩽
∑

i∈π∗(t)

λi(t) = h∗(t).

Theorem
The optimal causal policy is to keep in the cache the C objects with the highest stochastic intensity
at any time.
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The Poisson case

Assume the Φi are Poisson processes of intensities λi.

We take λ1 > λ2 > . . . as the popularities.

The total request process is also Poisson of intensity ∑i λi.

In that case, the optimal policy is:

π∗(t) ≡ {1, . . . , C}

since λi(t) ≡ λi and these are decreasing.

Conclusion: under Poisson arrivals, statically keeping the most popular objects is optimal (as in IRM).
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The Renewal case

If now the Φi are renewal processes of (decreasing) intensities λi.

The total request process is no longer renewal, but its intensity is again ∑i λi.

Since λi(t) = ηi(t− τ−i (t)), the optimal policy is:

Keep track of the current hazard rate of each content i.
Choose to keep in π∗(t) the C highest.

Conclusion: under renewal arrivals, the optimal policy only depends on the current hazard rates since
the last request.
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An interesting observation

Decreasing hazard rates
If hazard rates are decreasing, caching makes sense! After an arrival it becomes more likely to
get another request.

After some time, we will evict the content to make room for more recent ones (as in LRU).

Increasing hazard rates
If instead hazard rates are increasing, then when a request arrives, the item becomes less
likely to be requested again!

It may be better to remove it and make room for other ones (i.e. LRU makes no sense!).

If we haven’t seen it for a while, we may have to fetch it anticipating an upcoming request!

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 27/54



An interesting observation

Decreasing hazard rates
If hazard rates are decreasing, caching makes sense! After an arrival it becomes more likely to
get another request.

After some time, we will evict the content to make room for more recent ones (as in LRU).

Increasing hazard rates
If instead hazard rates are increasing, then when a request arrives, the item becomes less
likely to be requested again!

It may be better to remove it and make room for other ones (i.e. LRU makes no sense!).

If we haven’t seen it for a while, we may have to fetch it anticipating an upcoming request!

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 27/54



Outline

The caching problem

Point processes and stochastic intensity

The optimal caching policy

Main result

Connection with timer-based policies

Conclusions

Andres Ferragut, Universidad ORT Uruguay LINCS Seminar – May 2024 28/54



Understanding the optimal policy
The threshold process

We can rewrite this optimal policy as a threshold policy:

i ∈ π∗(t) ⇔ λi(t) ⩾ θ(t) := the C largest stochastic intensity

Example: Pareto requests, Zipf popularities, N = 20, C = 4.

θ(t)

t

¿What is the large scale behavior of θ(t) in steady state?.
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The threshold value in steady state

At time t = 0, we have a sample {X1, . . . , XN} of independent, but not identically distributed
random variables, with distribution:

Xi ∼ ηi(−τ i0), −τ0 ∼ F̂i(t)

ηi(t− τ i0)

τ i
0

Xi

0 t

The threshold θ(0) is the C−th order statistic (in decreasing order) of the sample.

Problem: non iid→ no closed form → Can we say something about the large scale limit?
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A useful Theorem
Let {Xi} be a sequence of independent random variables with distributions Gi. Define:

ĜN (x) =
1

N

N∑
i=1

1{Xi⩽x}

the empirical distribution, and let:

ḠN (x) =
1

N

N∑
i=1

Gi(x)

Theorem (Shorack)
If the family {Gi} is tight, then:

||ĜN − ḠN ||∞ → 0 almost surely as N → ∞.
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A little more structure

Assume now that the request processes come from a common scale family, i.e. their inter-arrival
distributions satisfy:

F
(i)
0 (t) = F0(λit)

where F0 has mean 1, so Fi has mean 1/λi.

In this case:
The distribution of −τ i0 is F (i)(t) = F (λit).

The hazard-rate is ηi(t) = λiη0(t/λi).

The random variable Xi ∼ Gi(x) := G0(x/λi)

where G0(x) = P (η0(−τ0) ⩽ x) is the observed hazard rate distribution for the base process.
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The distribution of popularities

Consider now the popularities λ1 > . . . > λN and define their empirical measure:

ϕN (λ) =
1

N

N∑
i=1

1{λi⩽λ}

Assumption:
ϕN (λ) → ϕ(λ) as N → ∞ (weakly)

where ϕ(λ) is a probability distribution.
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Example: Zipf popularities

A common model for popularities is the Zipf distribution, where λi ∝ 1
iβ

.

In our framework, take:
λi =

(
N

i

)β

Then we can show that:

ϕN (λ) → ϕ(λ) =
[
1− λ−1/β

]
1{λ⩾1}

Remark: note that ∑i λi diverges, so the system is scaling up...
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Main result

Theorem (Carrasco,F’,Paganini)
Consider a caching system fed by N independent and stationary renewal processes, with intensities
{λi}, and inter-arrival distributions F i

0(t) = F0(λit). Let X1, . . . , XN denote the observed
hazard-rates at time 0. Then, under the preceding assumption, the empirical distribution:

ĜN (x) =
1

N

N∑
i=1

1{Xi⩽x} →N G∞(x) =

∫ ∞

0
G0

(x
λ

)
ϕ(dλ)
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Proof sketch
By Shorack’s result:

ĜN (x) =
1

N

N∑
i=1

1{Xi⩽x} ≈ ḠN :=
1

N

M∑
i=1

Gi(x)

Note that:

1

N

N∑
i=1

Gi(x) =

N∑
i=1

G0

(
x

λi

)
1

N
=

∫ ∞

0
G0

(x
λ

)
ϕN (dλ)

Use the assumption to show that:∫ ∞

0
G0

(x
λ

)
ϕN (dλ) →M

∫ ∞

0
G0

(x
λ

)
ϕ(dλ) = G∞(x).
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A law of large numbers for the threshold
Assume further that the cache has capacity C = cN with 0 < c < 1 is the fraction of the catalog
that can be stored. Then, the optimal policy threshold θ∗N (0) is the random variable:

θ∗N :

N∑
i=1

1{Xi⩽θ∗N} = (1− c)N

or equivalently θ∗N is such that ĜN (θ∗N ) = 1− c.

Corollary
If the cache size scales linearly with the catalog as CN = cN , then:

θ∗N → θ∗ : G∞(θ∗) = 1− c

So the optimal policy becomes a fixed threshold policy.
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Simulation example

N = 1000, C = 100. Pareto α = 2 requests, Zipf β = 0.5 popularities.
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Asymptotic miss probability

Moreover, we can calculate the asymptotic performance:

Theorem
Under all the above assumptions, the asymptotic miss rate verifies:

λmiss,N →N

∫ ∞

0
λG̃0

(
θ∗

λ

)
ϕ(dλ) = E

[
ΛG̃0

(
θ∗

Λ

)]
where Λ ∼ ϕ, and G̃0 is the distribution of the hazard-rate prior to an arrival:

G̃0(x) =

∫ ∞

0
1{η0(t)⩽x}F0(dt).
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Populating a cache: timer based policies
Timer based (TTL) policies:

Upon request arrival for item i, check for presence.

If new, store item and start a timer Ti to evict.

If present, reset timer to Ti.

Keep timers Ti such that average cache occupation is C .

t

T T T

τk τk+1 τk+2 τk+3eviction
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Choosing the optimal timers

Requests come from independent sources with intensities λi and inter-arrival distribution Fi:

Problem (Optimal TTL policy)
Choose timers Ti ⩾ 0 such that:

max
Ti⩾0

∑
i

λiF
(i)
0 (Ti)

subject to: ∑
i

F (i)(Ti) ⩽ C

Remark: non-convex non-linear program. But it can be solved by a change of variables!!! [Ferragut et
al. 2018].
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The optimal timers

Theorem
For the following cases, the optimal timers are:

Increasing hazard rate: keep the most popular objects (Ti = ∞ or 0).
Decreasing hazard rate:

ηi(T
∗
i ) ⩾ θ∗

for every stored content.
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Why this happens?

So the optimal timer policy is a threshold policy?

τ0

θ

η(t− τ0)

1{η(s)>θ}
T t
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Asymptotic optimality

Theorem (F’, Carrasco, Paganini)
In the scaling regime considered earlier, for renewal processes with DHR, the optimal TTL policy is
also asymptotically optimal within the class of causal policies.

Idea: prove that the thresholds are the same in the limit.

But what about increasing hazard rates?
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Back to increasing hazard rates...

Recall the increasing hazard rate behavior:

λ(t)
λ

t

Once you have seen a request, it’s less likely to see another one for a while.

What is the timer based equivalent of this case?
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Timer based pre-fetching policies

Key insight
The question now is not how long we should remember something, but instead how long we should
forget about it!

Timer based pre-fetching policy:

t

T T T

τk τk+1 τk+2 τk+3pre-fetching
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Choosing the optimal timers

Requests come from independent sources with intensities λi and inter-arrival distribution Fi:

Problem (Optimal pre-fetching policy)
Choose timers Ti ⩾ 0 such that:

max
Ti⩾0

∑
i

λi(1− F
(i)
0 (Ti))

subject to: ∑
i

(1− F
(i)
i (Ti)) ⩽ C

Remark: we can use the same change of variables again!
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Choosing the optimal timers

Requests come from independent sources with intensities λi and inter-arrival distribution Fi:

Problem (Optimal pre-fetching policy)
Choose timers Ti ⩾ 0 such that:

min
Ti⩾0

∑
i

λiF
(i)
0 (Ti)

subject to: ∑
i

F̂ (i)(Ti) ⩾ N − C

Remark: we can use the same change of variables again!
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Pre-fetching for increasing hazard rates

Optimal pre-fetching policy, IHR, [F’,Carrasco, Paganini].
The optimal timer based pre-fetching policy for IHR is such that:

ηi(T
∗
i ) ⩾ θ∗

for every stored content.

Remark: Again we have to equalize hazard-rates. The policy is a threshold policy.
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Asymptotic optimality

Theorem (F’, Carrasco, Paganini)
In the scaling regime considered earlier, for renewal processes with IHR, the timer based
pre-fetching policy is also asymptotically optimal within the class of causal policies.

Idea: as before, prove that the thresholds are the same in the limit.
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An example

Erlang (k = 5) interarrival times, Zipf popularities, varying β...
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Final remarks

The main result characterizes the optimal policy completely in the large-scale scenario, as a
fixed threshold policy.

This enables to prove that TTL caching is asymptotically optimal for DHR inter-arrival times

The new timer based pre-fetching policy is also asymptotically optimal in the IHR case.

Classical caching is not well-suited to regular traffic.

There is much more to do!
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Merci beaucoup!

Andres Ferragut
ferragut@ort.edu.uy
aferragu.github.io
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