
Caching or Pre-fetching? The Role of Hazard Rates.
Andres Ferragut

Universidad ORT Uruguay
Montevideo, Uruguay

ferragut@ort.edu.uy

Matı́as Carrasco
Universidad ORT Uruguay

Montevideo, Uruguay
carrasco m@ort.edu.uy

Fernando Paganini
Universidad ORT Uruguay

Montevideo, Uruguay
paganini@ort.edu.uy

Abstract—Local memory systems play a crucial role in today’s
networks: keeping popular content close to users improves
performance by reducing the latency of fetching an item from a
more costly central location. Caching policies that retain recently
requested items are effective to deal with bursts of requests; in
particular timer-based (TTL) caching policies are of this nature,
and have well understood properties. However, in some scenarios,
traffic is more regular, reflected in the fact that the hazard rate
function of inter-request times is increasing. For this situation we
propose the strategy of Timer-based Pre-fetching, a dual of TTL
caching. We characterize the optimal Pre-fetching timers as the
solution to a convex optimization problem, showing this approach
improves upon caching strategies. We also analyze the large scale
behavior of the optimal policy for both cases, which amounts
to threshold policy in the hazard rates, and give asymptotic
performance results for a general class of arrival processes.

Index Terms—Caching, Pre-Fetching, Hazard Rate Function.

I. INTRODUCTION

Local data storage or caching is a pervasive feature of
computer systems: local caching of instructions at processors,
texture caching in graphical processing, disk caching for fast
data retrieval in hard disk storage, content caching in web
applications and content delivery networks, cloud storage
gateways keeping readily available items stored in cloud data
centers. The adequate management of such local memory is
a determining factor in performance; this issue is receiving
increased recent attention with the emergence of cloud and
edge computing architectures.

A local memory may store a certain number of items locally
and temporarily, out of a (typically large) catalog of size N .
For simplicity, we assume that items are homogeneous in size.
The main goal is to select the subset of items that are more
likely to be requested next. The key performance metric to
maximize is the number of hits, i.e. the number of times
that a request can be served directly from the local memory
eliminating the need of a costly retrieval from a central
location at request time. All the aforementioned applications
can be subsumed into this basic system.

The analysis of local memory management policies has
evolved around two main lines of research: the first one
centered on eviction based policies, where the local memory
system has a fixed capacity C < N , and less requested items
must be evicted from memory to make room for popular
content. Classical policies include the Least-Frequently-Used

This work was partially supported by AFOSR-US under grant #FA9550-
23-1-0350

(LFU) policy, that evicts items based on ranking empirical
request frequencies, and the Least-Recently-Used (LRU) pol-
icy, that keeps in memory the more recent requests. The
analysis on these policies goes back to [1], whereas subsequent
interesting approaches can be found in [2]–[6], as well as
network generalizations such as [7].

A second line of research, introduced in the seminal paper
[8], concerns timer based or Time-to-live (TTL) policies, a
method widely used on the Internet: each requested item is
kept in local memory for a given amount of time. Such timers
must be designed for an average memory occupation of C,
which works now as a soft constraint. The key insight in [8]
is that this approach decouples the analysis over the arrival
streams, as we shall see below. This sparked a lot of attention
into TTL policies, as in [9], [10]. Moreover, a connection
between TTL and eviction policies was established in [11],
and further justified in [12].

Building upon this work, in [13], [14] the optimal TTL
caching timers were characterized under very general hypothe-
ses for the request processes. The key result is that the optimal
policy depends on the hazard rate function of the inter-request
times. Under a decreasing hazard rate (DHR) assumption, a
convex optimization problem can be formulated to compute
the optimal timers. Furthermore, suitable fluid limits for large
scale systems are derived, yielding explicit expressions for
the hit probability. However, when hazard rates are increasing
(IHR), the optimal timer policy degenerates in a static policy
that stores the most popular items at all times [14], just as in
the case of memoryless (Poisson) traffic.

The question arises whether the performance in the IHR
case could be improved by exploiting traffic regularity. In this
work, we develop a new policy which we initially proposed in
[15], for this situation: timer-based pre-fetching, i.e. specula-
tively retrieving the content, in anticipation of future arrivals.
We derive the optimal pre-fetching timers as the solution to
a proper convex optimization problem, remarkably similar in
form to the one used in [13], and show that we can greatly
improve the hit probability for the IHR case. Our policy is also
closely related to recent results in [16] for eviction policies,
where the optimal replacement is linked to the stochastic
intensity of the incoming requests.

Our analysis leads naturally to a duality result where both
timer-based caching and timer-based pre-fetching can be cast
as threshold policies for the hazard rates. This fact enables us
to compute tractable asymptotic limits for the optimal hit/miss



rate of both policies, for a large scale regime.
The paper is organized as follows: in Section II we formu-

late our model and review the main results on TTL caching.
We then introduce in Section III our new timer based pre-
fetching policy and compute its optimal timers. We explore
the duality between both policies in Section IV and compute
asymptotic performance limits in V. To illustrate the results,
we analyze some parametric examples in VI. Conclusions are
given in Section VII.

II. TIMER BASED CACHING

Consider a local memory system, where requests from a
catalog of N (equally sized) items are received. The cache
has limited memory, and thus aims to locally keep available a
subset of size C < N , which can then be served with lower
latency. The natural objective is to maximize the hit probability
by choosing the appropriate items to store.

Following [8], we model requests for item i as a stationary
point process {τ (i)k } in R [17], with mean intensity λi > 0
(average requests per time unit). We follow the usual labelling
convention that τ (i)0 is the first point to the left of time t = 0.

The total intensity of requests is λN :=
∑N

i=1 λi, and pi :=
λi/λ

N is the probability that a given request is for item i, i.e.
its relative popularity in a mean sense. If these popularities
are known, a basic local memory management strategy is the
following:

Definition 1: The static policy is to store at all times the C
most popular items, i.e. items i with the C largest λi’s.

While natural, the above policy need not be optimal in a
real time setting, since the short-term behavior of the request
process may deviate from the mean. These questions are
naturally cast within the theory of stationary point processes
in the real line. In this regard, introduce two main distributions
(we drop the superscript i to ease the notation when talking
about a single process): the inter-arrival distribution F0(t), i.e.
the distribution of τk+1 − τk for a typical interval; its average
is 1/λ. These times are synchronized with the process. Instead,
when the same process is viewed from a fixed reference
point in time (e.g. 0 due to stationarity), the random variable
measuring the time since the last request follows the age
distribution [17]:1

F (t) := P (−τ0 ⩽ t) = λ

∫ t

0

1− F0(s) ds. (1)

Moreover, the time to next request τ1 also follows the same
distribution, and this is why F is also named the residual
lifetime distribution associated to F0. An example of this
sampling effect is shown in Fig. 1.

The crucial magnitude in our upcoming analysis is the
hazard rate function (also known as failure rate). If F0 has
density f0, its hazard rate is defined as:

η(t) :=
f0(t)

1− F0(t)
, (2)

1The preceding arguments can be formalized properly using Palm theory for
Point Processes. In our case, we avoid going into details of this formalization
and refer the reader to [17] for a full discussion.

and serves as a local measure of the likelihood that the current
interval is exactly of length t, given that the elapsed time of
the interval is at least t. We will focus on monotonic hazard
functions η(t). Decreasing hazard rates (DHR) correspond to
bursty requests, whereas increasing hazard rates (IHR) indicate
a more regular pattern of item requests. Hazard rates are
constant (CHR) for a memoryless (Poisson) process.

Definition 2: A timer based (TTL) caching policy is speci-
fied as follows: upon arrival of a request for item i, the item is
stored in memory (if not already present) and a timer of length
Ti is started (or reset). When the timer expires, the content is
removed (eviction).

See Figure 2 for an illustration. This method subsumes the
static storage policy: just choose Ti = ∞ for the stored files,
Ti = 0 for the rest. It has also been shown that the classical
LRU policy may be approximated by a TTL policy with a
common timer, the so-called “Che approximation” [11].

In [13], [14], the authors characterize the optimal choice
of TTL timers from the point of view of hit probability, as
a function of the inter-arrival and age distributions F

(i)
0 and

F (i). The key observations are: on one hand, the hit probability
of an item is given by F

(i)
0 (Ti), i.e. the probability that the

next arrival comes before the timer expires. On the other hand,
item i occupies memory at time 0 if and only if the age of the
current interval is less than eviction time; the expected memory
occupation is thus F (i)(Ti). Therefore, timer selection can be
posed as the following optimization:

Problem 1 (Optimal TTL caching):

max
Ti⩾0

N∑
i=1

λiF
(i)
0 (Ti) (3a)

subject to:
N∑
i=1

F (i)(Ti) ⩽ C. (3b)

The objective (3a) is just the total hit-rate of the system, and
the constraint (3b) states that the average memory occupation
is less than the allocated memory. In [13], [14] the following
result is proven using tools of convex optimization:

Theorem 1 (Optimal TTL caching policy, [13]):
• For DHR, there exists a hazard rate threshold θ∗ that

characterizes the optimal timers T ∗
i , through one of the

alternatives:

η(i)(T ∗
i ) = θ∗, and 0 < T ∗

i < ∞;

η(i)(0) ⩽ θ∗, and T ∗
i = 0;

η(i)(∞) ⩾ θ∗, and T ∗
i = ∞.

• For CHR o IHR, the static policy is optimal.
The stated dichotomy is consistent with intuition: if requests

come in bursts, clustered in time, dynamic caching can provide
benefits. If requests are purely random or even more regular,
caching recent items cannot improve over the static policy.

For the bursty case, a further conclusion is that the perfor-
mance of LRU (which corresponds approximately to Ti ≡ T
satisfying (3b) with equality) can be surpassed by using
differentiated timers, characterized through the hazard rate.



t0
τ−2 τ−1 τ0 τ1

∼ F0 ∼ F
∼ F

Fig. 1. Inter-arrival (F0) and age (F ) distributions showing the sampling bias.

t

T T T

τk τk+1 τk+2 τk+3eviction

Fig. 2. TTL caching policy for a single item.

Is there an alternative method to improve over the static
policy for requests with increasing hazard rates? A positive
answer is given hereafter.

III. TIMER BASED PRE-FETCHING

The key insight for our new policy is that, if requests follow
a more regular pattern, such as having increasing hazard rates,
the likelihood of a subsequent request for item i decreases
immediately upon seeing a request. Therefore, removing this
item from memory and only retrieving it at a later time may
improve performance. We now make this precise.

Definition 3: The timer based prefetching policy is specified
as follows: after a request for item i, it is removed from
memory if already present, and a timer Ti is started. At timer
expiration, the item is fetched again and stored in memory. If
a new request arrives before this, it is a miss and the timer is
reset. Otherwise, the item will have been pre-fetched for the
next arrival, so there is a hit.

The policy is illustrated in Fig. 3. It also covers static
policies, where now Ti = 0 corresponds to storing the item
permanently in the local memory, and Ti = ∞ not storing it.

As in the TTL caching case, the analysis of the hit proba-
bility decouples among the processes here as well. The steady
state hit-probability of item i for the pre-fetching policy can
be readily computed by observing that:

P (item i hit) = 1− F
(i)
0 (Ti),

that is the probability that the next arrival occurs after Ti

expires. Also, the steady state average occupation can be
computed by observing that item i is stored at time t = 0
if and only if its last request before t = 0 was more than
Ti units of time before, i.e. the age of the current interval is
longer than Ti:

P (item i in memory) = 1− F (i)(Ti),

with F (i) defined in (1). Note that the average memory
occupation is therefore:

E

[
N∑
i=1

1{
−τ

(i)
0 >Ti

}
]
=

N∑
i=1

(
1− F (i)(Ti)

)
.

We can now formulate the optimal timer problem of the
pre-fetching policy:

Problem 2 (Optimal timer-based pre-fetching):

max
Ti⩾0

N∑
i=1

λi

(
1− F

(i)
0 (Ti)

)
subject to:

N∑
i=1

(
1− F (i)(Ti)

)
⩽ C.

Equivalently, by getting rid of constant terms:

min
Ti⩾0

N∑
i=1

λiF
(i)
0 (Ti), (4a)

subject to:
N∑
i=1

F (i)(Ti) ⩾ N − C. (4b)

The above is closely related to Problem 1 above. We are now
minimizing the miss rate, subject to the number of non-stored
items being larger than N − C on average. Using the fact
that the F (i) are increasing, consider the change of variables
ui = F (i)(Ti); here ui ∈ [0, 1] is the probability of not being
stored. Problem 2 can be rewritten as:

min
ui∈[0,1]

N∑
i=1

λiF
(i)
0 ◦

(
F (i)

)−1

(ui), (5a)

subject to:
N∑
i=1

ui ⩾ N − C. (5b)

We will use this version to analyze the problem under different
scenarios for the hazard rate of the request processes.

A. Increasing hazard rates

Theorem 2: Suppose that the distributions F
(i)
0 satisfy the

IHR property. Then, there exists a threshold θ∗ ⩾ 0 such that
the optimal timers T ∗

i satisfy one of the alternatives:

η(i)(T ∗
i ) = θ∗, and 0 ⩽ T ∗

i < ∞;

η(i)(0) > θ∗, and T ∗
i = 0;

η(i)(∞) ⩽ θ∗, and T ∗
i = ∞.



t

T T T

τk τk+1 τk+2 τk+3pre-fetching

Fig. 3. Timer pre-fetching policy for a single item.

Proof: Let us compute the gradient of the objective
function using eq. (1) and the inverse function theorem:

∂

∂ui
λiF

(i)
0 ◦

(
F (i)

)−1

(ui) =
λif

(i)
0

(
(F (i))−1(ui)

)
λi

(
1− F

(i)
0 ((F (i))−1(ui))

)
= η(i)

((
F (i)

)−1

(ui)

)
(6)

with η(i) as in (2).
From (6), if the η(i) are increasing, the objective function

in (5a) is convex, and thus (5) is a proper convex optimization
problem. Introduce the Lagrangian with multiplier θ ⩾ 0
applied to the constraint (5b):

L(u, θ) =
N∑
i=1

λiF
(i)
0

(
(F (i))−1(ui)

)
+ θ

(
N − C −

N∑
i=1

ui

)

=

N∑
i=1

[
λiF

(i)
0

(
(F (i))−1(ui)

)
− θui

]
+ θ(N − C);

we know from convex duality that there exists a saddle point
(u∗, θ∗). In particular, for the dual optimal θ∗ we have:

u∗
i ∈ arg min

ui∈[0,1]

[
λiF

(i)
0

(
(F (i))−1(ui)

)
− θ∗ui

]
,

a decoupled condition over the items i. To solve for the above
minimum, note that by (6), the derivative of the objective is
η(i)((F (i))−1(ui))− θ∗, which increasing by hypothesis. We
have the following cases:

• If η(i)((F (i))−1(0)) = η(i)(0) > θ∗, the derivative is
always positive, so the optimum is attained only for u∗

i =
T ∗
i = 0; the content must be always stored.

• If instead, η(i)((F (i))−1(1)) ⩽ θ∗, the derivative is
always non-positive, the optimum is attained for u∗

i = 1
with the item never stored.

• In the remaining case, there exists u∗
i ∈ [0, 1) where

η(i)((F (i))−1(u∗
i )) = θ∗; (7)

the item must be prefetched at T ∗
i = (F (i))−1(u∗

i ).

Remark 1: It is in principle possible to have θ∗ = 0,
indicating that the caching constraint is not binding at op-
timality. Examples of this kind appear when the inter-arrival
distribution is supported at a positive distance from 0, so the
hazard rate remains at zero until T0 > 0. For instance, a
uniform distribution in [T0, T1], which has IHR. In such cases,
pre-fetching an item at T0 ensures a hit, with an impact on
memory occupation which is less than unity.

For simplicity, we will focus henceforth on the case θ∗ > 0.
In this case, from the complementary slackness condition in
convex duality, the cache constraint must be at equality:

N∑
i=1

u∗
i =

N∑
i=1

F (i)(T ∗
i (θ

∗)) = N − C. (8)

Theorem 2 shows that, under the IHR property, the optimal
policy is again a threshold policy: there exists a threshold θ∗

such that an item is stored in the local memory if and only
if its current hazard rate is greater than the threshold. The
items with η(i)(0) ⩾ θ∗ are always stored, the items with
η(i)(∞) ⩽ θ∗ are never stored, and the remaining items are
pre-fetched after a time T ∗

i since the last request, when their
hazard rates reach the threshold. The underlying idea being
that the hazard rate is a measure of the current likelihood of
getting a request, and thus the marginal utility of storing some
object in the local memory with a fixed budget C.

Recall from Theorem 1 that in the case of IHR, the optimal
caching policy was the static one. Since this possibility is
also covered by pre-fetching, but not optimal in general, we
conclude that pre-fetching improves upon caching for IHR.

B. Constant and decreasing hazard rates

For constant hazard rates, the arrivals become Poisson and
the change of variables turn eqs. (4) into a linear program,
since F0 ≡ F . It is easy to see that in this case the optimal
pre-fetching policy is just the static one.

The same conclusion holds for the DHR case. This result
can be proved with analogous arguments to [14, Theorem 1];
basically we reduce the problem to minimizing a concave
function over a simplex, and thus the optimum should be at a
vertex of the feasible region:

Theorem 3: Provided that the distributions F
(i)
0 satisfy the

DHR property, the optimal timer based pre-fetching policy is
to statically store the C most popular contents.

The result of Theorem 3 is expected in light of the discus-
sion of Section II: when arrivals have the DHR property, traffic
is bursty, so the strategy of initially removing and later pre-
fetching is not helpful. Caching makes more sense for DHR
and pre-fetching for IHR requests.

IV. A TALE OF TWO POLICIES

The preceding discussion highlights that the underlying
characteristics of the traffic determine which policy, caching or
pre-fetching, will work best. Moreover, from the formulation
of Problems 1 and 2 it is clear that a strong connection exists
between both policies. This connection is better understood



λi(t)

θ∗

T ∗
i

t

λi(t)

θ∗

T ∗
i

t

Fig. 4. Pre-fetching and caching as threshold policies for the hazard rates.

from the depiction in Fig. 4. When hazard rates are monotone,
either decreasing or increasing, the optimal policy is defined
by threshold on the stochastic intensity λi(t) of the request
process, a local measure of the likelihood of an arrival. In this
renewal case stochastic intensity is given by the hazard rate
function measured since the last arrival:

λi(t) := η(i)(t− τ∗i (t)), (9)

where τ∗i (t) = sup{τ (i)k : τ
(i)
k < t} is the last point before t

of process i, i.e. t − τ∗i (t) is the current interval age for the
i−th process.

For the IHR case, this translates into waiting for some
time until the likelihood of an arrival is above the threshold,
and then pre-fetch the item. For the DHR case, it implies
keeping the item in memory, because an arrival increases the
likelihood of future requests, since it resets the hazard rate to
its maximum value. After the hazard rate crosses below the
threshold, the item can be evicted from memory.

V. LARGE SCALE ASYMPTOTICS

In order to better understand the performance of the system
in a large scale limit, we now derive a suitable fluid scaling
where the catalog size N → ∞. In order to do so, we have to
incorporate a little more structure into the problem. We begin
by making the following:

Assumption 1: The request processes are independent, and
their inter-arrival time distributions come from a common scale
family, i.e.

F
(i)
0 = F0(λit),

where the base distribution function F0(t) has density f0 and
unit mean. Without loss of generality we will assume that the
intensities are in decreasing order, i.e. λ1 ⩾ · · · ⩾ λN .

In particular, the i−th process has intensity λi, and applying
the definitions (1) and (2), it is easy to show that the following
equalities hold:

F (i)(t) = P
(
−τ

(i)
0 ⩽ t

)
= F (λit); (10a)

η(i)(t) =
f (i)(t)

1− F
(i)
0 (t)

= λiη(λit). (10b)

Let us now define the observed hazard rate random variable,
which is the hazard rate of the current interval, sampled at time
0. More formally:

X(i) = η(i)(−τ
(i)
0 ). (11)

For the base distribution F0, we can compute the distribution
of this random variable X as:

G(x) := P (η(−τ0) ⩽ x) = P
(
−τ0 ∈ η−1([0, x])

)
=

∫
η−1([0,x])

F (dx), (12)

since −τ0 ∼ F .
By resorting to eqs. (10), we have the corresponding scaling

property for G(i):

G(i)(x) := P (X(i) ⩽ x) = P
(
η(i)

(
−τ

(i)
0

)
⩽ x

)
= P

(
η
(
−λiτ

(i)
0

)
⩽ x/λi

)
.

Due to the scaling, −λiτ
(i)
0 ∼ F , the age distribution of the

base process, thus we get:

G(i)(x) = G(x/λi). (13)

To build on our analysis of timer-based policies in the
preceding sections, we make a final assumption:

Assumption 2: The hazard rate function η associated to F0

is continuous and strictly monotone.
In this case, the set η−1([0, x]) in (12) will be an interval.

Since F is a continuous distribution, we have that G is also
continuous.

In what follows, for concreteness we will focus on the
IHR case and the pre-fetching policy, but the analysis extends
analogously to the DHR/caching case.

A. Scaling the family of arrival rates
We will now construct a series of systems, indexed by

N , where each system has N arrival streams or, in other
words, items in its catalog. Denote by {λ(N)

i } the arrival
rates of the system of size N , with the above convention that
λ
(N)
1 ⩾ . . . λ

(N)
N > 0. For each N , this set of intensities can

be interpreted as a discrete distribution on the positive real
line λ > 0, with cumulative distribution function:

LN (λ) =
1

N

N∑
i=1

1{
λ
(N)
i ⩽λ

}. (14)

Our large-scale limit theorems are based on the assumption
that as N → ∞, the above family of discrete distributions of
traffic intensity has a weak limit:

Assumption 3: As N → ∞, the distribution LN ⇒w L, a
fixed distribution, where ⇒w denotes usual weak convergence.
L has no atoms at λ = 0.

This assumption is very general; we explore an important
parametric example that satisfies it in Section VI.



B. Optimal policy asymptotics

We now let N → ∞ and analyze the behavior of the optimal
threshold θ∗N of the N -th system, obtained in Theorem 2 for
the IHR case.

Theorem 4: Consider a family of local memory systems,
indexed by N , with request processes satisfying Assumptions
1–3, in the IHR case. Choose the memory size of the N−th
system as CN = cN , with 0 ⩽ c ⩽ 1 being the fraction of the
catalog that the system is able to store. Define the function:

G∞(θ) :=

∫ ∞

0

G(θ/λ)L(dλ). (15)

If there exists a unique solution to θ∗ satisfying:

G∞(θ∗) = 1− c, (16)

then the sequence of hazard rate thresholds θ∗N defined by (8)
for the N -th system verifies:

θN −→
N→∞

θ∗.

Proof: We begin by rewriting the memory constraint
equation (8) for the optimal timers of the N -th system:

N∑
i=1

F (i)(T ∗
i (θ

∗
N )) = N − CN .

Equivalently, by using that CN = cN and dividing by N :

1

N

N∑
i=1

F (i)(T ∗
i (θ

∗
N )) = 1− c. (17)

Now F (i)(T ∗
i (θ

∗
N )) = P (−τ

(i)
0 ⩽ T ∗

i (θ
∗
N )). Using the

optimality condition (7) for the interior case 0 < T ∗
i < ∞,

we know that η(i)(T ∗
i (θ

∗
N )) = θ∗N . Therefore, applying the

monotonically increasing transformation η(i) to both sides and
using the definition of G(i) (12) we obtain:

F (i)(T ∗
i (θ

∗
N )) = P (−τ

(i)
0 ⩽ T ∗

i (θ
∗
N ))

= P (η(i)(−τ
(i)
0 ) ⩽ θ∗N )

= G(i)(θ∗N ).

Substituting in the left-hand side of (17), and resorting to
the scaling property (13) we get:

1

N

N∑
i=1

F (i)(T ∗
i (θ

∗
N )) =

1

N

N∑
i=1

G

(
θ∗N

λ
(N)
i

)
.

We can now rewrite (17) in terms of the distribution LN as:∫ ∞

0

G(θ∗N/λ)LN (dλ) = 1− c. (18)

Consider the function

GN (θ) :=

∫ ∞

0

G(θ/λ)LN (dλ);

since by the Assumptions, G(·) is a continuous and also
bounded as a distribution function, the weak convergence
LN ⇒w L implies that GN (θ) converges to G∞(θ), pointwise
at each θ.

Observe that GN (θ) and G∞(θ) are themselves distribution
functions in θ, so we can say that GN ⇒w G∞, which implies
(see e.g. Lemma [18, Lemma 21.2]) the pointwise convergence
of quantiles of GN to those of G∞, at points where the latter
are well defined.

By hypothesis G∞ has well-defined (1 − c)-quantile θ∗.
Noting from (18) that θ∗N is the (1 − c)-quantile of GN , we
have the desired result.

C. Asymptotic performance

Theorem 4 shows that in the limit, the optimal policy
behaves as a fixed threshold policy satisfying (16): for large
N , a given item i will be stored in the cache if and only its
hazard rate is higher than θ∗N ≈ θ∗.

Whether a certain request for an item i is a hit or a miss
will thus be determined by the comparison of the threshold
with the value of the hazard rate just prior to the request.
This magnitude is synchronized with requests and must be
computed in terms of the inter-arrival distribution. We now
exploit this remark to obtain an asymptotic performance result
for the miss probability of the system.

Introduce the observed hazard rate upon arrival random
variable, X(i)

0 = ηi(τ
(i)
1 − τ

(i)
0 ), i.e. the composition of the

hazard rate function with the inter-arrival times. Its distribution
for the base process can be computed as follows:

G0(x) := P (X0 ⩽ x) = P (η(τ1 − τ0) ⩽ x) (19)

= P ((τ1 − τ0) ∈ η−1([0, x]) =

∫
η−1([0,x])

F0(dt).

In the IHR case we can further write G0(x) = F0(η
−1(x)).

A basic inequality for this distribution follows from the
definition of the hazard rate:

G0(x) =

∫
η−1([0,x])

f0(t)dt =

∫
{t:η(t)⩽x}

η(t)(1− F0(t))dt

≤ x

∫
R
(1− F0(t))dt = xE[τ1 − τ0] = x. (20)

Using the scaling properties (10), we can derive the following
properties for the i-th process, in the IHR case:

G
(i)
0 (x) = F

(i)
0

(
(η(i))−1(x)

)
= G0(x/λi). (21)

Our asymptotic performance result is now stated. It requires
a stronger condition on the scaling.

Assumption 4: The family of measures LN is uniformly
integrable.

Theorem 5: Consider a family of local memory systems
as before, under Assumptions 1–4. Let PN denote the miss
probability for system N . Then:

PN −→
N→∞

∫ ∞

0

λG0(θ
∗/λ)L(dλ)∫ ∞

0

λL(dλ)

, (22)

where θ∗ is defined by eq. (16).



Proof: Denote by MN the miss rate in the N−th system.
It is given by the optimum cost in (4a):

MN =

N∑
i=1

λ
(N)
i F

(i)
0 (T ∗

i ).

Substituting the optimal timers T ∗
i from Theorem 2 we have

MN =

N∑
i=1

λ
(N)
i F

(i)
0

(
(η(i))−1(θ∗N )

)
=

N∑
i=1

λ
(N)
i G0

(
θ∗N

λ
(N)
i

)
,

where we have used (21). Invoking the distribution LN we
write:

MN

N
=

∫ ∞

0

λG0(θ
∗
N/λ)LN (dλ).

Due to the bound (20), and the convergence of the sequence
θ∗N , the integrand above is uniformly bounded for all N . This,
together with weak convergence yields the limit

MN

N
−→
N→∞

∫ ∞

0

λG0(θ
∗/λ)L(dλ). (23)

Also, note that the total rate λN :=
∑N

i=1 λ
(N)
i satisfies

λN

N
:=

∫ ∞

0

λLN (dλ) −→
N→∞

∫ ∞

0

λL(dλ); (24)

here (only) we have invoked uniform integrability.
The miss probability of system N is given by PN =

MN/λN ; its limit follows from (23) and (24).

VI. PARAMETRIC EXAMPLES AND SIMULATIONS

In this Section we describe some examples using the above
results. We begin with an important parametric family for
the popularity distribution: the generalized Zipf distribution,
commonly used in this setting [11]. In this case, the popularity
of item i is proportional to i−β where β ⩾ 0 is known as the
tail parameter of the Zipf random variable. Values of β ∈ [0, 1]
correspond to heavy tailed popularities. We now show how to
incorporate this model in a way that satisfies Assumption 3.

Example 1 (Zipf popularities scaling): Assume that the
N−th system has the following arrival rates:

λ
(N)
i =

(
N

i

)β

with β ≥ 0 the tail parameter of the Zipf law. Note that, under
this scaling, the less popular object has intensity 1 for all N .
Now, for any λ > 1, we have:

1− LN (λ) =
1

N

N∑
i=1

1{
(N

i )
β
>λ

} =
1

N

N∑
i=1

1{
i< N

λ1/β

}

=
1

N

⌊
N

λ1/β

⌋
−→
N→∞

λ−1/β .

Therefore, since the above convergence is pointwise and the
limit is continuous, LN (λ) ⇒w L(λ) given by:

L(λ) = 1− λ−1/β for λ ≥ 1. (25)

In the limit the popularities follow a standard Pareto distribu-
tion with tail parameter 1/β. If β ⩾ 1, i.e. the popularities
decay fast, L does not have finite mean, resulting from some
objects being extremely most popular than others. If instead
0 < β < 1, where popularities are more homogeneous, L has
finite mean 1/(1−β). For β = 0, the system degenerates into
every object having the same popularity, and thus L is the step
function at λ = 1.

The total arrival rate into the N−th system satisfies:

λN =

N∑
i=1

λ
(N)
i = Nβ

N∑
i=1

1

iβ
=: NβSN (β),

where SN (β) is the generalized harmonic series partial sum.
Using the well known equivalents for this series, we have that:

λN =


O(Nβ) if β > 1,

O(N logN) if β = 1,

O(N) if β < 1.

In particular, with our scaling, the total arrival rate λN → ∞
as N → ∞, albeit at different rates depending on the tail
parameter β.

Example 2 (Uniform arrivals): Using the above model for
traffic intensities, we now analyze a parametric model for the
inter-arrival time distributions, namely a uniform distribution
which has IHR. Under Assumption 1, the base distribution F0

(of mean 1) and its associated age distribution are given by:

F0(t) =

{
t/2 0 < t < 2

1 t ⩾ 2
, F (t) =

{
t− t2

4 0 < t < 2

1 t ⩾ 2
,

(26)
in the positive half line. The associated hazard rate function
is given by:

η(t) =
1

2− t
0 ⩽ t < 2.

In particular, it is continuous and strictly monotone, with range
[1/2,∞). Applying eq. (12) we can compute the observed
hazard rate distribution G as:

G(x) = 1− 1

4x2
, x ⩾

1

2
.

The above functions are depicted in Fig. 5 for reference.
Finally, we can also find the distribution of observed hazard
rates upon arrival, using eq. (19):

G0(x) = F0(η
−1(x)) = 1− 1

2x
, x ⩾

1

2
.

Armed with the above tools, we now compute the asymp-
totic global observed hazard rate distribution from eq. (15):

G∞(x) =

∫ ∞

1

G0

(x
λ

)
L(dλ)

=

∫ ∞

1

G0

(x
λ

) 1

β
λ− 1

β−1dλ.

This integral can be explicitly solved, for any value of β; a
representative case is depicted in Fig. 6. This function enables
us to compute the threshold θ∗ for any desired quantile.



2

1

F0(t)

t 2

1

F (t)

t

2

0.5

η(t)

t 0.5

1
G(x)

x

Fig. 5. Uniform inter-arrival times and associated distributions.

0.5

1

G∞(x)

G(x)

x

Fig. 6. Asymptotic observed hazard rate for Zipf(1/2) popularities and
uniform inter-arrival times.

For β < 1, the family {LN} defined above is uniformly
integrable, and thus (22) holds. In Fig. 7, we plot the numer-
ically computed asymptotic behavior for the miss probability
as a function of β, for a memory size c = 0.1 or 10% of the
catalog. If β ⩾ 1 it is easy to show that PN →N 0, indeed
this happens for the suboptimal static policy [13].

Also shown is the miss probability for: (i) the optimal timer-
based pre-fetching policy for finite N = 10000, C = 1000
computed by explicitly solving Problem 2; (ii) the static policy
(which is also the optimal TTL caching policy for this traffic);
(iii) the classical LRU caching strategy. We highlight the bad
performance of the latter in the case of a regular traffic pattern.

VII. CONCLUSIONS

In this paper, we analyzed the role of the hazard rate
function of the inter-arrival times between requests to a local
memory systems, showing how the shape of the HR crucially
determines the best strategy for memory management. In
particular, we extended the notion of TTL caching to timer
based pre-fetching, which improves performance over well-
known caching policies for more regular traffic patterns. As
we can see from the example we analyzed, for these regular
processes, classical caching can underperform and our new
policy can drastically improve the hit probability.

Several lines of future work remain open: in particular how
to estimate the timers based on previous data, and obtaining
analogues of the classical caching policies that can be applied
for pre-fetching.

ACKNOWLEDGMENTS

The authors would like to thank Prof. B. Hajek for his
insightful inputs in the early stages of this work.

Fig. 7. Miss probability comparison for optimal timer pre-fetching, static
storage and LRU caching. The theoretical bound is computed using eq. (22).

REFERENCES

[1] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO
buffer replacement schemes,” in Proc. of ACM/SIGMETRICS 1990, June
1990, pp. 143–152.

[2] P. Jelenković and A. Radovanović, “Asymptotic insensitivity of least re-
cently used caching to statistical dependency,” in Proc. of IEEE/Infocom
2003, Apr. 2003, pp. 438–447.

[3] P. R. Jelenković and A. Radovanović, “Least-recently-used caching with
dependent requests,” Theoretical computer science, vol. 326, no. 1, pp.
293–327, 2004.

[4] P. R. Jelenković, A. Radovanović, and M. S. Squillante, “Critical sizing
of LRU caches with dependent requests,” Journal of Applied Probability,
vol. 43, no. 4, pp. 1013–1027, 2006.

[5] P. R. Jelenković and A. Radovanović, “The persistent-access-caching
algorithm,” Random Structures & Algorithms, vol. 33, no. 2, pp. 219–
251, 2008.

[6] N. Gast and B. V. Houdt, “Transient and steady-state regime of
a family of list-based cache replacement algorithms,” in Proc. of
ACM/SIGMETRICS 2015, Jun. 2015, pp. 123–136.

[7] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM transactions on networking, vol. 26, no. 2, pp.
737–750, 2018.

[8] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212–231, 2014.

[9] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in Proc. of
IEEE/Infocom 2016, Apr. 2016, pp. 1–9.

[10] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Transactions on Networking, vol. 27, no. 3, pp. 1013–1027, 2019.

[11] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[12] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in Proc. of the 24th International
Teletraffic Congress, 2012, pp. 57–64.

[13] A. Ferragut, I. Rodriguez, and F. Paganini, “Optimizing TTL caches
under heavy tailed demands,” in Proc. of ACM/SIGMETRICS 2016, Jun.
2016, pp. 101–112.

[14] A. Ferragut, I. Rodrı́guez, and F. Paganini, “Optimal timer-based caching
policies for general arrival processes,” Queueing Systems, vol. 88, no.
3–4, pp. 207–241, 2018.

[15] A. Ferragut, M. Carrasco, and F. Paganini, “Timer-based pre-fetching
for increasing hazard rates,” SIGMETRICS Perform. Eval. Rev., vol. 52,
no. 2, pp. 9–11, Sep. 2024.

[16] N. K. Panigrahy, P. Nain, G. Neglia, and D. Towsley, “A new upper
bound on cache hit probability for non-anticipative caching policies,”
ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 7, no. 2–4,
November 2022.

[17] P. Brémaud, Point process calculus in time and space. Springer, 2020.
[18] A. W. van der Vaart, Asymptotic statistics, ser. Camb. Ser. Stat. Probab.

Math. Cambridge: Cambridge Univ. Press, 1998, vol. 3.


