
1

PDE models for population and residual work
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Abstract—This paper studies partial differential equations that
have recently been proposed as fluid models for queueing net-
works, where both populations and residual workloads must be
accounted for. After reviewing these models in general, we focus
on an application to peer-to-peer networks, where the dynamics
must keep track of the download progress of a population of peers
as content propagates among them through file sharing. Applying
control-theoretic methods to this PDE yields a series of analytical

results, in particular: local stability analysis of the equilibrium
is proved through a small-gain argument on an appropriate
feedback loop; variability around this equilibrium in the presence
of random noise is analyzed through the frequency domain; and
transient studies are performed to compute completion times.

I. INTRODUCTION

Research on data networks is relying increasingly on fluid

models (continuous variables, differential equations) as com-

pared to the classical discrete models of queueing theory. A

first reason for this shift is that at the microscopic level of

packets, the assumptions of queueing theory become dubious

given the complex mechanisms in place (e.g. the window

control mechanisms of TCP), but a macroscopic model can

yield satisfactory predictions of rates (see e.g. [15]).

The queueing model remains compelling to study the sta-

tistical multiplexing of jobs arriving and being processed by

the network. Indeed, researchers since [14] have considered

models that combine a discrete random process for the pop-

ulation of flows in the network, and a continuous variable

description of the rate allocation among them. Of particular

interest has been the study of stochastic stability of such

queues for the resource allocation models of the Internet

[1], [4]. Nevertheless, fluid models appear as well in this

higher layer dynamics for a second, mathematical reason:

queues are often difficult to solve analytically, but statements

can be made about scaling limits of such queues as the

number of flows grows large [8], replacing discrete counts with

real variables. This opens the door for differential equation

techniques for these problems, such as Lyapunov methods for

the aforementioned stability question [1]. Most recently, fluid

models have been extended to cover another aspect of queue

dynamics: characterizing residual workloads of the files in

progress, a requirement when the job sizes are not exponential

[7]. In this regard, a key observation of [11] was to describe

the evolution of the system state through a partial differential
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equation (PDE), which opened the door for a Lyapunov proof

of stability.

Recent research on peer-to-peer (P2P) networks has fol-

lowed an analogous path to the one described above. Initial

models based on discrete queues were proposed in [16] to

model peer populations, but such queues were difficult to

solve explicitly. In [12], a fluid model based on differential

equations was proposed, leading to characterizations of the

equilibrium achieved by the swarm population and its stability

[12], [13]. Noting that this model does not provide detail

of the propagation of content within the P2P swarm, the

authors proposed in a recent paper [5] a PDE model for these

dynamics, studying various file sharing policies. Equilibrium

conditions and some partial stability results were given.

In this paper we review this modeling technique and extend

its application to the P2P problem through a series of new

results on the dynamics of peer populations and downloaded

content, invoking methods of control theory. First, in Section

II we discuss general conditions (namely, processor sharing

disciplines) to which such PDE models apply, focusing then

in Section III on the P2P problem, reviewing the equilibrium

from [5]. Section IV provides a proof of local stability of the

equilibrium, through a small-gain argument. Section V shows

how variability can be analyzed through transfer function

methods. Section VI gives results on transient performance.

Conclusions are given in Section VII.

II. PDE MODELS FOR PROCESSOR SHARING NETWORKS

Consider a communication network that receives jobs (e.g.

download requests) at rate λ arrivals/second. The fraction of

jobs greater than size σ is denoted by H(σ), i.e. this is the

complementary cumulative distribution function (CCDF) of

the workload distribution. We normalize file-size units to have

a unit mean, i.e.
∫
∞

0
H(σ)dσ = 1. A processor sharing (PS)

discipline allocates a transmission rate r, simultaneously to

each job present in the network. r will depend on the network

state, and may possibly depend on time and the residual work

σ the job possesses. This assumes a single class of jobs, below

we give an example of the multi-class generalization.

A convenient way to describe the state of such system is

by a function F (t, σ) that counts the number of jobs present

at time t that have residual workload larger than σ. This

function is monotonically decreasing, satisfying F (t,∞) = 0
and F (t, 0) = x(t), the total number of jobs in the network.

In a discrete model, F (t, ·) would decrease by unit steps at

the locations of current residual workloads.
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In this paper we will work with a fluid version of this

state, in which F (t, σ) is taken to be real-valued and smooth,

and postulate a differential equation for the state evolution,

motivated by the following incremental analysis:

F (t+ dt, σ) = λH(σ)dt + F (t, σ + rdt). (1)

Given the current state F (t, σ), its value after a small time

interval dt is determined in (1) by two components:

• The number of new arrivals in (t, t+ dt] with workload

larger than σ. Of the λdt total arrivals, a fraction H(σ)
has workload larger than σ.

• The number of jobs present at time t with residual work

larger than σ + rdt. These jobs receive rate of service

r and hence process rdt units of work, thus remaining

above σ at time t+ dt.

By subtracting F (t, σ), dividing by dt and letting dt → 0 we

have the following evolution for the state, in the form of a

transport partial differential equation:

∂F

∂t
= λH(σ) + r(F, t, σ)

∂F

∂σ
. (2)

In the above dynamics, we have made explicit the depen-

dence of the service rate on the current state of the network, as

well as possibly on (t, σ). The precise form of this dependence

is determined by the actual network providing the service.

Some possibilities are indicated below.

1) Fixed per-flow capacity: Here the network assigns to

each connection a rate r = c, independent of the network

state. An example of this situation would be a client-server

network where clients have a download capacity limit c
(e.g. given by their domestic Internet access), but servers are

greatly overprovisioned, so they can satisfy this demand to all

downloaders present in the network.

2) Fixed service capacity with PS discipline: Here we have

service capacity c shared equally among jobs present, i.e. r =
c/x = c/F (t, 0). This could correspond to the situation of

homogeneous TCP flows sharing a single bottleneck.

3) Multi-class network with α-fair resource allocation:

This models TCP resource allocation over an arbitrary topol-

ogy. The network is a set of links, indexed by l and of capacity

cl. For each route m across the network, introduce a class of

jobs, with their corresponding arrival rate λm and file-size

CCDF Hm(σ). Routing is specified by the incidence matrix

R (Rlm = 1 if route m uses link l and zero otherwise).

The system state is the vector indexed by m with compo-

nents Fm(t, σ), each satisfying an equation of the form (2),

with a corresponding service rate rm. These service rates are

obtained as the solution to the Network Utility Maximization

(NUM) problem

max
∑

m:xm>0

xmUm(rm), subject to
∑

m

Rlmxmrm ≤ cl.

Here xm(t) = Fm(t, 0), and Um(·) is a utility function defined

for flows of class m, which is taken to belong to the “α-fair”

family of [10], namely with derivative U ′

m(r) = κmr−α for

some strictly positive α. For background on these models for

TCP we refer to [15].

Connection to M/G/*/PS queues

In the domain of queueing theory, the system under consid-

eration would be modeled by a random process of arrivals (e.g.

Poisson of intensity λ), each job bringing an independent ran-

dom workload of general file-size distribution, characterized

by its CCDF H(σ). Jobs are served simultaneously with rate

r depending on the full network state, and possibly the job’s

residual workload σ.

One method to model this system as a Markov process is

to introduce the state

Φt =

x(t)
∑

i=1

δσi(t),

a measure with point masses at the locations of the residual

workloads σi of the jobs i = 1, . . . , x(t) currently present. We

refer to [6], [7] and references therein for the analysis of such

measure-valued stochastic processes. If instead of Φ we write

its complementary CDF

F (t, σ) := Φt

(
(σ,∞)

)
,

we would have a random process whose state is a decreasing

step function in σ, as discussed before. Relating such random

process with our deterministic smooth version of F (t, σ) can

be done through scaling; i.e. considering the limit of a family

of such processes with re-scaled time and initial conditions.

This is beyond the scope of this paper, we refer to [7] for

extensive details, and to [11] for additional comments.

III. APPLICATION TO PEER-TO-PEER NETWORKS

PDE models of the type discussed here for P2P networks

were considered in our previous paper [5], building on the

previous ODE models of [12]. We summarize in this section

some relevant results of [5], with minor notational changes.

In a P2P network, content is divided into small pieces

so that peers downloading (termed leechers) can themselves

contribute by uploading pieces they already have to others.

There are also seeders who already own content and contribute

to the upload without downloading. Let x(t) denote the

leecher population, y(t) the number of seeders. All peers are

assumed to have an upload bandwidth of µ, thus the maximum

total upload bandwidth available is Rup = µ(x + y). The

download rate r available to each leecher is constrained by this

overall upload “budget”, as well as by an individual download

capacity limit c > µ. In [5], we studied different alternatives

for the function r(F, t, σ) with these restrictions; we called the

bandwidth sharing efficient when these are the only operative

constraints, i.e. no spare bandwidth goes to waste. This is a

reasonable assumption when there is enough piece diversity,

as argued in [12].

The simplest among efficient bandwidth sharing policies is

the processor sharing discipline, given by

r(F, y, σ) = min

{

µ
x+ y

x
, c

}

. (3)

This means all leechers present in the network receive equal

service rate, constrained either by the maximum upload capac-

ity, or by the download limit. This appears to be a good model
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for current BitTorrent systems [2], as supported by simulation-

based studies [9].

With this assumption, our dynamic equation (2) becomes

∂F

∂t
= λH(σ) + min

{

µ
x+ y

x
, c

}
∂F

∂σ
.

We have not discussed yet the workload distribution H(σ).
Let us consider momentarily that we chose an exponential

distribution of mean 1, H(σ) = e−σ . Then it is easily shown

that the preceding equation admits a solution with separation

of variables, F (t, σ) = x(t)e−σ , where x(t) satisfies the

ordinary differential equation

ẋ = λ−min {µ(x+ y), cx} . (4)

This is precisely the model proposed in [12] for the leecher

dynamics (restricted to the efficient case, and without leechers

abandoning prematurely). So we see that our PDE dynamics

subsumes this earlier model. Now, is it natural to assume

leechers have exponential workloads? In the case of a common

content file of interest to all peers, it is more natural to assume

the workload is deterministic, of unit size, corresponding to

H(σ) = 1[0,1)(σ). To study such case, it will be essential to

use the full PDE dynamics, there is no ODE simplification.

We focus on this case from now on1.

In this case no peers will have workloads larger than unity,

so we can set F (t, σ) = 0 for σ > 1 and restrict the PDE to

the interval [0, 1], as follows:

∂F

∂t
= λ+min

{

µ
x+ y

x
, c

}

︸ ︷︷ ︸

r

∂F

∂σ
, σ ∈ [0, 1]. (5)

The above assumes that y(t) is exogenously given. The

simplest alternative here is to take y(t) ≡ y0, i.e. the seeder

population is a set of fixed servers. This assumption, while re-

strictive, leads to some valuable results and insights, as shown

in Section VI. The other choice is to select a dynamic equation

for y(t). Following [12], we will consider the dynamics by

which leechers turn into seeders upon completion of their

download (at σ = 0) and seeders leave the system with rate

γ. This gives the following differential equation:

ẏ = −r
∂F

∂σ

∣
∣
∣
∣
σ=0

− γy. (6)

The P2P system is thus represented by the combined dynam-

ics (5)-(6) in the state variables F (t, σ), y(t). Alternatively,

one can replace y(t) by the variable

z(t) = x(t) + y(t) = F (t, 0) + y(t),

the total population of the network. By evaluating (5) at σ = 0
and adding it to (6), we deduce the following dynamic equation

ż = λ− γz + γx, (7)

that can be used together with (5) to yield a complete model

of the system.

1A more general H(σ) may still be of interest to study peers arriving with
partial content, or who are interested in only part of the content.

Equilibrium points

At an equilibrium point of (5)-(6), the number of seeders

must be y∗ = λ/γ. Also, since r∗ does not depend on σ, the

equilibrium of (5) has constant ∂F∗

∂σ
, i.e. we must have

F ∗(σ) = x∗(1− σ), (8)

a uniform distribution over download states. There are two

cases, depending on which of the two constraints is active in

(3). These depend on the parameter γcr := µ c
c−µ

, as follows:

(a) If γ < γcr, the equilibrium satisfies

x∗ =
λ

c
and r∗ = c,

the system operates saturated by download capacity.

(b) If γ > γcr, the equilibrium satisfies

x∗ = λ

(
1

µ
−

1

γ

)

, and r∗ = µ
x∗ + y∗

x∗
,

the system operates saturated by upload capacity.

Note that in case (a), locally around equilibrium the system

dispenses a constant rate c to each downloading peer, as in

Example II-1. This makes the local dynamics autonomous, and

readily shown to be stable (see [5]). Case (b) is dynamically

more challenging since the download rate varies (even locally)

with the state, introducing feedback in the system. Hence we

focus on (b) in our dynamic studies to follow2.

IV. LOCAL STABILITY ANALYSIS

In this section we prove local stability for the processor

sharing model around equilibrium, in the case (b), saturated

by upload capacity. For simplicity, we will assume µ = 1,

which amounts to choosing time units. Note that in this case

we have γ > γcr > 1. The resulting equilibrium conditions

are

x∗ = λ
γ − 1

γ
, z∗ = λ, r∗ =

z∗

x∗
=

γ

γ − 1
, (9)

and F ∗(σ) from (8).

We first linearize the dynamics (5)-(7) around this equilib-

rium, writing the incremental variables x̃ = x−x∗, z̃ = z−z∗,

r̃ = r− r∗, f(t, σ) = F (t, σ)−F ∗(σ). Note that f(t, 1) ≡ 0.

∂f

∂t
= r∗

∂f

∂σ
− x∗r̃ (10a)

˙̃z = −γz̃ + γx̃. (10b)

The aforementioned feedback mechanism results from the

download rate r = z
x

, which gives by linearization the

expression in incremental variables

x∗r̃ = z̃ − r∗x̃.

Substitution in (10a) yields the linearized model

∂f

∂t
=

1

τ

∂f

∂σ
− z̃ +

1

τ
x̃,

2(b) is also the most interesting from a P2P perspective; here the leecher
contribution is essential to sustain the load.
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where for future convenience we have introduced the notation

τ :=
γ − 1

γ
=

1

r∗
,

representing the equilibrium download time for each leecher.

Now define a new variable

u = −τ z̃ + x̃;

we can recast the local linearized dynamics as the feedback

interconnection of two blocks:

• G1, with input u and output x is the infinite-dimensional

system

∂f

∂t
=

1

τ

∂f

∂σ
+

1

τ
u, (11a)

x̃ = f(t, 0). (11b)

• G2, with input x̃ and output u is the first-order system

˙̃z = −γz̃ + γx̃, (12a)

u = −τ z̃ + x̃. (12b)

We study this feedback loop through the transfer functions

Ĝ1(s), Ĝ2(s), which are elements of the H∞ space of

bounded analytic functions on Re(s) > 0, see e.g. [3] for

background.

Theorem 1: The feedback interconnection of (11)-(12) has

the small-gain property ‖Ĝ1Ĝ2‖∞ < 1, and therefore the

closed loop satisfies [1− Ĝ1(s)Ĝ2(s)]
−1 ∈ H∞.

Proof: The first-order system G2 has transfer function

Ĝ2(s) = 1−
τγ

s+ γ
=

s+ 1

s+ γ
.

Since γ > 1, the above lead-lag system has H∞ norm

‖Ĝ2‖∞ = sup
ω∈R

|Ĝ2(jω)| = 1, achieved as ω → ∞.

We find the transfer function of G1. Let f̂(s, σ) be the

Laplace transform in the time variable of f(t, σ). For zero

initial conditions, (11a) yields

sf̂(s, σ) =
1

τ

∂f̂

∂σ
+

1

τ
û(s);

this is now an ordinary differential equation in σ, with constant

coefficients. Noting that f̂(s, 1) = 0, we have the solution

f̂(s, σ) =
1

τs
(1− eτs(σ−1))û(s).

Evaluating at σ = 0 gives ˆ̃x(s), the Laplace transform of the

output. Therefore we obtain the transfer function

Ĝ1(s) =
1− e−τs

τs
.

It is easily checked that

‖Ĝ1(s)‖∞ = sup
ω∈R

|Ĝ1(jω)| = 1,

achieved at ω = 0. It follows that the feedback loop has gain

‖Ĝ1(s)Ĝ2(s)‖∞ = sup
ω∈R

|Ĝ1(jω)||Ĝ2(jω)| < 1,

where we use the fact that the two terms achieve their

maximum at opposite ends of the spectrum. The small-gain

theorem (see [3]) implies that [1− Ĝ1(s)Ĝ2(s)]
−1 ∈ H∞.

The above result implies local stability from the input-output

point of view used in control theory: in particular, injected

disturbances in the feedback will have a bounded impact. If

the blocks were finite dimensional, this would be equivalent

to asymptotic stability of the autonomous dynamics; here,

however, we have an infinite dimensional block Ĝ1(s), and

the relationship between the various stability notions is not

immediate (see [3]): we leave this analysis for future work.

V. VARIABILITY ANALYSIS

In the fluid model analyzed so far, peer arrivals, departures

and internal transitions are assumed to follow a perfectly

deterministic pattern. For a more refined analysis we would

like to analyze variability around the equilibrium values caused

by random variations in these patterns.

In the fluid context, one way to account for this randomness

is to add noise to the respective differential equations. This

approach was outlined in [12] for the two-state (x, y) differ-

ential equation models used there, by adding Brownian noise

of variance λ to arrivals, departures, and also for the transition

between leechers and seeders. We believe, however, that it is

questionable that an independent noise should be added for

the latter, given that progress in the system is determined

endogenously by the system state, which sets download rates.

For this reason, in what follows we will include only noise

in arrival and departure terms, keeping the transport portion

of the system deterministic. Returning momentarily to non-

incremental variables, we write

∂F

∂t
= λ+ n1(t) + r(F, y, σ)

∂F

∂σ
,

ẏ = − r(F, y, 0)
∂F

∂σ

∣
∣
∣
∣
σ=0

− γy + n2(t).

Above, n1(t) models deviations from the mean arrival rate

λ, and n2(t) deviations from the seeder departure rate. We

characterize their influence on the local dynamics around

equilibrium, by evaluating the transfer function from these

noise terms to the relevant system variables.

Including the above noise in the linearization around equi-

librium, (10) becomes

∂f

∂t
= r∗

∂f

∂σ
− x∗r̃ + n1(t), (13a)

˙̃z = −γz̃ + γx̃+ n1(t) + n2(t), (13b)

back in incremental variables. Note that the state z = x + y
is influenced by both noise sources.

Replicating the analysis of the previous section, with µ = 1
and the equilibrium values from (9), we obtain from (13a) the

equation

∂f

∂t
=

1

τ

∂f

∂σ
− z̃ +

1

τ
x̃+ n1(t),
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where as before τ := γ−1
γ

. Defining now

u := −τ z̃ + x̃+ τn1,

we can represent the dynamics as the feedback interconnection

of a noise-less system G1 as in (11), in feedback with

˙̃z = −γz̃ + γx̃+ n1 + n2

u = −τ z̃ + x̃+ τn1.

In transfer function form, this second system is readily found

to be

û(s) =
s+ 1

s+ γ
ˆ̃x(s) +

τ(s + γ − 1)

s+ γ
n̂1(s)−

τ

s+ γ
n̂2(s)

= Ĝ2(s)ˆ̃x(s) + Ĥ1(s)n̂1(s) + Ĥ2(s)n̂2(s),

where Ĝ2(s) coincides with our previous noise-free analysis,

for Ĥ1(s), Ĥ2(s) appropriately defined. The overall feedback

diagram is depicted in Fig. 1.

n1 ✲

n2 ✲

H1

H2

❄

✻
✲ ✲

u

G2

G1

✛

✻

x̃

Fig. 1. Linearized dynamics with noise.

The stability of this feedback loop was already established

in Theorem 1. To evaluate the variance of the output x, we

compute the closed loop relationship

x̂(s) =
Ĝ1(s)

1− Ĝ1(s)Ĝ2(s)
[Ĥ1(s)n̂1(s) + Ĥ2(s)n̂2(s)].

For independent white noise inputs of variance λ, we obtain

the following expression for the variance of x:

E[x2] = λ

∫
∞

−∞

|Ĝ1(jω)|
2
[

|Ĥ1(jω)
2|+ |Ĥ2(jω)

2|
]

|1− Ĝ1(jω)Ĝ2(jω)|2
dω

2π
.

(14)

The above integral can be evaluated numerically. Figure 2

represents the power spectral density (integrand in (14)) for

the case γ = 3.

For comparison purposes, we include in the Figure the

corresponding spectral density that results from using the ODE

model (4), in linearized form (for µ = 1):

˙̃x = −(x̃+ ỹ) + n1, (15a)

˙̃y = (x̃ + ỹ)− γỹ + n2. (15b)

The resulting transfer function expression is

ˆ̃x(s) =
(s+ γ − 1)n̂1(s)− n̂2(s)

s2 + γs+ γ
.

We see that both models coincide at low frequency, and

the PDE model predictably adds many high order modes.

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ω

Power spectral density

 

 

PDE model

ODE model

Fig. 2. Bode plot of the power spectral density of x; comparison of PDE
and ODE models.

More significantly, however, around the cutoff frequency both

models differ substantially. In simulation studies we have

found the predictions of variance resulting from the PDE

model to be more accurate.

VI. TRANSIENT ANALYSIS

We consider here a different P2P scenario, where a given

number of initial seeders y0 would like to propagate some

content, and are willing to stay permanently in the system.

Moreover, an initial distribution of leechers is given, and these

leechers download the content and leave immediately after

they finish. This is a typical situation in torrents nowadays,

with the main relevant performance metric being the comple-

tion time, i.e. the time needed to finish to serve all the initial

leechers.

Assuming that the bandwidth allocation is processor-

sharing, and that the system is not bottlenecked by downlink

capacity (c → ∞) the dynamics are given by:

∂F

∂t
= µ

x+ y0
x

∂F

∂σ
. (16)

Note that we have returned to non-incremental variables. As

for the initial condition, we assume that F (0, σ) = φ(σ), a

strictly decreasing differentiable function of σ, with x0 :=
φ(0), the initial total number of leechers, and φ(1) = 0.

Proposition 2: The time needed to empty a processor-

sharing P2P system with y0 servers and starting from an initial

condition φ(σ) is given by:

T =
1

µ

∫ 1

0

φ(σ)

φ(σ) + y0
dσ. (17)

Proof: For this simplified system with no input, the PDE

model (16) with initial condition φ(σ) can be written in the
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integral form

F (t, σ) = φ

(

σ +

∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ

)

.

We note that the expression remains valid while x(t) > 0, and

that to interpret it we take φ(σ) = 0 for σ ≥ 1. That this is a

solution can be readily verified by substituting in (16).

Evaluating the preceding equation in σ = 0 gives us the

following integral equation for the number of leechers x(t):

x(t) = F (t, 0) = φ

(∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ

)

.

This is valid while x(t) > 0, and since φ is strictly decreasing

in this range we can solve for

φ−1(x(t)) =

∫ t

0

µ

(

1 +
y0
x(τ)

)

dτ.

Differentiating in t we get the following autonomous differ-

ential equation for x:

(φ−1)′(x)ẋ = µ
(

1 +
y0
x

)

,

x(0) = x0.

Applying separation of variables and integrating in [0, T ] gives

1

µ

∫ x(T )

x0

x

x+ y0
(φ−1)′(x)dx = T.

When x(T ) tends to zero we obtain the expression for the

completion time:

T =
1

µ

∫ 0

x0

x

x+ y0
(φ−1)′(x)dx.

Finally, the change of variables σ = φ−1(x) in the above

integral leads to (17).

Furthermore, noting that the function ξ
ξ+y0

is increasing in

ξ > 0, and that φ(σ) 6 x0 ∀σ, we have the following:

Corollary 3: The time T obtained above satisfies:

T 6
1

µ

x0

x0 + y0
. (18)

In fact, the equality in the above expression is achieved

when the initial condition φ approaches the function

x01[0,1)(σ), i.e. when all the leechers start empty.

Note that in particular, T is bounded above by 1/µ, i.e.

the time for completion is finite, and is at most 1/µ, the

time to upload a copy of the file. This uniform bound holds

regardless of the initial number of leechers! This emphasizes

the scalability of P2P file exchange mechanisms: when the

demand is large, so is the available supply.

Again, let us compare the previous results with the predic-

tions of previous models. In particular, the ODE model of (4)

for this situation is

ẋ = −µ (x+ y0) ,

x(0) = x0.

With analogous (simpler) calculations, the completion time for

this model can be readily calculated as:

T ′ =

∫ x0

0

1

µ

1

x+ y0
dx =

1

µ
log

(

1 +
x0

y0

)

.

Note in particular that the ODE model predicts T ′ → ∞
as x0 → ∞, albeit logarithmically. Again, our simulation

evidence suggests that this is pessimistic, the bounded time

we found in (18) gives closer predictions.

VII. CONCLUSION

PDE models offer an attractive method to describe the dy-

namics of population and residual work in networks for which

the job distribution is not exponential. We have investigated

its use for a P2P setting, in which a deterministic job size is

a natural model. For this case, we have shown how control-

theoretic tools can be used to analyze local stability, random

variability, and transient completion times.

One natural direction of future research is to consider other

distribution functions H(σ); these may arise when peers arrive

with partial content or have only interest in some files among a

larger set. Another direction is the extension to discriminatory

file-sharing policies r(F, y, σ) considered in [5], which may

offer advantages as suggested by empirical studies [9]. In such

cases the equilibrium will depart from the uniform distribution,

complicating the local analysis pursued here.
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