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Proportional fairness for EV charging in overload
Martin Zeballos, Andres Ferragut and Fernando Paganini, Fellow, IEEE

Abstract—This paper studies a charging facility for Electrical
Vehicles (EVs) at a parking garage, under the assumption that
the infrastructure has a limited power capacity. In situations of
overload, scheduling decisions must be made on which EVs to
charge, possibly taking into account users’ sojourn times. We
propose a fluid model that tracks service and sojourn times for a
large population, enabling analytical studies of the distribution of
service in steady state, for different policies. These results raise
the issue of fairness in the distribution of partial service. We
introduce a new policy called Least Laxity Ratio to achieve a
suitable notion of proportional fairness. We test our results in
simulation, including a real data-set with time-varying load. Our
results show that our conclusions remain valid in this scenario, in
particular the proposed policy performs well under an objective
empirical measure of fairness.

Index Terms—Electric Vehicles, Stochastic Systems, Schedul-
ing.

I. INTRODUCTION

THE PROGRESSIVE deployment of Electrical Vehicles
(EVs) is placing new requirements on the charging in-

frastructure [1]–[4]. Some of the demand will be covered by
home charging, but another attractive option is to charge EVs
at centralized parking lots, for instance at a large corporation.
Initially, while EV penetration remains low, designing such
facilities for peak power may be feasible. However as loads
become higher it seems reasonable to provision power in a
more conservative way; indeed, since occupation is statistically
multiplexed, and EVs may tolerate some deferral of service,
the need to turn on all chargers at the same time will be rare.

Operating such power constrained facilities requires a
scheduling policy that, taking into account users sojourn times
in the system, makes decisions on who receives charge at
any given time. There is a rich literature on the scheduling
of deadline constrained tasks, particularly in processor task
scheduling [5], [6]; more recently the problem has received
renewed attention in a smart-grid context [7]–[10] given the
presence of deferrable loads. We highlight one peculiarity of
the EV charging garage case: deadlines are inflexible (users
leave the parking lot), but on the other hand partial service
(charge) has value. One of the main features that a scheduling
policy must have is, in the case of overload, to distribute the
“pain” of partial service in an equitable manner.

In this paper we present an analytical framework to address
these questions. In particular we introduce in Section II a dy-
namic model that treats the EV population as a fluid quantity,
and allows for a unified representation of several scheduling
policies, including some well known in the literature. With this
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machinery we can mathematically analyze, for the case of a
stationary traffic load, the resulting steady-state conditions. In
particular we show in Section III that in the case of overload,
the distribution of partial service is highly dependent on the
policy implemented, calling into question the fairness obtained
by some popular policies. Aiming for a notion of proportional
fairness in attained service, we introduce the new Least-Laxity-
Ratio (LLR) policy.

To validate these results for practical systems we turn in
Section IV to detailed simulations with a stream of individual
charge requests arriving over time. We show first that the fluid
approximation is accurate in systems of moderate scale. We
also explore the important case of non-stationary load and
heterogeneous EVs, using real data from the parking lots of
a major tech company. Assuming a restricted capacity, we
apply the different scheduling algorithms to these input traces;
results show our theoretical conclusions remain valid during
the peak, overload hours. We also adopt a quantitative index
for comparison purposes, and apply it to the different policies.
Conclusions are presented in Section V, and proofs are relayed
to the Appendices. Partial versions of this work were presented
in the conference papers [11], [12].

A. Related work

The analysis and design of charging policies for EV fleets
is an active topic. In [13], the authors employ future demand
estimation to maximize the state of charge of vehicles upon
departure. In [7] the authors obtain competitive-ratio bounds
for several scheduling policies with deadline constraints. An-
other relevant reference is [8], where the scheduling of a large
aggregate of deferrable loads is studied, and many of the
relevant policies such as earliest-deadline or least-laxity-first
are brought into the smart grid context. In [9], [14], [15],
EV scheduling is formulated as a dynamic program, with
the optimization objective of minimizing reneged work; the
resulting optimal policies in [9] take into account laxities and
job sizes. Similar ideas in a time-varying environment with
real data were analyzed in [10] where optimization based
approaches are discussed. A proportional fairness approach
with network considerations is given in [16]. More recently,
[17] evaluates using the EV batteries to provide services to
the grid, and [3], [4] discuss how to integrate the EV charging
policies with the deployed infrastructure of the distribution
network.

Closer to our work is the queueing approach of [18],
further extended in [19] to include grid considerations. In
comparison, our work covers more general scheduling policies
when subject to deadlines, such as the ones introduced in [8].
In this regard [20], [21] laid the foundations for the analysis
of reneged work in deadline systems with a single server.
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A detailed study of deadline based policies such as earliest-
deadline-first (EDF) is given in [22], [23] for both fluid and
diffusion scales. A more comprehensive analysis of fluid limits
for earliest deadline policies and many server queues is done
in [24], [25], and constitutes an ongoing research subject.
Our focus here is on the fluid scale itself, finding a common
description for multiple policies that enables new designs.
The empirical portion of this paper is closest to [10], where
policies based on receding horizon optimization are proposed
and tested with real data.

B. Contributions of this paper

Our first contribution is to introduce and develop a math-
ematical modeling strategy for the analysis of scheduling
policies for EV charging. Based on a fluid approximation, our
method applies to large scale systems, yielding mathematical
expressions for the distribution of service and sojourn times
among EVs in steady state, for a variety of policies.

The second contribution is to analyze the issue of fairness
in partial service when power resources are scarce (overload).
We show that the distribution of received service is highly
dependent on the implemented policy, and arguably unfair in
some popular policies. This motivates the design of the Least-
Laxity-Ratio (LLR) policy, which is proved to achieve a notion
of proportional fairness among jobs.

Our final set of results concerns the validation of our
analytical conclusions in discrete simulations with real data.
In particular we include practical, non-stationary load with
heterogeneous EVs and of a realistic scale. We find that the
mathematical model gives accurate predictions, in particular
in regard to fairness during the peak overload hours. Using
as a quantitative tool the well-known Jain’s index [26], we
validate the fairness properties of different policies, and verify
that LLR meets the design expectations.

II. ANALYTICAL MODEL

We consider a parking lot with an EV charging station per
parking spot. The size of the parking lot is assumed large
(infinite) so it never fills, but there is a limited power capacity
that restricts the total consumption. The scheduling policy
must allocate these limited resources among the EV clients
currently present, taking into account their energy needs and
their planned departure times.

In addition to the overall capacity limit, each charging
station has a nominal power rating (maximum charging rate)
that can be delivered to each EV. In our analytical model
this quantity is assumed uniform across the parking lot; the
assumption is relaxed for our simulation studies.

A. Discrete queueing model

As a first step toward our fluid population model we de-
scribe a discrete, stochastic counterpart. Here, vehicles arrive
as a Poisson process of intensity λ, and arriving vehicles
choose two random characteristics in i.i.d. fashion: a required
service time Sk, i.e. the energy requested divided by the
nominal power, and a sojourn time Tk, which is the time until
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Fig. 1. Dynamics for each job.

the car leaves the parking lot. We assume that Sk and Tk
follow general distributions, and Tk > Sk with probability 1,
which amounts to assuming that the demand of each EV is a
priori feasible at the charging station. We denote by S, T the
random variables representing the characteristics of a general
vehicle and by f(σ, τ) their joint density.

The garage operator must assign to each EV a charging rate
rk(t), interpreted as a fraction of nominal power. We thus have

0 6 rk(t) 6 1 for every k, t. (1)

Also, the capacity bound for the installation is expressed as

n(t)∑
k=1

rk(t) 6 C, (2)

where n(t) is the number of EVs present in the garage which
still require service. C can be interpreted as the maximum
number of chargers that could be simultaneously turned on at
full rate; we could, however, choose to activate more than C
chargers at a reduced rate.

We will consider charging policies that take into account the
current population of EVs, and their residual times; for these,
the system state can be represented as a counting measure on
the service - sojourn space, as in [21], namely:

Φt =

n(t)∑
k=1

δ(σk(t),τk(t)).

Here δ(σk(t),τk(t)) is a point-mass measure in R2 located at the
point (σk(t), τk(t)), where σk(t) is the remaining service time
of each task and τk(t) is the remaining time until departure.

The dynamics is as follows: each point k in the system
consumes service time at a rate rk(t) and its lead time or time-
to-deadline at rate 1, as depicted in Figure 1. The scheduling
policy can thus be represented by a (possibly state-dependent)
vector field on R2

+ given by:

~u(σ, τ,Φ) = − (r(σ, τ,Φ), 1) . (3)

Points follow this vector field up to σ = 0 (charge completed),
or τ = 0 (deadline expires). Completely charged EVs may stay
in the parking lot, but we consider them served and out of our
system. Vehicles that exhaust their time constraint depart the
system with partial charge. We call reneged service the amount
of charge that is not given to the vehicle, and corresponds to
the value of the residual work σ when τ reaches 0.

We restrict our attention to policies that do not waste
charging opportunities; specifically, we require the following:
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Fig. 2. EDF policy behavior for n(t) = 9 and C = 3.

Definition 1: A charging policy is called efficient if at every
time t, either (2) is satisfied with equality, or (1) is at its upper
bound for every k = 1, . . . , n(t).

As an example, consider that vehicles are served under the
earliest deadline first (EDF) policy, where the first C vehicles
with closer deadlines are served at rate r = 1. Then the system
dynamics has the form depicted in Figure 2, and the rate r in
equation (3) is:

r(σ, τ,Φ) = 1{τ6τ∗(Φ)} (4)

with τ∗(Φ) = sup{τ : Φ(R+ × [0, τ ]) < C}. In words, given
the state Φ there are exactly C vehicles with residual sojourn
times below τ∗(Φ); or, if the population is smaller than C,
the threshold τ∗(Φ) is infinite.

The process Φt, determined by the arrival distributions and
the scheduling policy r, is a measure-valued Markov process.
Such a detailed system description is in general difficult to
analyze. In a large scale situation, it is more tractable to
consider a macroscopic, fluid description of the dynamics.

B. Fluid model
In the fluid scale, the number of points in the system is

large and we replace Φt by a density function g(t, σ, τ) over
R2

+. Namely, g(t, σ, τ)dσdτ represents the population with
residual service/sojourn times in [σ, σ+dσ]× [τ, τ+dτ ]. New
mass arrives into the system at rate λf(σ, τ), where f is the
joint density of service and sojourn times, as before. Mass is
transported along the vector field ~u = −(r(σ, τ, g), 1) defined
by the scheduling policy.

This implies that the density g should satisfy the following
advection equation:

∂g

∂t
+∇ · (g~u) = λf (5)

where ∇ · (·) is the divergence operator on R2
+, i.e. on the

variables σ, τ . To explain this model, consider a region R of
the (σ, τ) plane, with boundary ∂R, depicted in Fig. 3. The
total mass of particles (EVs) within this region at time t is
given by

Φt(R) =

∫∫
R
g(t, σ, τ)dσdτ.

The variation of this quantity over time is due to arriving mass
minus flow across the boundary. We therefore have:

dΦt(R)

dt
= λ

∫∫
R
f(σ, τ)dσdτ −

∫
∂R

g(t, σ, τ)[~u · d~n].

σ

τ

R
∂R

g~u
λf

Fig. 3. Fluid model illustration.

Here ~n denotes the direction normal to the boundary; trans-
forming this second term via the divergence theorem yields∫∫

R

∂g

∂t
dσdτ = λ

∫∫
R
fdσdτ −

∫∫
R
∇ · (g~u)dσdτ,

which is the integral version of (5).
Remark 1: The formal relationship between stochastic and

fluid models is beyond our scope here. Relevant references are
[20]–[23], [25].

We are interested in steady-state solutions of eq. (5) so
we set ∂g

∂t = 0 and substitute the vector field, obtaining the
equilibrium condition:

∂(rg)

∂σ
+
∂g

∂τ
+ λf = 0. (6)

In the fluid model, the power constraints on the scheduling
policy become:

0 6 r(σ, τ, g) 6 1;∫∫
r(σ, τ, g)g(σ, τ)dσdτ 6 C.

In the next section we will analyze the steady state behavior
of several scheduling policies by solving eq. (6) in each case.

C. Underload and Overload

The system load is defined as the product of the arrival rate
and the mean service requirement,

ρ := λE[Sk] = λ

∫ ∞
0

∫ ∞
0

σf(σ, τ)dσdτ.

The load represents the average power requested to the garage;
however, since we are representing service in units of time
(normalizing energy by nominal charging power), then load
is a dimensionless quantity. ρ represents the mean number of
chargers needed to fully satisfy the demand. We say that the
system is in underload when this mean number of chargers
ρ < C. If instead ρ > C we say that the system is in overload.

We now state some general results that apply to all efficient
policies, depending only on the load conditions. Proof of both
statements below can be found in Appendix A.

In the underload case the equilibrium conditions are inde-
pendent of the policy. In particular all vehicles present will
receive, full, immediate service:

Proposition 1: Assume ρ < C. The steady state for any
efficient policy is such that r ≡ 1, the vehicle density is
g(σ, τ) = λ

∫∞
0
f(σ+x, τ +x)dx, and the total population is

n =

∫ ∞
0

∫ ∞
0

g(σ, τ)dσdτ = ρ.
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In the overload case, the steady-state distribution will
depend on the specific policy. However the total amount
of reneged work in the system, i.e. requested energy not
delivered, is the same for all efficient policies.

Proposition 2: Assume that ρ > C, and that the policy is
efficient. Then the amount of reneged work in steady state is

W =

∫ ∞
0

σg(σ, 0)dσ = ρ− C. (7)

Again, reneged work is expressed here in dimensionless units.

III. SCHEDULING POLICIES IN OVERLOAD

Given the preceding results, the important pending question
refers only to the overload situation (ρ > C). Namely: how is
the overall reneged service W distributed between individual
vehicles in the system? In this section we analyze this issue
for different scheduling policies.

A. Earliest Deadline First

We begin by considering the EDF policy already described,
depicted in Figure 2. The rate function for this policy is the
fluid counterpart of (4):

r(σ, τ, g) = 1{τ6τ∗(g)}. (8)

Eq. (8) says there is a threshold τ∗, dependent on the state g
such that loads with remaining sojourn time than τ∗ do not
receive service. At equilibrium, this value is fixed. Hence, the
typical service profile is to wait until the time-to-deadline is
τ∗ and then be served up to completion or deadline expiration.

Remark 2: Note that the EDF policy only assigns extreme
values of the rates, 0 or 1, and does not exploit the intermediate
range. While some other policies we analyze below share this
extreme property, it is not a requirement and indeed we will
study one that employs partial service rates. Our modeling
technique covers the general case.

The following result is obtained by explicitly solving (via
characteristic curves) the PDE (6) under rate function (8). Its
proof is found in Appendix B.

Proposition 3: Under the EDF policy in overload, the
reneged work Sr per user is given by (S − τ∗)+, where the
threshold τ∗ satisfies

λE[min{S, τ∗}] = C. (9)

Note that the above equation has a single solution 0 < τ∗ <
∞ provided that ρ > C.

When the system is in overload, EDF finds a threshold τ∗

given by (9): jobs with service time S < τ∗ are then served
to completion. Jobs with service time greater that τ∗ are only
delayed and served for a time τ∗ and depart with reneged work
Sr = (S− τ∗)+. Therefore, the policy is unfair towards large
jobs, which get their service chopped to the threshold τ∗.

Moreover, the service received is independent of the sojourn
time T : jobs that offer more flexibility are only delayed and
not served at all until their remaining time is τ∗.

σ

τ

−`∗

τ
− σ

=
`
∗

Fig. 4. LLF policy behavior for n(t) = 9 and C = 3.

B. Least Laxity First

The second policy we analyze is Least Laxity First (LLF)
from the real-time scheduling literature [6], introduced in the
smart-grid context in [8], and more recently discussed for the
EV charging problem in [9]. Here, the laxity or spare time
of each job is considered, defined by `k = τk − σk, i.e. the
amount of time that the job can be delayed and still be able
to meet its deadline.

The LLF policy, fills capacity with the jobs of lowest laxity,
so the rate function is

r(σ, τ, g) = 1{τ−σ6`∗(g)}. (10)

Figure 4 depicts the decisions of LLF for the same points
of Figure 2; note the different EVs in service.

In this case, the system serves loads with laxity `k 6 `∗ at
full rate, while the rest consume their spare time up to reaching
this level. In equilibrium, this laxity level `∗ is fixed, and in
overload this laxity level becomes negative, implying that all
jobs depart with reneged work. The equilibrium of (6) with
rate function (10) is as follows (proof in Appendix B):

Proposition 4: Under the LLF policy in overload, the
reneged work Sr per user is given by min{S, σ∗}, where the
threshold σ∗ = −`∗ satisfies

λE[(S − σ∗)+] = C. (11)

When the system is in overload, it finds a threshold `∗ < 0
and all EVs with initial laxity ` > `∗ consume their spare time
up to reaching `∗ and leave the system with Sr = σ∗ := −`∗
when their deadlines expire. However, if a given job arrives
with service request S < σ∗, it never attains the required laxity
level for service and departs the system without being charged
at all, leaving with Sr = S. Thus, an LLF system in overload
discriminates against small jobs. Again, the system ends up
not discriminating by T (time in the system), only job size.

C. Fair scheduling: Least Laxity Ratio

The policies analyzed so far do not show a fair behavior in
overload; EDF discriminates against large jobs, by chopping
their service, and LLF discriminates against small jobs, by
not giving service at all. We now propose a new policy that
we call Least-Laxity-Ratio (LLR). It works as follows: given
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∗ σ

Fig. 5. Least laxity ratio policy behavior for n(t) = 9 and C = 3.

the current set of jobs with remaining service and deadlines
(σk, τk), construct the following index called laxity ratio:

θk :=
τk
σk

= 1 +
`k
σk
. (12)

Then serve the C jobs with smallest θk in the system at full
rate. The policy serves the most urgent loads, i.e. those with
more urgent deadlines, relative to their residual service time.

The behavior of the policy is depicted in Figure 5, again
for the same points of Figures 2 and 4; note the differences.

The rate allocated to each job is given by:

r(σ, τ, g) = 1{ τσ6θ(g)}, (13)

where θ(g) is the threshold laxity ratio.
In equilibrium, this ratio reaches a value θ∗; an EV will

receive no service until τ/σ falls below the threshold θ∗, and
receive unit rate after that. In overload, θ∗ < 1 meaning that
jobs must be lagging behind their deadline to get service,
and will always have some reneged service. The following
proposition is proved in Appendix B.

Proposition 5: Under the LLR policy in overload, the
reneged work Sr per user is given by S(1 − θ∗), where the
threshold θ∗ satisfies

θ∗ = C/ρ. (14)

Therefore, service attained under LLR is simply θ∗S, a
uniform downscaling of the service request S. This amounts
to a notion of proportional fairness between jobs: all EVs will
receive the same fraction of their required charge, arguably a
fair way to distribute resources in the case of overload.

D. Processor Sharing

We cover briefly here another popular policy, Processor
Sharing (PS) which is defined by the equal sharing of capacity
among jobs present in the system: if the total number of
vehicles n is less than C, then each vehicle is served at rate
r = 1, whereas if n > C, then available power is equally
shared by all chargers, i.e. r = C/n. PS under deadlines is
analyzed in [21] for the single server queue, where constraint
(1) is not present, and discussed in the EV context in [18].

In equilibrium, a PS system will reach a rate r∗, homoge-
neous across EVs. Solving the equilibrium PDE (6) for this
situation, the result for the reneged work is as follows:1

1In this case we omit the proof due to space limitations.

TABLE I
PERFORMANCE METRICS FOR THE DIFFERENT POLICIES IN OVERLOAD.

Policy Threshold Attained Reneged service
equation service (Sa) (Sr = S − Sa)

EDF λE[min{S, τ∗}] = C min{S, τ∗} (S − τ∗)+

LLF λE[(S − σ∗)+] = C (S − σ∗)+ min{S, σ∗}
LLR λθ∗E[S] = C θ∗S (1− θ∗)S
PS λE[min{S, r∗T}] = C min{S, r∗T} (S − r∗T )+

Proposition 6: Under the PS policy in overload, the reneged
work Sr per user is given by (S − r∗T )+, where the equilib-
rium rate r∗ satisfies

λE[min{S, r∗T}] = C. (15)

Once more, equation (15) has a single solution 0 < r∗ < 1
under the overload condition. (15) is analogous to the fixed
point equation derived in [21] for the single server PS queue,
and in [18] for the EV case under exponential assumptions.

We find here that the reneged work depends on both the
service requirement S and the sojourn time T offered to the
system, rewarding EVs that offer more flexibility. Except for
this fact, PS is similar to EDF: for equal sojourn time T , the
PS policy favors small jobs, which are served to completion,
while large jobs only receive partial service.

Table I summarizes our analytical results. We end the
section with brief remarks on an alternative set of policies.

E. Optimization-based policies

Some recent references (e.g. [8], [10]) propose to sched-
ule based on online optimization. In this receding horizon
approach, at a given time a cost function that looks ahead
a certain amount of time is optimized, with the information of
EVs currently present. If the cost is such that EVs with equal
residual times (σ, τ) are treated equally, this policy would fit
our framework, albeit with a complex rate function.

A major issue in this kind of method is to guarantee the
feasibility of the constraints at every time step, otherwise
the policy is undefined. [8] ensures feasibility through the
inclusion of reserve generation, which we do not have here.
The Smoothed Least Laxity First policy of [10] for EVs
assumes feasibility at each time step, which would not apply to
an overload scenario which, in their terminology, is not offline
feasible.

IV. SIMULATION STUDIES

We developed a discrete-event simulator over Julia [27]
to carry out several experiments of a parking lot under the
different scheduling policies.

A first aim would be to validate the fluid approximations
made in our theory for the stationary case, against a scenario
of discrete EVs. This was our main focus in [11]; we extract
here one representative comparison. We simulated a stochastic,
discrete system under Poisson arrivals of rate λ = 120 EVs/hr,
with job sizes Sk of exponential distribution, mean 1hr. The
load is thus ρ = 120, and we choose C = 60 to have an
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Fig. 6. Requested and attained service for each job under the different policies
and fluid prediction.

overload situation. The initial laxities Lk were taken to be
exponential, with mean 2 hours.

Figure 6 shows the service time S demanded by each
EV against the attained service time Sa under EDF, LLF,
LLR, compared with the fluid model predictions. The cor-
respondence is seen to be very close, and the EDF and LLF
policies discriminate against large and small jobs respectively.
In contrast, our proposed LLR policy achieves the desired
linear relationship, imposing proportional fairness across jobs.

We have tested the validity of the fluid approximation
for lower levels of the load. Results (omitted due to space
limitations) show that even for populations 3 times smaller,
the fluid model captures well the mean values, albeit with
higher dispersion around this mean.

The second, more important objective for our simulation
environment is to explore scenarios which escape some of the
simplifying assumptions of our theory:
• Study time-varying loads. In a practical system, arrival

patterns and charging requests are not stationary, they
reflect daily use cycles. And, since sojourn times are long
with respect to these variations, we cannot assume that
each EV sees an approximately steady situation. Ideally,
in a typical day with varying levels of congestion, the
scheduling policy should only play a major rule during
the intervals of overload, and impose during those times
the appropriate fairness in the curtailed service.

• Cover heterogeneous EVs, in regard to their nominal
charging power.

A good way to investigate such practical conditions is
through a data set of real experimental EV charging data.

A. Data set and experimental results.

A dataset of about 100 EV parking lots of a major tech
company was obtained, each with a capacity between 10 and
70 vehicles. The data contains values of: arrival times, sojourn
times, consumed energy and the maximum charging power rate
for each car, during a period of about 50 days.

We wish to represent the load of a large parking lot, for
example a large office building or shopping mall, subject to an
aggregate power capacity restriction. The dataset we obtained
corresponded to many smaller lots, so we merged 20 of them
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Fig. 7. Requested EV power across a typical day. The dotted line indicates
the maximum capacity.

to create a data set of about 500 cars, arriving during one
day and reaching a maximum of 170 cars parked at the same
time. Nominal charging power is heterogeneous, in the range
1.4 to 7.0 kW with an average of 5.0 kW. Sojourn times have
a mean of T̄ = 2.47 hr and a mean requested energy of 10.3
kWh. The main feature is the variability of congestion levels:
Fig. 7 shows the total requested system power in the parking
lot within 24 hours. As expected the system presents more
power demand in working hours, while there is almost no
power requirement at night.

We assume that this aggregate load is applied to a parking
lot with individual charging stations, but where the total
maximum power is 150 kW, equivalent to C = 30 chargers at
the mean nominal power of 5 kW. Regarding the merging
of smaller lots mentioned above, we do not maintain this
information, and in particular we do not impose capacity
limits of the individual components. Analyzing such a situation
would be an interesting topic for further research.

In our initial study [12] with this data we had artificially
normalized car ratings to this value. For the present paper we
have improved our simulator to accommodate individualized
nominal ratings, keeping track of residual energy for each EV.
Priorities are still established in terms of residual service times
(energy/power) and sojourn times. Some curtailing appears
when accommodating the last car within the power capacity
constraint.

In Fig. 8 we plot a snapshot of the system in a condition
of high congestion (with more than 100 cars in the parking
lot), for each of the three policies, EDF, LLF and LLR. We
classify cars according to whether they are in service, and for
illustration we mark the empirical threshold between the two
classes. The transition has the same qualitative behavior as in
the stationary load case.

B. Proportional fairness measurement

In our theory for stationary load we showed that all efficient
policies have the same underload behavior, and differences
occur when in overload. With a non-stationary load as in Fig.
7 we expect that EVs present during intervals of underload will
receive full service, but curtailment will appear in the overload
hours; the main fairness question is how partial service is
allocated during these intervals.
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Fig. 8. Snapshot of the system under the different policies identifying in
service and not in service loads. The dotted line indicates the corresponding
empirical thresholds between both classes.

In this regard, let xk =
Sa,k
Sk

denote the proportion of
attained service (charge) obtained by vehicle k; proportional
fairness is characterized by the homogeneity of xk among
EVs. To measure this quantitatively we resort to the classical
Jain’s fairness index [26], developed originally in the context
of bandwidth sharing in congested telecom networks:

J(x1, x2, ..., xn) =
(
∑n
k=1 xk)2

n
∑n
k=1 x

2
k

. (16)

This quantity J ∈ [0, 1], and reaches unity only if all xk’s are
the same, i.e. under proportional fairness.

Remark 3: In the fluid limit of the stationary case, the LLR
policy achieves the optimal Jain’s Index J = 1 by definition
since Sa,k = θ∗S, so xk = θ∗ for every xk.

Since by definition xk can only be evaluated at the end of
service, to obtain a time-varying measurement of fairness we
will compute Jain’s index at time t between the set of cars
which have finished service in a window of time [t− t0, t].
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Fig. 9. Jain fairness index computed across a typical day considering a half-
hour window.

In Figure 9 we plot the Jain fairness index computed across
a typical day considering a half-hour window, i.e. with t0 equal
to half an hour. As expected the index is 1 when there is no
congestion in the system, here xk = 1 for all EVs.

During busy hours (see Fig. 7) the fairness index decreases,
with different behavior across policies. EDF shows a sudden
drop in the fairness index but recovers to values near 1
quickly. In the case of LLF, the fairness index suffers the
most, staying near 0.5 for several hours. On the other hand,
for LLR the fairness index stays close to unity at all times,
with far less variability, evidence of the desired proportional
fairness behavior.

V. CONCLUSIONS AND OPEN QUESTIONS

In this work we have analyzed through mathematical models
and simulations the performance of charging policies for an
EV garage. The scenario of interest is when limits apply to
the total power of the installation, which imply that some
curtailment takes place during intervals of overload.

We introduced a fluid PDE model for the EV population,
which provides an elegant macroscopic characterization of
different policies. In particular for stationary traffic load, we
obtained analytic expressions for the service attained by an
overloaded system under the standard EDF, LLF and PS poli-
cies, and introduced the LLR policy to achieve proportional
fairness.

Our simulation studies with real data showed that conclu-
sions remain valid under time-varying load and heterogeneous
EVs. We also introduced a fairness index that may be used as
a figure of merit in empirical studies of charging policies. An
interesting open question would be the mathematical analysis
of the time-varying situation.

As is always the case with issues of fairness, our propor-
tional criterion is not the only possible choice. Alternatives of
the “max-min fairness” kind can be considered. Maximizing
the minimal service delivered would imply prioritizing small
jobs (like EDF does), which does not seem motivated in this
context. Instead one could think of maximizing the minimum
state of charge of departing EVs; this suggests favoring large
jobs which reflect low initial battery levels. In this viewpoint,
the LLF policy becomes more attractive, and indeed the results
in [9] follow essentially this criterion. An interesting question
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for future research is the extent to which such alternatives can
be studied within our fluid framework.

A broader open avenue of research would be to analyze,
with an economic perspective, the provisioning decisions of
the garage operator as a function of load patterns and cus-
tomers’ valuation of partial service.
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APPENDIX A
EFFICIENT POLICIES IN STEADY STATE

Proof of Proposition 1 (underload case): Let ρ < C. We
verify that r ≡ 1 is an equilibrium solution, applying it to the
advection equation (6) in steady state, which becomes:

∂g

∂σ
+
∂g

∂τ
+ λf = 0. (17)

The preceding equation can be solved by the method of
characteristics [28]. Consider the following total derivative:

d

dx
g(σ + x, τ + x) =

∂g

∂σ
+
∂g

∂τ
= −λf(σ + x, τ + x).

By integration, and using the boundary condition g(σ, τ)→ 0
when σ, τ →∞, we have the solution to (17):

g(σ, τ) = λ

∫ ∞
0

f(σ + x, τ + x)dx. (18)

In order to be a suitable equilibrium, we should verify that g
in (18) yields a total rate less than C. We have:∫ ∞

0

∫ ∞
0

g(σ, τ)dσdτ = λ

∫ ∞
0

P(S > x, T > x)dx (19)

= λ

∫ ∞
0

P(min{S, T} > x)dx

= λE[min{S, T}] = λE[S] = ρ < C.

Note that by assumption S 6 T a.s.
Proof of Proposition 2 (overload case): We first observe

that in overload, the efficiency of the policy implies∫ ∞
0

∫ ∞
0

r(σ, τ)g(σ, τ)dσdτ = C. (20)

Indeed, the alternative for efficiency would be to set r = 1
for every point; but then the same calculation as (19) would
yield, for the left-hand side of (20), a result ρ > C, violating
our capacity constraint.

W =

∫ ∞
0

σg(σ, 0)dσ =

∫ ∞
0

σ

∫ ∞
0

[
−∂g
∂τ

(σ, τ)

]
dτdσ

=

∫ ∞
0

∫ ∞
0

σ

[
λf +

∂(rg)

∂σ

]
dσdτ

= λ

∫ ∞
0

∫ ∞
0

σfdσdτ +

∫ ∞
0

∫ ∞
0

σ
∂(rg)

∂σ
dσdτ

= λE[S]−
∫ ∞

0

∫ ∞
0

rgdσdτ = ρ− C,

where we have used (6), integration by parts and (20).

APPENDIX B
DISTRIBUTION OF RENEGED WORK IN STEADY-STATE

Proof of Proposition 3 (EDF): Substituting the EDF rate
function r = 1{τ<τ∗}, the equilibrium PDE (6) becomes:

∂g

∂σ
+
∂g

∂τ
+ λf = 0 τ < τ∗,

∂g

∂τ
+ λf = 0 τ > τ∗,

which is a two part transport equation. The characteristic
trajectories of this equation are derived from following the
vector field: the first part of the equation is analogous to
the underload case (parallel service), for the second part the
trajectories are vertical lines with constant σ. This leads to the
following solution integrating along trajectories:

g(σ, τ) = λ

∫ ∞
τ

f(σ, x)dx, τ > τ∗;

whereas for τ < τ∗ the solution has two parts.

g(σ, τ) =λ

∫ τ∗−τ

0

f(σ + x, τ + x)dx +

+ λ

∫ ∞
τ∗

f(σ + τ∗ − τ, x)dx, τ < τ∗. (21)

To compute the distribution of reneged work we evaluate
the above at the point (σr, 0). Here the second formula (21)
applies; now since we have assumed f(σ, τ) = 0 for (σ > τ),
the first term in (21) disappears (f(σr + x, x) = 0 ∀x), and
in the second we can begin integrating at x = σr + τ∗. We
obtain:

g(σr, 0) = λ

∫ ∞
σr+τ∗

f(σr + τ∗, x)dx.

The integral above amounts to marginalizing f(·, ·) over its
second variable (sojourn time), and reducing service time by
τ∗, with positive truncation: i.e. it is the density of the random
variable (S − τ∗)+.

Therefore, Sr ∼ (S − τ∗)+ would be the reneged work
per client, and the overall rate for reneged work is W =
λE[(S−τ∗)+]. Using Proposition 2 we obtain the equilibrium
condition for τ∗:

λE[(S − τ∗)+] = ρ− C.
Equivalently, noting that S − (S − τ∗)+ = min{S, τ∗}:

λE[min{S, τ∗}] = C.

Since min{S, τ∗} 6 S, the above equation always has a
solution in the overload situation ρ > C.

Proof of Proposition 4 (LLF): Under the rate function
(10) with equilibrium threshold `∗, the vector field is ~u =
−
(
1{τ−σ<`∗}, 1

)
.

Since the system is in overload, we posit a solution with
`∗ < 0 (expired laxity on departure). This defines a threshold
line τ = σ+ `∗, below the diagonal; we discuss the dynamics
in separate regions:
• Above the line there is no service so (6) becomes:

∂g

∂τ
+ λf = 0 τ − σ > `∗, τ, σ > 0.
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• When flow reaches the threshold line τ − σ = `∗, it
moves along it and departs the system through (0,−`∗) =
(0, σ∗). Since mass accumulates in this line we have a
singularity in the measure, strictly speaking not a density.

• In the region below the line, τ < σ + `∗ < σ, so
by assumption there is no arriving flow; also from the
previous case no flow enters the region from above, so
in steady-stated the density in this region is zero.

Above the threshold line, the steady-state solution is simply

g(σ, τ) = λ

∫ ∞
τ

f(σ, x)dx, τ − σ > `∗, τ, σ > 0.

We will avoid the characterization of the singularity by simply
focusing on the flow of reneged work, which is the integral
of g(σr, 0) across the distribution variable σr. For σr < σ∗

(corresponding to (σr, 0) above the threshold line), we have

g(σr, 0) = λ

∫ ∞
0

f(σr, x)dx;

this is the marginal density of S at σr, times λ. The remainder
of the reneged work distribution is a point mass at σr = σ∗,
resulting from the singular flow at the threshold boundary.

So the reneged work per job is distributed as Sr ∼
min{S, σ∗}, and W = λE[min{S, σ∗}]. Using Proposition
2 we find the equilibrium condition for σ∗:

λE[(S − τ∗)+] = ρ− C;

or equivalently, noting that S −min{S, σ∗} = (S − σ∗)+:

λE[(S − σ∗)+] = C.

As a function of σ∗, the left-hand side starts at ρ > C for
σ∗ = 0, and decreases to zero as σ∗ → ∞; hence the above
equation always has a solution.

Proof of Proposition 5 (LLR): Imposing the rate function
(13), the equilibrium PDE (6) takes the form

∂g

∂σ
+
∂g

∂τ
+ λf = 0 τ < θ∗σ,

∂g

∂τ
+ λf = 0 τ > θ∗σ,

for a certain threshold 0 < θ∗ < 1; this is similar to the
EDF case, but with an oblique threshold line. Note that all
characteristic trajectories cross this line since θ∗ < 1.

Above the threshold, the solution is, as before:

g+(σ, τ) = λ

∫ ∞
τ

f(σ, x)dx, τ > θ∗σ. (22)

If we start with (σ, τ) below the threshold line, we integrate
first along the characteristic curve (σ+x, τ+x) until reaching
the line:

g(σ, τ) =λ

∫ θ∗σ−τ
1−θ∗

0

f(σ + x, τ + x)dx (23)

+ g−

(
σ − τ
1− θ∗ ,

θ∗(σ − τ)

1− θ∗
)
, (24)

and then we would apply formula (22) for the term (24).
However, due to flow preservation when crossing the line,
we must impose (1 − θ∗)g− = g+ at the boundary; this is

because the normal component of the vector field ~u · ~n is,
respectively, 1 − θ∗ and 1 below and above the line. So the
correct expression for the term in (24) is:

g−(·, ·) =
λ

1− θ∗
∫ ∞

θ∗
1−θ∗ (σ−τ)

f

(
σ − τ
1− θ∗ , x

)
dx. (25)

With the above solution we can compute the distribution of
reneged work g(σr, 0). Using the fact that f(σ, τ) = 0 if
(σ > τ), the term in (23) is 0, and the expression in (25) can
be simplified as well, leading to:

g(σr, 0) =
λ

1− θ∗
∫ ∞

0

f

(
σr

1− θ∗ , x
)
dx.

Except for the factor λ, the expression above corresponds to
the density of the random variable (1 − θ∗)S. Indeed, the
variable T has been marginalized from the joint density, and
the change of variables applied to σ. We conclude that the
reneged work per client is Sr ∼ (1− θ∗)S.

We can now find the threshold θ∗ from the equation

W = λ(1− θ∗)E[S] = ρ− C,

applying Proposition 2. Equivalently, θ∗ = C/ρ, which satis-
fies θ∗ < 1 when in overload, as desired.
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