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Abstract—We consider a demand aggregator handling a large
number of deferrable loads through a simple interface, who
must align their overall consumption with an operator-provided
reference. A macroscopic model of the load aggregate is developed
as a two-state stochastic differential equation, with a scalar
input controlling deferred service, and where deadlines are
enforced. Through linearization the feedback control design is
cast within the framework of H2 control, with an objective
that embeds frequency domain characteristics of the tracked
reference. The solution yields a distributed implementation with
mild communication requirements. We tested it in a simulation
environment using real-world grid frequency regulation signals,
achieving high performance with the relevant industry metric.

Index Terms—Frequency regulation, demand response, de-
ferrable loads, optimal control.

I. INTRODUCTION

The matching of supply and demand in electric power

networks is a longstanding issue, addressed by mechanisms

at multiple time-scales: from long-term delivery contracts,

through hour-ahead spot markets, to real-time balancing at

the scale of seconds. Our focus is on the latter frequency

regulation ancillary service, which traditionally has been

viewed as generation-side control to follow fluctuations in

demand, implemented in two stages [1]: primary regulation or

“droop control” carried out by governors at rotating machines,

which maintain equilibrium at the expense of deviations from

nominal frequency; and secondary regulation or “Automatic

Generation Control” (AGC), orchestrated by the System Op-

erator (SO) to restore nominal frequency and inter-area flows.

This traditional picture is being challenged on different

fronts [14]. On one hand, penetration of renewable generation

of a volatile nature (wind, solar) means that demand is not

the only source of fluctuations, thus increasing pressure on

this service. In compensation, balancing from battery storage

is becoming more available [8], and also in a smarter grid,

controlled loads can do their share of regulation. Indeed, due

to their relatively small inertia, loads are in a position to be

among the fastest responders for load balancing.

These new trends are leading to changes in the operation of

the regulation market. For instance, the PJM operator [20] has

in recent years diversified its AGC, providing two alternative

regulation signals for providers to track: the standard (“RegA”)

signal aimed at slower responders who can provide a steady-

state power deviation, and a dynamic signal with zero mean
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(“RegD”) aimed at storage devices which can provide power

quickly but not sustain it over time. Precisely this second type

of response can be provided on the demand side, when the

loads involved cannot be curtailed but are deferrable: this is

the situation considered in the present paper.

Of the possible loads to be summoned, we are interested

in the scenario of a large number of small (e.g. domestic

scale) loads which collectively provide the ancillary service,

controlled by a load aggregator entity (e.g. [9], [11]) to follow

an operator-provided directive. Related work on this idea is

reviewed below. Our primary objective is to regulate the total

power consumption in a manner that avoids complexity at

the load end, and also avoids maintaining individual load

information by the aggregator. Rather, the control should be

based on aggregate population information and communicate

to loads through a streamlined interface.

The modeling strategy of this paper starts in Section II

with a Markov model tracking deferrable and non-deferrable

populations, and where control is a scalar variable expressing

service deferral. A macroscopic model is then presented in

Section III, in the form of a stochastic differential equation;

this model is suitably linearized for control design purposes.

The design of a feedback controller based on population

measurements to track an operator reference is cast in Section

IV in the H2-control framework, which is well-suited to model

the relevant bandwidth of fast regulation signals. In Section V

we discuss a decentralized implementation of such a control

scheme, and provide simulations at the microscopic load level

to validate its ability to track real-life regulation signals from

PJM. Conclusions are given in Section VI. Preliminary results

leading up to this paper were presented in [2], [4].

A. Related Work

The possibility of implementing the frequency regulation

ancillary service by controlling aggregates of loads has been

investigated recently by many authors. In many cases the

proposal involves a microscopic description, where discrete

loads are individually identified and some kind of large-scale

online optimization is performed to dispatch them [23], [24],

[26]. To avoid such load micro-management on the part of the

aggregator, a macroscopic approach is required.

An aggregated model was pursued in a series of papers on

thermostatically controlled loads (TCLs). [15] uses a state-

space model representing populations in different temperature

ranges, as a basis for model predictive control. In [12], [13] the

thermal storage is given an equivalent battery representation

within certain bounds, used to determine the ex ante regulation



commitments; the model is not, however, directly applied in

the stack priority scheme used for control. An extension of the

battery point of view for more generic loads is given in [19],

with the observation that load deferability behaves in essence

like storage, in particular not allowing for steady-state biases in

demand. Bounds are given on the equivalent battery, with some

consideration to the randomness of the load process. In our

work, we invoke stochastic queueing more comprehensively

as a basis for dynamic modeling and control.

Another series of references consider the stochastic control

of ON-OFF loads to provide frequency regulation. In [7], [25]

a decentralized frequency measurement is the threshold for

stochastic ON-OFF transitions, thereby implementing load-

side droop control. A proposal for secondary AGC with ON-

OFF pool-pump loads is given in [18]; the mathematics covers

broad territory, but the essence is a linear state-space model

representing occupation probabilities of a Markov model for

the pump state, controlled by a parameter from the balancing

authority. Our proposal of controlling populations through

a scalar deferral action parameter bears some philosophical

resemblance, but details appear quite different.

Finally, we mention that another recent stream of literature

[17], [27] has looked at load-side frequency regulation coupled

with the grid dynamics, proposing new signals by which the

SO may better carry out the balancing task. This issue will not

be pursued here, we will assume the SO communicates power

directives as is current practice [20], and the task of our load

aggregate is to track such reference signal.

II. LOAD DEFERRAL IN TERMS OF CONTROLLED QUEUES

We consider an aggregator entity that manages a large

quantity of loads, with a known mean consumption power p∗;

we assume this quantity has been procured in advance. In

real-time, discrete loads materialize as a sequence of requests

for service with inherent randomness; a passive system where

loads are served immediately upon arrival would result in a

stochastic aggregate power consumption, varying around the

mean. If service can be partially deferred, then a controlled

schedule could remove these variations and, furthermore,

possibly arrange for the power consumption to follow a desired

reference around the mean, thus providing a balancing service.

We start with a stochastic model of the load process.

Assuming stationarity of demand, a natural model is a Poisson

process of requests for energy, arriving at rate λ; for simplicity

we assume they all have the same nominal power p0,1 but may

differ in the required energy. This would be the situation of, for

instance, a fleet of electric vehicles with homogeneous ratings,

but different charging requirements upon arrival.

Let τi denote the nominal service time of the i-th load, i.e.

the time (energy/p0) it would take to serve it at full nominal

power. If load i is deferrable, there is an additional spare time

or laxity Li it can tolerate and still meet its deadline. For

modeling purposes, we assume that τi, Li are independent,

exponential random variables for each load, with respective

means τ , L, and also independent of the arrival process.

1This assumption simplifies the mathematics. In Section V we remark on
its removal.
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Fig. 1. Service-laxity trajectory under service level ui

The deferral action is defined by the service level, a scalar

variable ui ∈ (0, 1] specifying the fraction of nominal power

at which a load is served.2 After an interval of time dt, a load

served at power uip0 will have attained uidt of its service

time requirement, but also will have consumed dt − uidt =
(1 − ui)dt of its spare time. Fig. 1 shows the trajectory in

(residual service-time/laxity) space when ui is held constant.

A trajectory reaching the vertical axis completes service and

leaves the system. If the horizontal axis is crossed first, laxity

expires and the load misses its deadline.

While applying an individualized service level ui could

provide a very fine grained control of power and deadlines,

we wish to avoid this level of micro-management by the ag-

gregator; instead, we will work with simple global commands

for the aggregate of loads. We discuss two options below.

A. A single class aggregate control

The simplest choice would be to apply a common service

level u for the entire population of loads. Assuming initially

u is held constant, the service time is an exponential random

variable of mean τi/u, and therefore the number of active

loads behaves as the following M/M/∞ queue [22], a birth

and death process with the following transition rates:

• n 7→ n+ 1 with rate λ, reflecting a Poisson arrival.

• n 7→ n−1 with rate nu
τ

, reflecting the completion of one

service among n independent exp(u
τ
) random variables.

The preceding Markov chain has a well-known Poisson
(
λτ
u

)

steady state distribution, which provides useful information

about the system in steady state. In particular:

• The mean power consumption is E[p] = p0uE[n] =
p0λτ , independent of u. Deferring service has no effect

on mean consumption, it must match the mean demand.

• The variance is V ar(p) = p20u
2V ar(n) = p20λτu. Thus

deferring service (reducing u) smoothes the power profile.

However we note a limitation of the preceding control strategy:

if we apply an indiscriminate service reduction to all loads,

some will inevitably miss their deadlines; in particular, for any

fixed u < 1 there is a positive probability

P

[
τi
u

>
Li

1− u

]

=
(1 − u)/L

u/τ + (1 − u)/L
(1)

that the trajectory in Fig. 1 crosses the horizontal axis. This

issue will be avoided by a slightly more complicated policy.

2We assume such modulation in power consumption is possible, which is
the case for electric vehicles. If loads must be ON or OFF, a similar aggregate
effect could be obtained by serving a fraction of loads at nominal power.
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Fig. 2. Two-class Markov state diagram with transition rates

B. Two-class control policy enforcing deadlines

The simplest control strategy that avoids missing deadlines

is for a load which runs out of laxity to start consuming at

full power. Thus loads will be divided in two classes: n(t) will

be the population of loads that at time t still have remaining

laxity, and thus are able to obey a command u of deferred

service; the remainder of active loads m(t) with expired laxity

will be served at full power until their completion.

With these notations, returning to the original stochastic

assumptions, the behavior of the population variables over

time is a continuous-time Markov chain with state (n,m) and

transition rates depicted in Figure 2:

1. (n,m) 7→ (n+1,m) is a Poisson arrival, at rate w1 = λ.

2. (n,m) 7→ (n−1,m) represents a load from the n queue

completing service. The rate w2 = nu
τ

corresponds to a

service level u as in the previous section.

3. (n,m) 7→ (n − 1,m + 1) represents the transition

between the n and m queues due to expiration of laxity,

with rate w3 = n(1−u)
L

(see below).

4. (n,m) 7→ (n,m− 1) represents a departure from the m
queue. The transition rate w4 = m

τ
reflects that service

here is at full power.

We expand briefly on the justification of w2, w3. Given

u, each of the n deferrable loads may complete service after

an exp(u/τ)-distributed time, or run out of laxity after an

exp((1−u)/L)-distributed time. So a departure of this queue

occurs at the minimum of 2n (n of each kind, independent)

exponentials, thus having an exp(nu/τ+n(1−u)/L) distribu-

tion; this justifies the total departure rate w2+w3. Multiplying

it by the probability (1) that laxity runs out first, yields w3;

the complementary thinning gives w2.

In [10] the above Markov chain was analyzed for the case

of a fixed u = u∗; in particular it is shown that it admits a

stationary distribution of product form

π(n,m) = e−ρn−ρm
ρnn
n!

ρmm
m!

, n,m ∈ N; (2)

namely, n and m in steady state are independent random vari-

ables with Poisson distribution. The parameters are ρn = λ/ν,

ρm = λτ(1 − u∗)/νL, where we introduce the notation

ν :=
u∗

τ
+

(1 − u∗)

L
. (3)

Here, our main interest is in a controlled service deferral

u(t), as a means to provide frequency regulation service. We

state our high-level objective as follows:

Problem 1: Given a power reference signal p∗ + r(t) from

the system operator, design a control system for the deferral

action signal u(t) such that the aggregate power consumption

p(t) = p0 (n(t)u(t) +m(t)) (4)

tracks the reference; i.e. the tracking error e(t) = p∗ + r(t)−
p(t) has small variance E[e(t)2].

For control design toward this objective, the Markov chain

model is unwieldy. Assuming populations are moderately

large, we turn instead to differential equation models that treat

load populations as continuous variables.

III. MACROSCOPIC DYNAMIC MODEL

A first model of this nature was pursued in [2] for the one-

class control of Section II-A, replacing the Markov chain by

the ordinary differential equation (fluid flow) model3:

ṅ(t) = λ− 1

τ
n(t)u(t). (5)

In [2] we showed that this simple model leads to a reference

tracking controller with good performance. However due to

the requirement of enforcing deadlines, from now on we will

focus exclusively on the two-class control of Section II-B.

A. Stochastic Differential Equation Model

In the fluid-flow version of the Markov chain of Figure 2,

n and m become continuous variables; an ODE analogous to

(5) can be written. However since part of the objective is to

control variability, we require a finer model that preserves a

macroscopic view of the randomness. This model takes the

form of stochastic differential equation (SDE), as follows:

dn =

(

λ− nu

τ
− n(1− u)

L

)

dt

+
√
λ dW1 −

√

nu/τ dW2 −
√

n(1 − u)/L dW3, (6a)

dm =

(
n(1− u)

L
− m

τ

)

dt

+
√

n(1− u)/L dW3 −
√

m/τ dW4. (6b)

The model is written in stochastic calculus notation. Each

of the four transitions in the Markov chain, with rate wi is

replaced by two terms: the drift wi dt plus the noise
√
wi dWi,

where Wi(t) are independent Wiener processes, i = 1, 2, 3, 4.

For mathematical justification of the model and its relationship

through scaling with the Markov chain, we refer to [16].

The above state-space dynamics has u(t) as control input,

and the main output of interest is the aggregate power con-

sumption (4) of both types of loads in the population.

3Formally, the solutions to (5) are limits of the scaled stochastic processes
1
k
n(k)(t) as k → ∞, where n(k) is the Markov chain state under scaled

arrival parameter kλ, and suitably scaled initial condition. For details see [22].



A first step in the analysis is to find the equilibrium of this

model for the case of a fixed control u(t) ≡ u∗. Setting to

zero the drift terms in (6) we have the equilibrium point

n∗ =
λ

ν
, m∗ =

λτ(1 − u∗)

νL
, (7)

with ν from (3). The equilibrium power of the cluster is then

found to be

p∗ = p0(n
∗u∗ +m∗) = λp0τ. (8)

Note that p∗ does not depend on u∗, and matches the mean

exogenous demand for power (load arrival rate times mean

energy). Deferrable loads must be served sooner or later, and

cannot provide a steady-state deviation in consumed power.

B. Linearized dynamics

The dynamics (6) is a nonlinear, stochastic differential

equation. For purposes of control design, we will consider

instead a linearization of the dynamics around the operating

point (u∗, n∗,m∗, p∗), using ũ = u− u∗, ñ = n− n∗, etc. to

denote incremental quantities.

We will replace the drift terms, which have equilibrium

value 0, by their first-order approximation

λ− nu

τ
− n(1 − u)

L
≈ −

[
u∗

τ
+

1− u∗

L

]

︸ ︷︷ ︸

ν

ñ+

[
n∗

L
− n∗

τ

]

ũ;

n(1− u)

L
− m

τ
≈ 1− u∗

L
ñ− 1

τ
m̃− n∗

L
ũ.

The noise terms
√
wi dWi will be replaced by

√
w∗

i dWi; this

makes the noise enter the dynamics linearly, and is justified

since the equilibrium value
√
w∗

i > 0, so locally around

equilibrium, this constant will dominate first and higher order

terms. The proposed linearized dynamics are:

dX
︷ ︸︸ ︷
[
dñ
dm̃

]

=

A
︷ ︸︸ ︷
[
−ν 0
1−u∗

L
− 1

τ

]

X
︷︸︸︷
[
ñ
m̃

]

dt+B1dW +

B2

︷ ︸︸ ︷
[
n∗

L
− n∗

τ

−n∗

L

]

ũdt

(9a)

p̃ =

C
︷ ︸︸ ︷
[
p0u

∗ p0
]
[
ñ
m̃

]

+

D2

︷︸︸︷

p0n
∗ ũ, (9b)

where dW = (dW1, dW2, dW3, dW4)
T and

B1 =





√
λ −

√
n∗u∗

τ
−
√

n∗(1−u∗)
L

0

0 0
√

n∗(1−u∗)
L

−
√

m∗

τ



 . (9c)

Note that (9b) is the linearization of (4). Clearly, the above

dynamics is a local approximation, whose validity hinges on

the fact that the state stays close to its equilibrium value, itself

dependent on the feedback control to be designed. For this

reason, as in any control design based on a linearized model,

experimental validations will be required.

Nevertheless, we will gain confidence on the procedure by

showing that in open loop (no active control of u), the second

moment predictions in steady state of this linearized model

model match exactly those of the nonlinear SDE (6), and even

those of the original Markov chain.

C. Variance calculation for fixed input

We consider here the case where there is no active control,

ũ ≡ 0 (i.e. we define a constant deferral action u∗). We will

compute the steady-state covariance matrix of the state in (9a),

given (see e.g. [6]) by the solution Q to the Lyapunov equation

AQ+QAT +B1B
T
1 = 0. (10)

Solving this equation for the values for A, B1 in (9) yields

Q =
λ

ν

[
1 0
0 τ

L
(1− u∗)

]

. (11)

Note that this result is consistent with the Markov model;

indeed, the stationary distribution with independent Poisson

random variables (2) has the covariance Q above.

In fact a third method is available for Markov chains

like ours where the transition rates are affine on the state:

closed-form dynamic equations for the moments (mean and

covariance) can be written (see [5] in the context of chemical

reactions); they also give the same result in steady state.

The resulting variance of the output p is:

E
[
(p̃)2

]
= CQCT = p∗p0

[

1− 1
1

1−u∗
+ τ

Lu∗

]

. (12)

Note that the choice of u∗ affects the variance. Even with

no real-time control, there is a variance reduction obtained

through fixed deferral, its optimum occurring at

u∗

opt =

√
τ√

L+
√
τ
. (13)

In the remainder of the paper we will add active control of

ũ(t), to track an exogenous reference. In that case we do not

claim the linearized model has an exact evaluation of variance;

it is a local approximation which must be validated.

D. Plant transfer function

Before proceeding with control design it is instructive to

find the (open loop) transfer function of our linear plant, from

the control input ũ to the output p̃, in the Laplace domain.

This is found from standard calculations to be

Tup(s) = C(sI −A)−1B2 +D2 =
p0λ

ν

s

s+ ν
. (14)

We make the following observations:

• A transfer function of first order indicates a non-minimal

realization; indeed, the state is not fully controllable from

the input u; in [3] the appropriate Kalman decomposition

is performed to exhibit the uncontrollable state. The full-

state model must still be used for control design, however,

since the full state is excited by noise, and observable.

• The zero at s = 0 shows that we can exert no control

in “DC” frequency, i.e. no steady-state balancing power.

Again, this also happens with a storage device.

• On the other hand, response is firm at high frequency,

indicating that our system is capable of very fast control.

The boundary between both regimes is the natural pole

ν from (3), which corresponds to a time constant of the

order of mean service times and laxities. Our system will

be able to provide balancing power when this requirement

is faster than these load intrinsic times.



IV. H2 CONTROL FOR REFERENCE TRACKING

In this section we employ the linear state-space model

(9) of the aggregate deferrable load dynamics to design a

feedback controller for the input u(t). Our objective, stated

in Problem 1, is to offer a balancing service to the grid by

having the aggregate power consumption follow a reference

signal provided by the system operator (SO).

Specifically, a provider of this ancillary service must commit

to varying its power consumption up to a fraction θ of its

nominal power p∗, in response to a real-time signal ρ(t) ∈
[−1, 1] that it receives every few seconds from the SO. Upon

receiving this signal the load should ideally become

p(t) = p∗(1 + θρ(t)) = p∗ +

r(t)
︷ ︸︸ ︷

θp∗ρ(t) . (15)

A. Maximum offered regulation

A regulation provider is rewarded by the maximum devia-

tion θp∗ it is able to offer, thus our convenience is to make θ
as large as possible. The maximum theoretical value is θ = 1,

which would imply varying the power in the range [0, 2p∗].
In our system of deferrable loads this value is not achiev-

able, because consumed power must lie within the bounds

p0m(t) ≤ p(t) ≤ p0[n(t) +m(t)];

in particular the lower bound is always positive since we have

chosen not to defer the loads m(t) with expired laxity, and the

upper bound is constrained by loads currently present. Both

bounds are time-varying, but we can get an estimate of the

achievable margin by applying the equilibrium values.

In particular, imposing that the committed minimal power

p∗(1 − θ) is above p0m
∗ and recalling p∗ = p0(n

∗u∗ +m∗)
leads to the bound

θ ≤ n∗u∗

n∗u∗ +m∗
=

Lu∗

Lu∗ + τ(1 − u∗)
.

Similarly, the upper bound p∗(1 + θ) ≤ p0[n
∗ +m∗] gives

θ ≤ n∗(1 − u∗)

n∗u∗ +m∗
=

L(1− u∗)

Lu∗ + τ(1 − u∗)
.

The upper bounds on θ are, respectively, increasing and

decreasing in u∗, and they become equal in u∗ = 1
2 ; so this

value provides the maximum (symmetric) regulation capabil-

ity, namely θmax = L
L+τ

. We will use this choice of u∗ in

what follows; note that it need not coincide with the value

from (13) providing minimal open-loop power variability.

B. Regulation signal characterization

Having decided on the amplitude of reference signals we are

offering to track, the next key requirement for a good tracking

control design is to characterize their spectral content.

For this purpose we turn to a particular family of real-

life regulation signals ρ(t) taken from PJM [21], a regional

transmission operator in the US. We performed a spectral

density estimation based on these PJM signals using MAT-

LAB’s signal identification toolbox. They are found to be

band limited, with cutoff frequency ωr ≈ 1.65× 10−2 rad/s,
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Fig. 3. Artificial regulation signal from filtered white noise, in comparison
with a real regulation signal from PJM.

after which they present a roll-off of 40 db/dec, indicating a

second-order filtering. A closer inspection shows a resonance

in the cutoff frequency with a damping factor of ζ ≈ 0.4. We

therefore approximated the practical signals as generated by

white noise through the frequency weighting filter

Rρ(s) =
κrω

2
r

s2 + 2ζωrs+ ω2
r

, (16)

where κr ≈ 3 was chosen to match the mean signal power.

In Fig. 3 we can see a 1- hour simulation of filtered white

noise along with a real regulation signal, with a qualitatively

similar behavior. Thus, we have confidence that a controller

designed to optimally track such filtered white noise will have

good performance with the practical regulation signals.

C. H2-optimal control

We are now ready to tackle the feedback control design

problem. A first block diagram is given in Fig. 4, where:

• The plant P is our deferrable load system, with state-

space realization (9). Its inputs are our control signal

ũ(t) and the noise, represented in the diagram by v(t)
of dimension 4 (in classical notation, the “white noise”

vector v stands informally for the “derivative” of W ).

• The dynamic model of our synthetic command signal is

included, as white noise vρ going through the second-

order filter Rρ(s) in (16). The state-variables of this filter

are ρ, ρ̇; we will assume the controller has access to

both. Although in practice only ρ(t) is directly avail-

able, it has enough over-sampling that a simple estimate

ρ̇(t) ≈ ρ(t)−ρ(t−Ts)
Ts

has enough accuracy for control

purposes. Concretely in the PJM signals with bandwidth

fr ≈ 2.6.10−3Hz, the sampling rate is fs = 0.25Hz.

• The controller K is assumed then to have access to the

complete (4th order) dynamic state (ñ, m̃, ρ, ρ̇). With this

information it acts on the service level ũ(t).
• The main performance objective is for the tracking error

e(t) = r(t)− p̃(t) = p∗(1 + θρ(t))− p(t) (17)

to be small, measured by its variance as in Problem 1. For

a well-posed problem we must also penalize the control

signal ũ, which also helps keep the system in the linear

regime. Introducing a tradeoff parameter k1, our cost

function will be

J2 := E[(k1e)
2 + (ũ)2]. (18)
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Fig. 5. Setup for feedback control design

By using such a quadratic cost for a system driven by white

noise, we are in the standard setup of H2-optimal control. This

is exhibited by rearranging the blocks into the “generalized

plant” model of Figure 5; in this setup, the design objective

is to find a controller K that internally stabilizes the feedback

loop and minimizes the norm

‖T (s)‖2H2
=

1

2π

∫ ∞

−∞

T (jω)∗T (jω)dω

of the closed-loop transfer function T (s) between exogenous

noises (v, vρ) and the vector of penalized variables (k1e, ũ).
For background on this classical problem we refer to [28].

The state-space realization of the generalized plant G incor-

porates a realization for Rρ(s), yielding an augmented state

x = [ñ, m̃, ρ, ρ̇]T , and is given as follows:

G(s) =





Â B̂1 B̂2

Ĉ1 0 D̂12

I 0 0,



 , (19)

in terms of the block matrices

Â =

[
A 0
0 Ar

22

]

, B̂1 =

[
B1 0
0 Br

12

]

, B̂2 =

[
B2

0

]

,

where Ar
22 =

[
0 1

−ω2
r −2ζωr

]

, Br
12 =

[
0

κrω
2
r

]

;

Ĉ1 =
k1
k2

[
−p0u

∗ −p0 θp∗ 0
0 0 0 0

]

, D̂12 =
1

k2

[
−k1p0n

∗

1

]

.

The penalized output corresponds to the cost in (18), except

we divided by the constant k2 = (1 + (k1p0n
∗)2)

1

2 , which

provides the simplifying normalization D̂∗
12D̂12 = 1. Under

these conditions, it is shown in [28] that the optimal H2

controller is a static state-feedback law

ũ = −Fx = −(B̂∗

2X + D̂∗

12Ĉ1)x, (20)

where X is the stabilizing solution to the Algebraic Riccati

Equation

(Â∗ − Ĉ∗

1 D̂12B̂
∗

2 )X +X(Â∗ − B̂2D̂
∗

12Ĉ1)

−XB̂2B̂
∗

2X + Ĉ∗

1 (I − D̂12D̂
∗

12)Ĉ1 = 0. (21)

The expression for the optimal cost from [28], undoing the

normalization is:

J2 = k22 trace(B̂1XB̂T
1 ). (22)

The design knob in the problem is the parameter k1; as

it becomes larger, the tracking error takes priority in the

objective, resulting in better performance. This has a limit,

however: as ũ is penalized less in relative terms, it will

become larger and nonlinear effects come into play, most

seriously saturation of u(t) ∈ (0, 1], which breaks the feedback

and deteriorates performance. To keep units normalized, it is

convenient to specify k1 as a multiple of 1
p0n∗

.

V. IMPLEMENTATION AND PERFORMANCE

We have designed an optimal controller to be run by a

demand aggregator for the purpose of tracking a regulation

signal received from the SO. We now describe a distributed

implementation of this controller, with particular focus on the

required communication between aggregator and loads.

The information required by the aggregator is the full-state

(n,m, ρ, ρ̇); it receives ρ(t) with a high sampling rate from

the SO, and as argued above ρ̇(t) is easily estimated. In

regard to the population states n(t) and m(t), these can be

easily tracked with minimal communication with the loads: the

aggregator only needs to be notified when each load arrives,

runs out of laxity or leaves the system. The signal u(t) can be

broadcast periodically by the aggregator to loads, for instance

upon reception of a new sample of the regulation directive.
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Fig. 6. Tracking a regulation signal with deferrable, tunable power loads.

Loads can keep track of their own laxity and switch to

nominal power upon its expiration, so this part of the actuation

is fully decentralized, and guarantees deadlines are met. In

terms of applying the service level u(t) (fraction of nominal

power) to the n(t) loads with remaining laxity, the simplest

situation is for loads (e.g. electric vehicles) with tunable power,

which can follow u(t)p0 almost instantaneously. We focus on

this case first, below we discuss other situations.

A. Simulation results

To validate our approach we employ a detailed simulation

of the deferrable load system at the microscopic level. This

is a discrete event simulator, in which fresh loads arrive at

random times, each one with a random service time and

laxity. The reference input is a regulation test signal, preloaded

from PJM [21]. At each event, the simulator updates the

population variables, and the deferral signal u in (20). The

control signal is used to determine the processing rate p0u for

loads, from where the departure or laxity expiration events are

endogenously calculated. We record state, control and power

output variables. This setup is thus reproducing, as closely a

possible, a real experimental situation.

Our first result shows that the method works extremely well

when the number of active loads is in the order of 300, a

situation that could apply to an EV garage. The parameters

τ = 3 h, L = 6 h, p0 = 6.6 kW are chosen with this case in

mind. Taking an arrival rate of λ = 1 load/min and u∗ = 0.5,

the equilibrium point is n∗ = 240, m∗ = 60, p∗ = 1188KW .

The regulation amplitude offered is θmax = L/(L+τ) = 0.66.

We chose a value k1 = 3
p0n∗

for the tradeoff parameter.

We ran a 12 h simulation, two hours of which are shown

in Fig. 6. We show the PJM target value p∗(1 + θρ(t))
together with the power output p(t) of our H2 system, which

qualitatively achieves very close tracking.

We computed the empirical RMS values of the tracking

error e from (17) and the command signal u, and the resulting

empirical estimate for the cost, Ĵ2. We obtain

‖e‖RMS = 17.4kW ; ‖ũ‖RMS = 0.1661;

Ĵ2 = k21‖e‖2RMS + ‖ũ‖2RMS = 0.0287.
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Fig. 7. System operation with a low load population.

A first point is model validation; we compare the cost with

the theoretical value from (22), which gives J2 = 0.0304.

This close match (6% error) indicates that in this regime, the

linearized model is approximating well the system dynamics.

A second comment is that the RMS tracking error is only 1.5

% of the average power, quantifying the excellent regulation

service provided. For additional evaluation we computed a

performance score used by PJM to rank regulation resources

[20]. This score is calculated comparing the reference signal

with the actual response form the system and is the average

of three components: correlation, delay and precision; all of

them measured in a scale from 0 to 1. A score of 0.75 is

required for participation in the market, and values above

0.9 are considered excellent. The score corresponding to our

control system was found to be 0.978, indicating a highly

satisfactory performance.

To test the limits of our procedure, we try operating the

system with an order of magnitude fewer loads, reducing the

arrival rate to λ = 0.1 load/min, with the other parameters

unchanged. Our mean load counts are now n∗ = 24,m∗ = 6.

Figure 7 plots 4 hours of simulation with the same test signal,

showing the power tracking and also the control signal u.

A degradation of tracking performance is easily observed,

the RMS error is now 10% of the reference signal. The

variation of u(t) increases (‖u‖RMS = 0.2, 40% of u∗); from

the figure we see that it oscillates fully within its range, at

certain times hitting its limits. In this scenario it is expected

that nonlinearities will come into play: indeed the comparison

of the empirical and theoretical H2 cost now gives a greater

discrepancy:

Ĵ2 = 0.083, J2 = 0.1162;

the linearized model is overestimating variances by 40%. Still,

even in this taxing regime the PJM score is at 0.89, within

acceptable limits for frequency regulation service.



B. ON/OFF and heterogeneous loads

We briefly comment here on the application of the same

control system to other scenarios of interest. Due to space

limitations, we refer to the thesis [3] for extensive details.

A first extension is to consider loads which are not tunable

in power, but rather can only be ON at power p0 or OFF,

always with laxity in their service time. For instance water

heaters, pool pumps, etc. may fall in this category. In that

case we can emulate the power consumption of the aggregate

through randomization: upon receipt of u(t) ∈ [0, 1] a load

with laxity turns itself ON with this probability; the law of

large numbers implies that the aggregate consumption will be

close to u(t)n(t)p0. In fact, to accumulate a balancing power

of sufficient entity with these smaller loads, an aggregator must

handle large numbers. Simulations reported in [3], [4] verify

the very close reference tracking achieved by this method.

The randomization approach can also provide another ex-

tension, required for such broader load categories: allowing for

heterogeneous nominal power. To handle this diversity with a

macroscopic view, we design our controller for the mean rating

p0, and rely again on the law of large numbers to guarantee

that switching ON independently with probability u loads of

the deferrable class, their aggregate consumption approximates

unp0; this was also tested successfully in [3].

One limitation of randomization is that if ON/OFF decisions

are made at every step, a large number of service interruptions

results, which may not be acceptable. The challenge is to miti-

gate this issue without a centralized management of individual

loads by the aggregator. In [3] we developed and tested a

heuristic method to enforce a limit #maxint
i on the number of

interruptions, in a decentralized way: every time a load turns

ON, it stays so for a minimum time Ti = τi/(#maxint + 1).
Under this behavior, the aggregator cannot count on its current

value of u being instantaneously in force; what it can do is

track the real fraction ur := nON

n
of loads which are ON,

and issue to responsive loads a directive meant to align ur

with u. We remit details to [3]; simulations there show that

performance degrades severely if no interruptions are allowed,

but with an average of the order of 2 interruptions per load, a

very high PJM score can be achieved in this way.

VI. CONCLUSIONS

We have shown a methodology for an aggregator of de-

ferrable loads to provide frequency regulation to the electric

grid. A simple, scalar directive from the aggregator specifies

the level of service deferral, and is controlled in feedback to

track a directive from the SO.

The design of this feedback is reduced to the setting of

H2 control, through a macroscopic dynamic model in the

form of a stochastic differential equation, suitably linearized.

Simulations validate the excellent performance achievable by

this system for a moderate scale of aggregation.

The control is directly applicable to loads with tunable

power, such as EVs. For ON/OFF loads, the main implementa-

tion challenge is to handle constraints on service interruptions.

A heuristic approach was outlined in [3], a more formal

treatment is a topic of future research.
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