Caching or pre-fetching? The role of hazard rates.

Andres Ferragut

joint work with Matias Carrasco and Fernando Paganini

Universidad ORT Uruguay

60th Allerton Conference on Computing, Control and Communications – September 2024

- Consider a local memory system that handles items from a catalog of N objects.
- Requests for objects arrive as a random process.
- The memory (cache) can locally store $C < N$ of them. $\mathcal{L}^{\mathcal{L}}$
- If item is in cache, we have a hit. Otherwise, it is a miss,

Objective: for a given arrival stream, maximize the steady-state hit rate.

Assume requests for item i come from a point process of intensity λ_i (popularities).

 \blacksquare At each point in time we must decide which items must be stored locally.

Two important distributions:

 \blacksquare Inter-arrival distribution: Typical distance between points...

$$
\tau_{k+1} - \tau_k \sim F_0(t), \quad E[\tau_{k+1} - \tau_k] = 1/\lambda
$$

Two important distributions:

 \blacksquare Inter-arrival distribution: Typical distance between points...

$$
\tau_{k+1} - \tau_k \sim F_0(t), \quad E[\tau_{k+1} - \tau_k] = 1/\lambda
$$

Age distribution: Distance from the last point in the current interval (sampling bias)!

$$
F(t) := \lambda \int_0^t 1 - F_0(s)ds,
$$

Two important distributions:

 \blacksquare Inter-arrival distribution: Typical distance between points...

$$
\tau_{k+1} - \tau_k \sim F_0(t), \quad E[\tau_{k+1} - \tau_k] = 1/\lambda
$$

Age distribution: Distance from the last point in the current interval (sampling bias)!

$$
F(t) := \lambda \int_0^t 1 - F_0(s)ds,
$$

Note: you can formalize this under the Palm probability framework for stationary point processes.

Upon request arrival for item i, check for presence.

Upon request arrival for item i, check for presence.

If new, store item and start a timer T_i to evict.

t

- **Upon request arrival for item i, check for presence.**
- If new, store item and start a timer T_i to evict.
- If present, reset timer to T_i . .

- **Upon request arrival for item i, check for presence.**
- If new, store item and start a timer T_i to evict.
- **If present, reset timer to** T_i . .
- **Upon timer expiration, evict the content.**

- **Upon request arrival for item i, check for presence.**
- If new, store item and start a timer T_i to evict.
- **If present, reset timer to** T_i . .
- **Upon timer expiration, evict the content.**
- **E** Keep timers T_i such that average cache occupation is C .

Structure of the optimal caching policy

The crucial magnitude is the hazard rate of F_0 :

$$
\eta(t):=\frac{f_0(t)}{1-F_0(t)}
$$

Likelihood of a request at time t, given the current interval has age t.

Structure of the optimal caching policy

The crucial magnitude is the hazard rate of F_0 :

$$
\eta(t):=\frac{f_0(t)}{1-F_0(t)}
$$

Likelihood of a request at time t , given the current interval has age t .

Theorem (F', Rodriguez, Paganini – 2016)

If the $F_0^{(i)}$ $_0^{\scriptscriptstyle\rm (12)}$ have decreasing hazard rates, then the optimal TTL policy satisfies:

 $\eta_i(T_i^*) \geqslant \theta^*,$

whenever $T_i^* > 0$ (i.e. the item is cached). Moreover, inequality is strict iff $T^*_i=\infty$ (item always stored).

Why caching helps in this case?

Decreasing hazard rates corresponds to bursty traffic:

Why caching helps in this case?

Decreasing hazard rates corresponds to bursty traffic:

An arrival makes a subsequent arrival more likely. $\mathcal{C}^{\mathcal{A}}$

Store it while its likelihood is high enough (above a threshold).

Why caching helps in this case?

Decreasing hazard rates corresponds to bursty traffic:

An arrival makes a subsequent arrival more likely. $\mathcal{C}^{\mathcal{A}}$

Store it while its likelihood is high enough (above a threshold).

What about other types of traffic?

Constant hazard rate \rightarrow Poisson process.

Increasing hazard rate \rightarrow more periodic!

What about other types of traffic?

Theorem: for these types of traffic, keep the most popular is the optimal caching policy.

What about other types of traffic?

Theorem: for these types of traffic, keep the most popular is the optimal caching policy.

Can we improve upon this?

Thinking about increasing hazard rates...

 \blacksquare Once you have seen a request, it's less likely to see the same item again for a while.

What is the timer based equivalent of this case?

Thinking about increasing hazard rates...

 \blacksquare Once you have seen a request, it's less likely to see the same item again for a while.

 \blacksquare What is the timer based equivalent of this case?

Key insight

The question now is not how long we should remember something, but instead how long we should forget about it!

Upon request arrival for item i, check for presence.

Upon request arrival for item i, check for presence.

If not-present: start a timer T_i . .

- **Upon request arrival for item i, check for presence.**
- If not-present: start a timer T_i . .
- **If present: remove content and reset timer to** T_i . .

- **Upon request arrival for item i, check for presence.**
- **If not-present: start a timer** T_i **.** .
- **If present: remove content and reset timer to** T_i . .
- **Upon timer expiration, pre-fetch the content.**

- **Upon request arrival for item i, check for presence.**
- If not-present: start a timer T_i . .
- If present: remove content and reset timer to T_i . .
- **Upon timer expiration, pre-fetch the content.**
- **E** Keep timers T_i such that average cache occupation is C .

Consider a single item with a timer T and its request process:

Hit probability: next arrival occurs after timer expires.

Occupation probability: probability that timer has expired by 0 since last arrival.

Choosing the optimal timers

Requests come from independent sources with intensities λ_i and inter-arrival distribution F_i : :

Problem (Optimal pre-fetching policy)

Choose timers $T_i \geqslant 0$ such that:

$$
\max_{T_i \ge 0} \sum_i \lambda_i (1 - F_0^{(i)}(T_i))
$$

subject to:

$$
\sum_i (1 - F^{(i)}(T_i)) \leqslant C
$$

Choosing the optimal timers

Requests come from independent sources with intensities λ_i and inter-arrival distribution F_i : :

Problem (Optimal pre-fetching policy)

Choose timers $T_i \geqslant 0$ such that:

$$
\min_{T_i \geq 0} \sum_i \lambda_i F_0^{(i)}(T_i)
$$

subject to:

$$
\sum_i F^{(i)}(T_i) \geq N - C
$$

Choosing the optimal timers Change of variables

Apply the change of variables $u_i = F^{(i)}(T_i).$

Note that u_i is the probability of not being stored.

 \blacksquare The problem becomes:

$$
\min_{u_i \in [0,1]} \sum_i \lambda_i \left[F_0^{(i)} \circ (F^{(i)})^{-1} \right] (u_i)
$$

subject to:

$$
\sum_i u_i \geqslant N - C
$$

Choosing the optimal timers Lagrangian duality

Diective gradient:

$$
\frac{\partial}{\partial u_i} \lambda_i F^{(i)} \circ (F^{(i)})^{-1}(u_i) = \frac{\lambda_i f_0^{(i)}((F^{(i)})^{-1}(u_i))}{\lambda_i (1 - F_0^{(i)}((F^{(i)})^{-1}(u_i)))} = \eta_i((F^{(i)})^{-1}(u_i))
$$

Increasing! \rightarrow Proper convex optimization problem.

Choosing the optimal timers Lagrangian duality

■ Objective gradient:

$$
\frac{\partial}{\partial u_i} \lambda_i F^{(i)} \circ (F^{(i)})^{-1}(u_i) = \frac{\lambda_i f_0^{(i)}((F^{(i)})^{-1}(u_i))}{\lambda_i (1 - F_0^{(i)}((F^{(i)})^{-1}(u_i)))} = \eta_i((F^{(i)})^{-1}(u_i))
$$

■ Increasing! \rightarrow Proper convex optimization problem. **Lagrangian duality:**

$$
\mathcal{L}(u,\theta) = \sum_{i=1}^{N} \lambda_i F_0^{(i)} \left((F^{(i)})^{-1}(u_i) \right) + \theta \left(N - C - \sum_{i=1}^{N} u_i \right)
$$

=
$$
\sum_{i=1}^{N} \left[\lambda_i F_0^{(i)} \left((F^{(i)})^{-1}(u_i) \right) - \theta u_i \right] + \theta (N - C).
$$

Theorem

If the $F_0^{(i)}$ $\theta_0^{(i)}$ satisfy the IHR property, there exists a unique threshold $\theta^* \geqslant 0$ such that the optimal timers satisfy:

 $\eta_i(T_i^*) \geqslant \theta^*,$

whenever $T^*_i < \infty$ (pre-fetching). The inequality is strict if and only if $T_i^\ast=0$, i.e. the content is always stored.

Theorem

If the $F_0^{(i)}$ $\theta_0^{(i)}$ satisfy the IHR property, there exists a unique threshold $\theta^* \geqslant 0$ such that the optimal timers satisfy:

 $\eta_i(T_i^*) \geqslant \theta^*,$

whenever $T^*_i < \infty$ (pre-fetching). The inequality is strict if and only if $T_i^\ast=0$, i.e. the content is always stored.

Remark: The policy is also a threshold policy, like the caching case.

A tale of two policies...

A tale of two policies...

Both policies are just the same policy!

- \blacksquare Keep a hazard rate threshold θ for storing a content
- Compute θ^* such that avg. memory occupation is C.

Simulation example

Erlang ($k=5$) inter-arrival times, Zipf $\propto n^{-\beta}$ popularities, varying β , $N=10000, C=1000.$

 \blacksquare Optimal pre-fetching improves over the static policy.

Classical caching (e.g. LRU) is a very bad idea for regular traffic.

Theorem

Consider a family of local memory systems, indexed by N , with inter-request times coming from a common scale family, and memory size $C_N=cN.$ Then the hazard rate threshold θ^*_N verifies:

$$
\theta_N \underset{N \to \infty}{\longrightarrow} \theta^*,
$$

where θ^* is the solution of:

$$
G_{\infty}(\theta^*) = 1 - c,
$$

and G_{∞} depends on the age distribution F and the popularity distribution L.

Theorem

Consider a family of local memory systems as before, then the miss probability for system N, M_N , satisfies:

$$
M_N \underset{N \to \infty}{\longrightarrow} \frac{\int_0^{\infty} \lambda G_0(\theta^*/\lambda) L(d\lambda)}{\int_0^{\infty} \lambda L(d\lambda)},
$$

with θ^* as before, L is the distribution of popularities, and G_0 depends on the inter-arrival distribution F_0 .

Theorem (In preparation – check ArXiv soon)

Under the above assumptions, the (hard to compute) optimal causal policy converges to a fixed threshold policy with the same limit threshold θ^* .

Therefore, timer policies give a universal asymptotic upper bound on caching/pre-fetching performance.

■ You have to know your traffic before deciding on caching or pre-fetching!

 \blacksquare You have to know your traffic before deciding on caching or pre-fetching!

■ Classical caching is not well suited to regular traffic.

■ You have to know your traffic before deciding on caching or pre-fetching!

■ Classical caching is not well suited to regular traffic.

 \blacksquare We identified the hazard rate as the crucial indicator of regularity, and devised a new policy for IHR, that is also asymptotically optimal among all causal policies.

■ You have to know your traffic before deciding on caching or pre-fetching!

■ Classical caching is not well suited to regular traffic.

 \blacksquare We identified the hazard rate as the crucial indicator of regularity, and devised a new policy for IHR, that is also asymptotically optimal among all causal policies.

 \blacksquare A lot of open questions, in particular:

- \blacksquare How we can learn the hazard rates online?
- \blacksquare How we can estimate the appropriate threshold?
- What about mixtures of IHR and DHR traffic?

Andres Ferragut [ferragut@ort.edu.uy](mailto://ferragut@ort.edu.uy) aferragu.github.io

References I

P. Brémaud. \equiv Point process calculus in time and space. Springer, NY, 2020.

- H. Che, Y. Tung, and Z. Wang. 量 Hierarchical web caching systems: Modeling, design and experimental results. IEEE Journal on Selected Areas in Communications, 20(7):1305–1314, 2002.
- A. Ferragut, I. Rodriguez, and F. Paganini. 譶 Optimizing TTL caches under heavy tailed demands. In Proc. of ACM/SIGMETRICS 2016, pages 101–112, June 2016.
- A. Ferragut, I. Rodríguez, and F. Paganini. 譶 Optimal timer-based caching policies for general arrival processes. Queueing Systems, 88(3–4):207–241, 2018.

References II

- N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. R Performance evaluation of hierarchical TTL-based cache networks. Computer Networks, 65:212–231, 2014.
- N. K. Panigrahy, P. Nain, G. Neglia, and D. Towsley. 量 A new upper bound on cache hit probability for non-anticipative caching policies. ACM Trans. Model. Perform. Eval. Comput. Syst., 7(2–4), November 2022.