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Abstract—This paper considers the problem of allocating ex-
change rates in peer-to-peer dissemination, which must consider
the dual objectives of throughput efficiency and reciprocity
between peers, the latter essential to cooperation incentives. This
question has been studied in prior research for wired networks
under an upload constraint, where the focus is on achieving
reciprocity through decentralized peer interactions. We consider
here a wireless network substrate, for which link capacities are
non-uniform according to the peering choice, and exchanges may
be subject to interference. A convex optimization problem is
formulated that trades off efficiency and reciprocity, and various
schemes are investigated to achieve a decentralized solution.

I. INTRODUCTION

Peer-to-peer (P2P) file sharing networks constitute a power-

ful method for content dissemination in data networks, based

on the principle that participating agents are simultaneously

clients and servers of a file of common interest, broken up in

pieces. While a few servers (“seeders”) are required to sustain

the system, the bulk of the capacity can be provided by the

client/servers (“leechers”), whose number scales with demand.

The main domain of application of P2P has been the global

Internet, where most peers sit behind wired access links. In

this context, we highlight two main lines of mathematical

research. One concerns the dynamics of peer populations,

which has been tackled by queueing theory methods [17],

[18], [8] as well as fluid differential equation models [13],

[12]. These models make assumptions on the service provided

by the P2P sharing mechanism, which constitutes the second

area of active investigation. Such resource allocation depends

on microscopic peer exchange rules, see [7] for a high-level

discussion; in particular, a key element are the reciprocity

mechanisms embedded in P2P protocols to avoid free-riding,

such as BitTorrent’s tit-for-tat [5]. More amenable to analytical

studies is an alternative proportional reciprocity mechanism,

studied in [17] and implemented in [11]; the resulting resource

allocation is analyzed mathematically in [16], [20].

The above work idealizes the network to capacity con-

straints in access bandwidth, a suitable assumption for the

wired Internet. Far less is known about peer-to-peer perfor-

mance in other substrates, such as wireless networks. There

has been work on epidemic approaches to content dissemina-

tion in such networks (e.g. [15]), but here the capacity issue is

ignored: exchanges are a one-shot interaction between nodes.

In this paper our interest is in a set of nodes who engage in the

dissemination of content over a long period, where the wireless

substrate imposes different physical capacities for different

links, and links may interfere. There is ample literature on

resource allocation in such networks from the network utility

maximization perspective (see e.g. [4]); here efficiency and

fairness between sending flows is considered. This is, however,

different from the send/receive reciprocity sought here.

The paper is organized as follows. In Section II we set up a

general framework for studying efficiency and a convex mea-

sure of reciprocity in a P2P network. Optimizing such measure

in the wired case was studied in [20]; results are reviewed in

Section III. In Section IV we introduce one aspect of the wire-

less substrate: the fact that outgoing links from each peer will

have a non-uniform capacity according to the destination. This

introduces an efficiency/reciprocity tradeoff, which is explored

by examples, and formalized in terms of a convex optimization

problem. Decentralized solutions are devised, which generalize

those in the wired case, and are tested in simulation examples.

In Section V we tackle the additional issue of link interference.

A formalism is introduced to cast our efficiency/reciprocity

optimization in this setting, highlighting general properties of

the solution. Decentralization is far more challenging here;

for a CSMA-type substrate we pursue our tradeoff through a

stochastic optimization method similar to [9]. While efficiency

is naturally included, reciprocity measures are harder to adapt;

we outline a proposal in this direction, deferring details to the

thesis [21]. Conclusions are given in Section VI.

II. EFFICIENCY AND RECIPROCITY IN P2P SHARING

We consider a fixed population of N peers who engage

in bilateral exchange of information1. Their connectivity is

specified by an adjacency matrix A = (aij), where aii = 0 and

aij = 1 when i can send data to j. A is assumed symmetric,

and with no rows of zeros (no disconnected peers).

Define a resource sharing matrix Z ∈ R
N×N
+ in which zij

represents the offered throughput from peer i to peer j. Z is

constrained by connectivity, i.e. it must satisfy

zij ≥ 0, zij = 0 if aij = 0. (1)

Z will also be subject to bandwidth constraints, of a nature

depending on the network substrate: postponing this question,

we refer to a set Z of feasible allocation matrices.

1We focus here only on the leechers, who both send and receive data.



The aggregate sent and received rates per peer are

si(Z) =
∑

j

zij ∀i; rj(Z) =
∑

i

zij ∀j. (2)

In matrix form, we can write: Z1 = s, 1
TZ = rT , where

s, r,1 ∈ R
N are interpreted as column vectors, the latter being

the vector of ones, and T denotes transpose.

We now proceed to specify the desirable objectives on the

resource sharing matrix Z ∈ Z . A first natural objective is the

total rate of the exchange, obtained by

R(Z) =
∑

i,j

zij =
∑

i

si =
∑

j

rj . (3)

Maximizing this quantity would lead to the most efficient

use of the network. This objective is however insufficient

for peer-to-peer networks; it may happen that the maximum

rate allocation leaves a peer receiving no data, which is not

compatible with a bidirectional exchange. Instead, to provide

proper incentives for cooperation between peers it is desirable

to have approximate parity between the rates a peer sends and

receives. Such is the fairness criterion chosen by [7], where

tradeoffs with efficiency were shown.

We formalize this tradeoff further by using a quantitative

measure of discrepancy between the upload and download rate

vectors, the Kullback-Leibler (KL) divergence (see [2], [6])

D(s||r) :=
∑

j

sj log

(
sj
rj

)

, (4)

a jointly convex function of both vectors. Since s and r have

the same sum (R(Z) in (3)), their KL divergence is always

non-negative [6] and only zero if s = r, i.e. if every peer

receives as much throughput as it provides to the network.

Therefore, an allocation matrix Z with small D(s||r)
achieves an approximate level of reciprocity between a peer

and the rest of the swarm. An alternative, peerwise notion of

reciprocity is to require that peers i and j share equal amounts

of bandwidth, i.e. that Z is symmetric. Approximate peerwise

reciprocity can be measured by the KL divergence between

matrices

D(Z||ZT ) :=
∑

i,j

zij log

(
zij
zji

)

. (5)

The following Lemma formalizes the intuitive fact that the

latter notion of reciprocity is more restrictive than the first:

Lemma 1. D(Z||ZT ) ≥ D(s||r) for any allocation Z , and

equality holds if and only if
zij
zji

= si
ri

for any i, j with aij = 1.

Proof. The result follows from the log-sum inequality (see

[6]), which for each fixed i implies

∑

j

zij log

(
zij
zji

)

≥
(∑

j

zij

)

log

(∑

j zij
∑

j zji

)

= si log

(
si
ri

)

.

Adding over i gives the desired bound. Conditions for equality

also follow from those in [6] .

The question of interest is, under the physical constraints of

each specific network scenario, what is a suitable tradeoff be-

tween efficiency and reciprocity, and whether such allocation

can be found through decentralized peer interactions.

III. WIRED NETWORKS WITH UPLOAD CONSTRAINT

In this section we provide background on prior results for

this question in the case of a wired P2P network, under the

usual assumption that the only bottleneck is the overall upload

bandwidth µi from each peer i. In this case we can characterize

the allowable resource sharing matrices as

Z =
{

Z ∈ R
N×N
+ satisfying (1),

∑

j

zij = µi ∀i
}

. (6)

Here the vector s of total sending rates is fixed at µ = (µi),
and the overall transfer rate is R(Z) =

∑

i µi for all Z ∈ Z:

all allowable allocations are equally efficient.2

Therefore in this case there is no tradeoff, the remaining

objective of reciprocity can stated in terms of the following

convex optimization:

Problem 1. Given A and µ, find Z ∈ Z defined by (6) that

minimizes D(µ||r(Z)).

We note again that if r = µ is feasible within Z , it

will be optimal; otherwise we are seeking a certain kind of

approximation. An equivalent formulation (since µ is fixed) is

max
Z

∑

j

µj log (rj(Z)) , subject to Z ∈ Z.

In this version it can be interpreted as an instance of (weighted)

proportional fairness, extensively studied in Internet resource

allocation [10]. Here, we choose each node’s weight as its own

contribution to the network.

In our recent work [20] we have characterized the set of

solutions to Problem 1 through Lagrangian duality, based on

a stream of related literature [14], [16]. All solutions Z∗

to Problem 1 correspond to a unique vector r∗ = r(Z∗),
characterized by a unique set of multipliers or prices p∗i > 0,

i = 1, . . .N , such that:

• r∗i = p∗iµi for every peer. So p∗i defines the proportional

reciprocity the peer receives from the network.

• z∗ji > 0 only for j ∈ argmin{p∗j : aji = 1}; furthermore,

in this case p∗i = [p∗j ]
−1. So at optimality a peer can only

receive/send rate to another of inverse price.

Also in [20] is a detailed study of a prominent decentralized

algorithm for reciprocity, proposed in [17], [16], [11]:

zij(t+ 1) = µi

zji(t)

ri(t)
. (7)

In this proportional reciprocity scheme, peer i allocates to

peer j the fraction of its bandwidth µi equal to the proportion

of bandwidth received from peer j in the previous step. In

matrix form we write Z(t+ 1) = R[Z(t)] by introducing the

reciprocity mapping R[Z] := diag (µi/ri(Z)) · ZT .

2One could, instead, define Z by an inequality constraint, but this deliberate
inefficiency would serve no purpose, and will not be pursued.



Algorithm (7) is closely related to the so-called Sinkhorn

procedure for matrix row and column renormalization [14]. A

summary of its main properties is:

• Any solution Z∗ of Problem 1 is a fixed point of R2,

square of the reciprocity mapping. Furthermore Z+ :=
R[Z∗] is also a solution of Problem 1.

• In general, Z+ need not be equal to Z∗, i.e. Z∗ need not

be a fixed point of the map R itself. However the point

Z̃ = Z∗+Z+

2 is another optimum and a fixed point of R.

• In the special case where r = µ is feasible, there is always

a symmetric optimal allocation.

The most important fact is the following convergence result.

Theorem 2 ([16], [20]). Given an initial condition Z(0) ∈ Z
with zij(0) > 0 whenever aij = 1, the sequence generated

by (7) satisfies limk→∞ Z(2k) = Z∗, limk→∞ Z(2k+1) =
Z+, where both Z∗ and Z+ are optimal points of Problem 1.

Furthermore, r(Z(t)) converges to the optimal rate vector r∗.

Thus, provided initially all exchange options are explored,

the even and odd subsequences converge to (possibly different)

optimal allocations, and the fairness objective is achieved.

We finish the section by highlighting an additional fact: for

any fixed point Z̃ of R, we have

z̃ij =
µi

r̃i
z̃ji =⇒

z̃ij
z̃ji

=
µi

r̃i
∀j,

the condition for equality in Lemma 1. We conclude that

D(Z̃||Z̃T ) = D(µ||r̃). Since as mentioned before there is

always a fixed point of R among the optima of Problem 1,

we have the following consequence:

Corollary 3. The minimum of D(Z||ZT ) under Z ∈ Z
defined by (6) has the same value as Problem 1, and a subset

of its solutions.

In other words, even if our fairness objective only concerns

the global reciprocity each peer receives from the network,

in this wired network case it is equivalent to optimizing a

measure of peerwise reciprocity.

IV. WIRELESS NETWORKS: MULTI-RATE PHYSICAL

LAYERS

We now move to consider a wireless network substrate, in

which peers occupy certain spatial locations, connected by

wireless channels. There are at least two differences between

this situation and the wired case:

1) Wireless channels often adapt their rate to physical layer

parameters such as signal-to-noise ratio, affected by

distance. As a result, the sending rate will no longer

be agnostic to the choice of receiving peer.

2) Wireless links may interfere with each other.

In this section we focus on the first issue, postponing

the second. So for now we assume all peers have separate

transmission channels, which they can allocate independently.

Given two peers i and j, let µij denote the maximum rate at

which peer i can transmit to j, if it chose only this destination.

By time-sharing between destinations the peer can achieve

the sending rates zij = πijµij where
∑

j πij = 1. Here πij is

the proportion of time devoted by peer i to neighbor j, again

we assume no inefficient idle time. This leads to the following

set of achievable rate allocations:

Z =
{

Z ∈ R
N×N
+ satisfying (1),

∑

j

zij
µij

= 1 ∀i
}

. (8)

Note that this is a generalization of (6), which corresponds to

the special case µij = µi for all j, where the channel from

peer i has the same quality for all destinations.

In general the matrix M = (µij) need not be symmetric:

differences in peer channel qualities (e.g. transmission power)

may cause µij 6= µji; indeed asymmetry was already present

in the wired scenario.

We now look at a motivating example.

Example 1. Consider a wireless network with 3 peers which

are all neighbors, and the matrix of maximum rates

M =

[
0 2 2
2 0 1
2 1 0

]

.

Here maximum rates are symmetric, but not uniform among

outgoing links. We specify the time-sharing matrix Π and the

resulting rate allocation Z:

Π =

[
0 p 1− p
q 0 1− q
v 1− v 0

]

, Z =

[
0 2p 2− 2p
2q 0 1− q
2v 1− v 0

]

.

(9)

The set Z of allowable allocations corresponds to all above

matrices Z where p, q, v vary in the interval [0, 1].
The total rate is

∑

i,j zij = 4 + q + v, so efficiency is

no longer agnostic to the peering choice: the set of efficient

allocations is

Zeff =

{

Z =

[
0 2p 2− 2p
2 0 0
2 0 0

]

, p ∈ [0, 1]

}

.

Also note that there are no symmetric matrices in Zeff , even

though M is symmetric.

We now look at reciprocity, computing the vectors

s(Z) =

[
2

1 + q
1 + v

]

, r(Z) =

[
2(q + v)
2p+ 1− v
3− 2p− q

]

.

It is easily checked that in this case s = r is feasible (thus

minimizing D(s||r)), achieved for p = 1
2 and q + v = 1.

Therefore global reciprocity is reached by the allocations in

Zrec =

{

Z =

[
0 1 1
2q 0 1− q

2(1− q) q 0

]

, q ∈ [0, 1]

}

.

Among them, one matrix (for q = 1
2 ) is symmetric, thus

achieving peerwise reciprocity.

The main observation is that Zeff ∩ Zrec = ∅, one cannot

satisfy both objectives simultaneously.



The example shows that there is a tradeoff between effi-

ciency and reciprocity in wireless P2P settings. This suggests

managing the tradeoff through a combined cost that contem-

plates both factors, such as

J(Z) = D(s||r) − αR(Z) =
∑

i

si

[

log

(
si
ri

)

− α

]

. (10)

Here the parameter α > 0 weighs the importance assigned to

efficiency. Note that J(Z) is a convex function of Z , so its

minimization over Z is a convex optimization problem.

Problem 2. Given A and M , find Z ∈ Z defined by (8) that

minimizes J(Z).

Example 2 (Continuation of Example 1). We minimize the

cost J(Z) over matrices Z(p, q, v) as in (9). We argue that it

suffices to confine our search to p = 1
2 , q = v. This is because

for any point (p, q, v) we can find another point (p′, q′, v′) =
(1−p, v, q) with the same efficiency and reciprocity: R(Z ′) =
R(Z), and D(s′||r′) = D(s||r), in fact s′, r′ coincide with s, r
modulo a permutation of the last two components. Therefore

J(Z ′) = J(Z). Invoking convexity of J , it can be no larger

at the point (Z + Z ′)/2, which corresponds to p = 1
2 , q = v.

We thus consider the scalar valued function in q ∈ [0, 1]:

ϕ(q) = J(Z(1/2, q, q))

= 2 log

(
1

2q

)

+ 2(1 + q) log

(
1 + q

2− q

)

− α(4 + 2q).

Minimizing ϕ(q) does not yield a closed form solution, but we

find that the optimal q∗ satisfies
{

1
2 < q∗ < 1 if 0 < α < 2 + log(2);

q∗ = 1 if α > 2 + log(2).

Thus if the weight α is large we just get the optimal efficiency

solution. For moderate values of α we have a compromise with

reciprocity which, however, always yields

Z(q∗) =

[
0 1 1
2q∗ 0 1− q∗

2q∗ 1− q∗ 0

]

which is non-symmetric and with s∗ 6= r∗ (since q∗ > 1
2 ).

Returning to the general case, we may attempt to solve

Problem 2 through duality, which was a powerful method in

the wired network situation. Writing the Lagrangian

L(Z, λ) = J(Z) +
∑

i

λi

(∑

j

zij
µij

− 1
)

(11)

leads after some analysis to the saddle point condition:

λ∗
i = max

{j:aij=1}

[

− log

(
s∗i
r∗i

)

+ α− 1 +
s∗j
r∗j

]

µij .

In comparison to the conditions reviewed in Section III for

the wired case (µij = µi) we do not have here a clean

interpretation for the optimal multipliers as reciprocity factors.

And the preceding coupled transcendental equation does not

suggest an immediate path for decentralization.

This motivates us to consider an alternative convex opti-

mization problem:

Problem 3. Given A and M , find Z ∈ Z defined by (8) that

minimizes the “energy”

E(Z) = D(Z||ZT )− αR(Z)

=
∑

i,j

zij

[

log

(
zij
zji

)

− α

]

. (12)

In the wired case of Section III, it follows from Corollary 3

that the minimum of E(Z) coincides with that of J(Z) in (10)

(in that case the throughput term is constant). In the wireless

situation this is no longer true. Still, this alternative of trading

off peerwise reciprocity with efficiency is a valid option to

achieve our tradeoff in a decentralized way, and even leads to

new interpretations for the wired case, as studied below.

A. Best response optimization of local energy

To pursue a decentralized solution we first write the energy

cost of (12) as

E(Z) =
∑

i

Ei(Zi,Z−i)
︷ ︸︸ ︷
∑

j

zij

[

log

(
zij
zji

)

− α

]

.

Here we are denoting by Zi the i-th row of Z (i.e. the upload

allocations of peer i), and we using a game-theoretic notation

in which Z−i denotes allocations of all other peers. An idea

for pursuing a decentralized minimization is for each peer to

compute the “best response” strategy that minimizes its portion

of the cost, given the rest as fixed. This is now investigated.

Problem 4. For fixed i, and given zji for all j, minimize

Ei(Zi, Z−i) over Zi = (zij), subject to
∑

j

zij
µij

= 1. (13)

To solve this problem we invoke once more a Lagrangian

with one multiplier λi for the constraint:

Li(Zi, Z−i, λi) =
∑

j

zij

[

log

(
zij
zji

)

− α+
λi

µij

]

− λi.

To minimize over Zi for fixed λi (and Z−i), we impose

∂Li

∂zij
= log

(
zij
zji

)

− α+
λi

µij

+ 1 = 0,

whose solution gives the reciprocity rule

zij = zjie
α−1−

λi
µij . (14)

The value of λi can be found by imposing the constraint (13).

Remark 1. An important observation is that in the wired case

(µij = µi ∀j) we obtain in (14) zij = κizji for all j, namely

a proportional allocation of upload rates as a function of rates

received. After imposing the constraint we find κi =
µi

ri
and

therefore this solution is precisely the proportional reciprocity

iteration of (7). We have thus re-interpreted this algorithm as

a best response iteration for the energy cost in (12).



Motivated by its good properties in the wired case, we test

this best response generalization. There are two variants:

• A “Jacobi”-type iteration where all Zi are updated simul-

taneously following (14). This is indeed what was done

in (7) for the wired case.

• A “Gauss-Seidel”-type algorithm where rows Zi are

updated one-at-a-time.

Example 3. We explore the properties of our algorithms using

Matlab simulations, for a 3-node network with maximal rates

µ12 = µ21 = 3;µ13 = µ31 = 2;µ23 = µ32 = 1.

Figure 1 shows the trajectories of the energy cost E(Z) in

(12) when Z(t) is updated using the best-response approach

in both variants, Jacobi and Gauss-Seidel; the third “Global

Gauss Seidel” algorithm will be described later. We see

that the best response algorithms3 are unable to reach the

optimum of Problem 3, which is not surprising. Indeed, even

in the wired case the corresponding Jacobi iteration (7) does

not necessarily converge to optimality in D(Z||ZT ), it can

oscillate between two suboptimal points.

0 2 4 6 8 10 12 14 16
−7

−6

−5

−4

−3

−2

−1

0
E(Z(t))

t (iterations)

 

 

Best response (Jacobi)

Best response (GS)

Global Gauss−Seidel

Optimum

Figure 1. Evolution of E(Z) for different algorithms.

Recall that (7) did have the property of reaching the optimal

global reciprocity D(s||r). This suggests looking here at its

counterpart, the cost J(Z) in (10). However, for this metric the

best-response iteration does not perform well: Figure 2 shows

that neither version is able to minimize J(Z) as desired.

B. Gauss-Seidel optimization of global energy

In view of the preceding limitations of the best response

method, for the wireless case another approach is required. We

propose here an alternative that better exploits the underlying

potential energy: a Gauss-Seidel algorithm for the global cost

E(Z), minimized one row Zi a at time. Differently from the

previous case, the new algorithm considers the effect of Zi

not only in Ei(Zi, Z−i) but also its influence on Ej , j 6= i.
This is done as follows. For each fixed i, write the cost in

Problem 3 as E(Z) = Ẽi(Zi, Z−i) + Ẽ−i(Z−i), where all

3Often in game theory the term best-response dynamics refers to a local
motion along the gradient ∂Zi

Ei(Zi, Z−i); these may converge in certain
potential games. Here, however, we are considering a one-shot optimization
over Zi, which has much faster dynamics but weaker guarantees.
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Figure 2. Evolution of J(Z) for different algorithms.

terms involving Zi are included in Ẽi, and the function Ẽ−i

depends only on the allocations of other peers. Specifically,

Ẽi(Zi, Z−i) =
∑

j:aij=1

[

zij log

(
zij
zji

)

+ zji log

(
zji
zij

)

− αzij

]

= D(Zi||Z
T
i ) +D(ZT

i ||Zi)− α1TZi, (15)

where ZT
i is the vector (zji)j 6=i, transpose of the i-th column

of ZT . One step in the global Gauss Seidel algorithm is given

by:

Problem 5. For fixed i, and given ZT
i minimize Ẽi(Zi, Z−i)

over Zi = (zij){j:aij=1}, subject to (13).

This step requires the same information as the best-response

version, namely the rates zji received from other peers, which

is the basic assumption of any reciprocity scheme. Both can be

computed numerically using convex optimization techniques.

Note that given Z−i, the function Ẽi(Zi, Z−i) is strictly

convex in Zi, thus Problem 5 has a unique solution Zi.

Clearly, the Gauss-Seidel iteration will compute a sequence

Z(t) with monotonically decreasing values of E(Z(t)); will

it reach optimality? In the remaining trajectory of Figure 1

we show a simulation for Example 3, which indeed exhibits

convergence to the optimum; this behavior is robust to initial

conditions. We believe this is a quite general situation:

Conjecture 4. Given an initial condition Z(0) ∈ Z with

zij(0) > 0 whenever aij = 1, let Z(t) be generated by

successive steps of Problem 5, one row at a time. Then any

limit point Z∗ of Z(t) is a global optimum of Problem 3.

In terms of proving this conjecture, we are “almost” under

the conditions of a standard convergence result in [1, Section

3.3.5]. This reference considers a Gauss-Seidel optimization

of a smooth convex cost F (x1, x2, . . . , xn) successively in

each xi ∈ Xi (the global domain is a Cartesian product), and

assumes strict convexity on any single variable when the others

are fixed. These conditions hold here if one takes each variable

to be the row Zi; in particular the domain is a Cartesian

product since constraints (13) are decoupled in i.



The only technical complication is that the above requires

smoothness in the entire domain, and here we have potential

pathologies at the boundaries zij = 0, zji = 0, where our cost

is not well-defined or tends to infinity. Requiring that Z(0)
uses initially all available peering options, the initial problem

is well defined and it is not hard to see that this property will

be preserved, zij(t) > 0 whenever aij = 1: Problem 5 will

avoid the infinite cost (15) at the boundary. However in the

limit the boundary could be approached, yielding z∗ij = 0 (and

necessarily, z∗ji = 0) for a pair of neighbors; indeed this may

be the optimal allocation, avoiding the use of a very inefficient

link. Dealing with this case goes beyond the confines of [1],

hence we only state a conjecture. We illustrate this situation

with another simulation Example.

Example 4. Consider a line network of 4 nodes, with maximal

rate and resource sharing matrices M , Z below (p, q ∈ [0, 1]):

M =






0 2 0 0
2 0 1 0
0 1 0 2
0 0 2 0




 ; Z =






0 2 0 0
2p 0 1− p 0
0 1− q 0 2q
0 0 2 0




 ,

A simple analysis reveals that for any α > 0 the optimal

energy is achieved at p = q = 1, i.e. it is optimal not to use

the links between peers 2 and 3. Starting our Gauss-Seidel

algorithm from a random initial condition that uses all links,

we observe convergence. Indeed after 5 rounds of updates the

matrix is already using values of p and q of the order of

1− 10−4, indicating the undesirable link is being turned off.

While we have yet to acquire extensive experience with

this algorithm, in our trials so far we have observed very fast

convergence to optimality in terms of number of iterations.

Although each iteration involves a convex program, the overall

performance is quite promising.

Remark 2. We are not claiming that the alternative cost J(Z)
could be also minimized by this algorithm, indeed Figure

2 shows a small but nonzero gap, reflecting a difference

between D(Z||ZT ) and D(s||r) at the convergence point. In

the wireless case, the equality conditions in Lemma 1 may not

hold at the optimum of Problem 3.

V. INTERFERENCE AND MEDIUM ACCESS CONTROL

We now consider a second aspect characteristic of wireless

local area networks: the use of a shared medium gives rise

to interference, preempting certain links from being activated

simultaneously. A typical case is when a common wireless

channel is used in the network, so nodes interfere with

all others within their range. Thus, transmissions must be

regulated to avoid interference either by centralized scheduling

or by decentralized medium access control.

Interference can generally be characterized through the no-

tion of an independent set, a subset of links which are allowed

to transmit simultaneously. Consistently with our method of

analysis, we will represent sets of active links through an

N × N matrix X , such that xij = 1 if link i to j is active,

xij = 0 otherwise. In particular we impose the hard zeros of

the neighborhood structure, xij = 0 whenever aij = 0. We

denote by X ⊂ {0, 1}N×N the set of matrices that correspond

to all independent sets of links.

At any time instant, only one of such configurations can

be active4. As in the previous section we introduce time-

sharing among configurations to achieve a richer mix of

transmissions. Let π(X) denote the probability (fraction of

time) that configuration X is active, with
∑

X∈X π(X) = 1.

Then

Π =
∑

X∈X

π(X) ·X

is the matrix of fractions of time πij each link is activated. Let

P denote the set of all possible such Π matrices, for different

choices of time share distributions π(X). Finally, for each link

we introduce the maximum transmission rate µij ; the effective

transmission rate at the link is zij = πijµij as before. In matrix

form Z = M ◦Π (componentwise, Hadamard product); again

Z is the resulting set of possible allocation matrices. We note

the following general properties.

• P is the convex hull of X , and is thus convex.

• Z is also convex.

Remark 3. We can recast the situation of Section IV in this

more general context. In that case the only interfering links

are those outgoing from the same peer i, who can only talk to

one other peer at once. So our set X is made of matrices

with a single “1” per row, of the structure defined by A.

The corresponding set P are the row-stochastic matrices of

structure A, and the set Z coincides with the one in (8).

Our objective is, as before, to study tradeoffs between

efficiency and reciprocity within the set Z of allowable file-

sharing matrices. A natural proposal is to minimize a convex

function such as J(Z) in (10) or E(Z) in (12) over Z , which

are convex optimization problems. The challenge, as always,

is to achieve this without centralized computation.

A. Symmetry in allocations

The class X of independent set matrices is said to be

symmetric if X ∈ X =⇒ XT ∈ X ; i.e. reversing all peer

transmissions does not introduce interference. Note that:

• This does not mean the matrices X themselves are

symmetric; links (i, j) and (j, i) will in many situations

not be active at once.

• The structure of Section IV is not symmetric. For instance

in Example 1 we can have links 1-3 and 2-3 active at

once, but not the other way round.

• If X is symmetric (closed under transposition), then so

is its convex hull P .

An important case of a symmetric class X occurs in the 802.11

(WiFi) standard when the request-to-send/clear-to-send option

is activated. Here links (i, j) and (j, i) cannot be on at once.

Now, activating a link (i, j) requires a free medium (measured

by carrier-sense), and a bidirectional (RTS/CTS) handshake

4It is natural to allow inefficient configurations (non-maximal independent
sets) due to the difficulty of orchestrating such transmissions among nodes.



between nodes, which establishes that both the forward and

backward links are free of interference. In that case, if xij =
1, xji = 0 is allowed, so is xij = 0, xji = 1, with the rest

unchanged. This is a stronger condition than symmetry of X .

The following result concerns optimal allocations for sym-

metric interference sets under the (restrictive) condition of

symmetric maximal rates.

Proposition 5. If X is symmetric, and M = (µij) = MT ,

then Z is a symmetric set, and the optimum of E(Z) in (12)

is achieved at a symmetric matrix (Z = ZT ).

Proof. ZT = (M ◦Π)T = MT ◦ΠT = M ◦ΠT , so symmetry

of Z follows from that of P . In addition we observe that

E(Z) = E(ZT ), since R(Z) = R(ZT ) and

D(Z||ZT ) =
∑

i>j

zij log

(
zij
zji

)

+zji log

(
zji
zij

)

= D(ZT ||Z).

Then if Z is an optimal allocation, so is ZT and by convexity

the symmetric matrix 1
2 (Z + ZT ) must also be optimal.

B. A Markov chain approach to optimizing efficiency

The optimization of the energy E(Z) over Z is a convex

program, but faces the difficulty that the domain description

is not easily decentralized; moreover, even a “central planner”

with global information would have to deal with large number

of vertices in the polytope Z . For this reason we explore here

a stochastic optimization alternative (termed “Gibbs sampler”

[3]): construct a Markov chain whose stationary distribution

concentrates around configurations of minimum energy. Inter-

estingly, this approach has been shown to yield decentralized

strategies for interference-constrained wireless networks [9].

We pursue this idea in our context, first looking at efficiency

alone. Define a continuous time Markov chain in the space of

configurations X , with transition rates

q(X,X + eij) = W0 exp
(µij

T

)

1{X+eij∈X} (16)

q(X,X − eij) = 1{X−eij∈X} (17)

Here eij denotes the matrix with a single ‘1’ in entry (i, j),
so transitions only add one new link or turn off an existing

one. The parameter W0 reflects the aggressiveness to occupy

the medium, associated in practice with the length of idle time

slots. µij is as usual the link capacity, so we are exponentially

favoring turning on faster links; this is moderated by the global

“temperature” parameter T . Transitions that turn off a link

have common rate equal to unity, which sets the global time

scale. We take W0 = 1 below, see [21] for the general case.

Proposition 6. The Markov chain defined by (16)-(17) is time

reversible and has invariant distribution (for W0 = 1)

πT (X) =
exp

(
1
T

∑

ij xijµij

)

CT

, (18)

where CT is a normalizing constant.

Proof. It suffices to show that the given πT verifies the

detailed balance equations

πT (X)q(X,X + eij) = πT (X + eij)q(X + eij , X)

or equivalently

πT (X + eij)

πT (X)
= exp

(µij

T

)

=
q(X,X + eij)

q(X + eij , X)
.

Noting that
∑

ij xijµij = R(X ◦M) is the total throughput

of configuration X , we see that the probability distribution in

(18) is concentrated on the most efficient configurations. This

effect becomes more dramatic as T → 0 (at the expense of a

longer time to reach steady state).

C. Reciprocity in the Markov approach

As argued before, however, in a P2P setting we are not

satisfied with efficiency, and seek some measure of reciprocity

as well. Since our energy E(Z) in (12) reflects this, we could

aim for a steady-state distribution where the exponent R(X ◦
M) in (18) is replaced by −E(X ◦M).

A first difficulty arises with our reciprocity measure: since

it is common (e.g. in the WiFi case discussed) for links

(i, j) and (j, i) to interfere, the KL divergence would be

D(Z||ZT ) = ∞ for Z = X◦M , rendering our energy useless.

KL divergence is well adapted to motion in the interior of the

feasible set, as was highlighted in Section IV; but not for

random motion along its boundary as proposed here.

In our earlier work on the Gibbs sampler for wired P2P

networks [19], [20], an alternative quadratic measure was used

to impose peerwise reciprocity:

‖Z − ZT ‖2F =
∑

ij

(zij − zji)
2. (19)

But even if this latter quadratic measure does not blow up, it

is still of limited use in this situation. Consider again the case

where links (i, j) and (j, i) interfere, then Z = X ◦ M and

its transpose ZT are orthogonal matrices with the Frobenius

inner product inherent in (19), for any X ∈ X . So

‖Z − ZT ‖2F = ‖Z‖2F + ‖ZT‖2F = 2
∑

ij

µ2
ijxij .

This quantity rewards efficiency (in a quadratic way) rather

than any form of reciprocity.

The underlying difficulty is that peerwise reciprocity in this

case cannot be measured by the current configuration, since

necessarily there will be mutual imbalance at any given time.

We need more memory in the system, keeping track of “past

performance” as a way of guiding our reciprocity dynamics.

An approach in this direction was proposed in the thesis

[21]. Peers maintain an aggregate discrepancy measure

dij(t) =

∫ t

0

[zij(τ)− zji(τ)]dτ, (20)

and use it to modulate the transitions of the Markov chain.



In particular, the transition rate in (16) is modified to

q(X,X + eij) = W0 exp
(µij

T
− βdij(t)

)

1{X+eij∈X},

(21)

where β > 0. This discourages opening connections to peers

who “owe” reciprocity bandwidth; furthermore, the integral

action present in (20) means the dij(t) will not stabilize unless

there is symmetry between Z and ZT in a mean sense.

While analyzing such time-varying stochastic dynamics

seems hard, some conclusions are obtained in [21] by assum-

ing a separation of time-scales, where dij varies slowly with

respect to the Markov dynamics. In particular:

• For fixed dij , the Markov chain is assumed to reach its

stationary distribution, which for W0 = 1 takes the form

π(X) =

exp
(
∑

ij

xij

(
µij

T
− αdij

))

CT

.

• The expected rates E(Z) are computed in steady-state,

and used to drive a deterministic dynamics of the form

(20). An equilibrium with strong reciprocity Z∗ = (Z∗)T

and rewarding efficiency is found. Its global stability is

established through Lyapunov methods.

The thesis [21] also contains Matlab simulations, exhibiting

the performance of this method in terms of reciprocity and

efficiency. The effect on temperature on connection diversity

is also investigated. Some limitations are noted:

(i) One concern is the long convergence time (thousands

of iterations reported in [21]), consistent with the slow-

scale analysis available. For this approach to be practical

one must imagine that the Markov dynamics replaces

the standard 802.11 medium access, and thus works at

the millisecond scale, whereas reciprocity factors dij are

updated at the second scale as is standard practice in P2P.

(ii) The method enforces strong peerwise reciprocity over

time, with efficiency a secondary objective. If transmis-

sion rates are symmetric this is justified by Proposition 5,

otherwise a more gradual tradeoff seems more adequate.

In this regard, it appears one could overcome both limitations

with transition rates of the form (21), but where the discrep-

ancy factors dij are computed based on the last few (say L)

exchanges. Formally, this means the Markov state is given by

the recent configurations (X(t), X(t−1), . . . , X(t−L)); this

unfortunately does not yield a reversible Markov chain. So

while it may behave well in practice, with the parameter L
serving as a knob for a more gradual efficiency-reciprocity

tradeoff, analytical studies do not appear straightforward.

VI. CONCLUSION

In this paper we have investigated the dual objectives

of efficiency and reciprocity in P2P networks, successively

incorporating features of a wireless substrate: multiple-rate

physical layers and interference. In the first case, we have

developed a decentralized reciprocity mechanism that opti-

mizes a tradeoff between overall throughput and peerwise KL

divergence; while some details of the proof are pending, we

have strong evidence of a fast convergence to optimality. In

the interference case, decentralization was pursued through

a stochastic algorithm that regulates multiple access control

(CSMA, under CTS/RTS) by rewarding efficiency and penal-

izing imbalance when opening connections. We presented a

summary of analytical results are available in [21], and laid

out a suggestion for future investigations.
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