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connections: fairness and stability
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Abstract—This paper studies network resource allocation be-
tween users that manage multiple connections, possibly through
different routes, where each connection is subject to congestion
control. We formulate a user-centric Network Utility Maxi-
mization problem that takes into account the aggregate rate a
user obtains from all connections, and propose decentralized
means to achieve this fairness objective. In a first proposal,
cooperative users control their number of active connections
based on congestion prices from the transport layer, to emulate
a suitable primal-dual dynamics in the aggregate rate; we show
this control achieves asymptotic convergence to the optimal user-
centric allocation. For the case of non-cooperative users, we show
that network stability and user-centric fairness can be enforced
by a utility-based admission control implemented at the network
edge. We also study stability and fairness issues when routing of
incoming connections is enabled at the edge router. We obtain
in this case a characterization of the stability region of loads
that can be served with routing alone, and a generalization of
our admission control policy to ensure user-centric fairness when
the stability condition is not met. The proposed algorithms are
implemented at the packet level in ns2 and demonstrated through
simulation.

I. INTRODUCTION

THE issue of fairness in resource allocation is fundamental

to any shared infrastructure; as such it appears naturally

in telecommunication networks. An important question in the

network case is at which level of granularity or protocol layer

should fairness be imposed. The main trend in networking

research in recent times has been to seek fairness in the

transport layer, between the allocated rates of end-to-end

flows (or connections) traversing a network. Following the

seminal work of Kelly et al. [17], this problem can be framed

in terms of Network Utility Maximization (NUM), which

captures various fairness notions between flows, including

simplified yet powerful models of deployed TCP congestion

control mechanisms, see [35]. The success of this methodology

has projected NUM also into lower layers (routing, medium

access, etc.), as a unifying technique to encompass multiple

control mechanisms under a common fairness goal, see [6].

From the standpoint of network users, however, is the

resulting fairness notion adequate? On the contrary, it appears

that a higher layer aspect interferes: users can open an arbitrary

number of connections across the network, skewing the overall

rate allocation. In fact, aggressive applications often use this

technique to vie for a larger share of the bandwidth “pie”, but

even non-strategic users who happen to overload a common

resource will be rewarded by a higher allocation. Therefore,
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as argued in [3], we must go beyond flow-rate fairness for a

more relevant view of network resource allocation.

In this paper, the object of fair allocation is a set of users;

by definition, each user owns a set of connections, possibly

through different routes. Our goal of network efficiency and

fairness is the rate allocation between users, in a manner

that optimizes a user-centric NUM problem. To achieve this

objective, we propose to actively control the number of

flows per user, assuming the underlying per-flow allocation

is unchanged from the aforementioned standard models of

congestion control. We now outline our contributions, other

related work is summarized in Section II.

Our first result, presented in Section III, is related to the

motivation of users to increase the number of active flows.

We show, under fairly general assumptions on the network

topology, that the aggregate rate a user obtains in a certain

route increases with the number of connections in this route,

when the competing connections are fixed; thus users’ selfish

incentives are aligned with increasing connection numbers

beyond limit, a mutually destructive outcome.

Achieving user-centric fairness therefore requires control-

ling connection numbers; in Section IV we analyze whether

this objective is achievable in a decentralized fashion, assum-

ing temporarily that users are cooperative. Since connections

may use different routes, the required dynamics of aggregate

rates are of the form of multi-path congestion control, which

is well known to suffer from oscillations. We propose for this

purpose a new variant of primal-dual congestion control which

is shown to be globally asymptotically stable, and is well

suited for implementation through a connection-level dynam-

ics, using available congestion feedback from the network.

Since user cooperation cannot be counted on, in Section

V we propose a decentralized admission control rule, based

on user utilities and thus tailored to our proposed user-centric

fairness. We analyze the performance of this control under a

traffic model of random connection arrival/departures, through

a fluid limit argument. The mechanism is shown to protect the

network from greedy users, imposing in situations of overload

the desired notion of fairness.

In Section VI we turn our attention to the related problem

of connection-level routing: users bring end-to-end jobs to

transfer, with routes chosen by the network. While each indi-

vidual connection remains single-path, users may now profit

from several routes. We characterize the stability region of this

problem, and give conditions under which it is attainable by

a simple congestion-based routing policy. We also show how

to combine admission control and routing to provide stability

and fairness when the loads exceed the natural stability region.
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Finally, we provide in Section VII packet-level simulations

to test the proposed algorithms in practice. The algorithms

are implemented in ns2, either at the end-hosts for the

cooperative control case, or at the edge router in the admission

control/routing cases. Our simulations validate the accuracy

of our model predictions, in particular exhibiting the desired

fairness. Conclusions are presented in Section VIII, and an

Appendix contains some of the proofs. Partial versions of these

results were presented in [10], [11]; for more extensive details

we refer to the thesis [9].

II. RELATED WORK

Our work touches on several topics that have been studied

in other references; these are now overviewed.

The impact of parallel TCP connections on aggregate

throughput is analyzed in [13], experimentally and invoking

the TCP rate formulas of [30]. In [40] these formulas are used

for an analysis of strategic user incentives in a single bottle-

neck network. Our analysis, based on the NUM framework,

enables us to generalize the conclusions to arbitrary network

topologies, as well as different notions of flow-rate fairness.

Multi-path congestion control involves endowing each end-

to-end connection with multiple paths over which to send

traffic, with the capability of controlling each path rate.

This has been analyzed from a theoretical perspective in the

NUM setting already in [17], for so-called primal algorithms

that solve a barrier approximation to NUM; [14], [18] later

analyzed the delay stability of this solution. For the exact

NUM problem, the difficulty that appears is the lack of strict

concavity of the objective function, which leads to oscillations

in gradient-type methods. In this respect, the pure dual algo-

rithm considered in [36] yields a discontinuous dynamics that

chatters around the equilibrium value, converging only in a

mean sense. In [37] this is addressed by replacing the objective

function by a strictly concave approximation, thus leading to

a stable approximate algorithm. Another strategy to obtain

strict concavity is the so-called proximal optimization method,

which was applied to multi-path TCP in [25], leading to

discrete time algorithms that converge under suitable step size

conditions. Non-strict concavity also compromises stability of

primal-dual control laws (see [8]); in this regard, our proposal

of Section IV provides a new, globally convergent primal-dual

law that could be applied to the multi-path TCP problem. From

a practical perspective, there is an ongoing discussion in the

IETF on multi-path TCP implementations, see e.g. [23], [33],

[39]. In contrast to these transport layer implementations, our

main motivation here is to use the analysis as a basis for con-

trolling the number of (individually single path) connections

to achieve efficiency and fairness in the aggregate rates.

The use of connection-level control to modify the resource

allocation provided by the network was proposed in [4], [5],

in the context of wireless networks. Motivated by the high

loss rate in these environments, which tampers with adequate

congestion feedback, the authors propose an Inverse-Increase

Multiplicative-Decrease algorithm to adjust the number of

connections, an application layer strategy that imposes a

certain resource allocation on the problem, overcoming the

lossy wireless channel. Our results of Section IV rely on

the same type of control but take the strategy further, to

impose an arbitrary desired fairness model on the aggregate

rates of a set of users over possibly multiple paths. This

proposal is philosophically aligned with the suggestion of [17]

that user-specific utilities can be reconciled with congestion

control protocols by adjusting a weight parameter in the

latter. However, adjusting the number of connections is more

amenable to implementation at the application layer, without

changing the current transport layer. A recent reference on

the latter strategy is [38]. Our approach has similarities to

the “coordinated congestion control” studied in [21], but there

are differences in the optimization objective sought and the

connection dynamics considered.

Another way to take connection dynamics into account

is through a queuing model for network flows, modeled by

stochastic processes or their fluid limits, for which TCP

resource allocation is a service discipline. In this line, [1], [7]

showed that the natural stability condition (all average link

loads less than their capacity), is indeed sufficient for stability

in the memoryless case. This analysis has been extended in

several ways in [24], [26], [32] to more general hypotheses,

particularly in the job sizes. In [14], [20], the corresponding

conditions were given for operation under multi-path TCP;

[20] also shows that an “uncoordinated” control of single-

path connections may not in general be able to stabilize the

complete region. In our work of Section VI we also employ

single-path connections, but we add congestion-based routing

in a way that allows us to cover the full stability region. Other

related work on connection routing is [15], where optimal

routing policies are obtained under the assumption that the

network provides a so-called balanced fair allocation; this

however does not apply to typical congestion control protocols.

Note, finally, that such stochastic stability results are of an

open-loop nature: either the loads are stabilized and users are

satisfied, or the network is unstable, and this is independent

of the congestion control applied. Some authors [16], [27]

have argued from here that admission control of connections

is required. While any reasonable admission control may over-

come such instability by discarding excess connections, the

distinguishing feature of our utility-based admission control of

Section V is that a desired fairness between users is imposed

in such situations of overload.

III. FLOW-LEVEL FAIRNESS LIMITATIONS

We consider a network composed of links, indexed by

l, with capacity cl, and a set of paths or routes, indexed

by r. End-to-end connections (flows) travel through a single

path, specified by the routing matrix R (Rlr = 1 if route

r contains link l, and 0 otherwise). xr denotes the rate

of a single connection along route r. Let nr denote the

number of such connections, with ϕr = nrxr denoting the

aggregate rate. The rate through link l can be expressed as

yl =
∑

r Rlrϕr =
∑

r Rlrnrxr.

Connections present in the network regulate their rate

through some congestion control mechanism, which we model

(c.f. [35]) as seeking the solution of the following convex

optimization:
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Problem 1 (Congestion control): For fixed {nr}, nr > 0,

max
ϕr

∑

r

nrUTCPr

(

ϕr

nr

)

,

subject to the capacity constraints yl 6 cl ∀l.
The above optimization provides a notion of “flow-rate

fairness”, where UTCPr reflects the choice of the congestion

controller,1 and this utility is assigned to the individual connec-

tion rate xr = ϕr/nr. These utilities are assumed increasing

and strictly concave; we focus here on the usual α−fair family

[29], which satisfies U ′
TCPr(xr) = wrx

−α
r , and encompasses

many commonly used fairness models.

Decentralized methods to solve Problem 1 involve the use

of duality. Let pl denote the Lagrange multipliers (prices) as-

sociated with each link constraint, and qr denote the aggregate

route prices

qr =
∑

l

Rlrpl. (1)

The Karush-Kuhn-Tucker (KKT) conditions for Problem 1

include U ′
TCPr(ϕr/nr) = qr, equivalent to the demand curve:

xr =
ϕr

nr
= fTCPr(qr), (2)

with fTCPr = [U ′
TCPr]

−1. In particular, for α−fair utilities

fTCPr(qr) = w′
rq

−1/α
r .

Therefore, congestion control algorithms behave as de-

centralized ways to solve Problem 1, where UTCPr reflects

protocol behavior. This in turn defines a mapping Φ : n 7→ ϕ
where, given the number of connections n = (nr) in each

route, the resource allocation ϕ = (ϕr) is calculated as

the solution of the Congestion Control Problem 1. From a

user perspective, for a given number of connections in each

route, the allocated resources are determined by this flow-

rate fairness. However, a user vying for more resources may

challenge this by opening more connections. We have the

following result, proved in the Appendix:

Theorem 1: Assume that R has full row rank. Then the map

ϕ = Φ(n) above is such that:

∂ϕr

∂nr
> 0 ∀r, n.

This result implies that greedy users have incentives to in-

crease the number of connections to bias the resource al-

location over any network topology.2 Moreover this holds

independently of the utility used by the congestion control

layer, i.e. the underlying algorithm. Formalizing this further,

assume each user has an increasing and concave utility Ui(ϕ
i)

modeling its valuation of the total rate ϕi obtained from

the network, and each strategically chooses the number of

connections. In this connection game, Theorem 1 implies that

a dominant strategy is to increase the number of connections

along any route. If a subset of greedy users behave in this

way, the number of ongoing connections will grow without

1To simplify the notation, we use UTCP for the utility of the lower layer
congestion controller, of which TCP is a particular case.

2The hypothesis on R is typically a non-issue since there are more routes
than links in the network.

bounds, an undesirable scenario. This formalizes and exhibits

the limitations of flow rate fairness mentioned in [3].

A non strategic way of taking users into account is through

stochastic models for demand. Here connections arrive on

route r as a Poisson process of intensity λr, with each connec-

tion bringing a random amount of workload with mean 1/µr.

For each network state (nr), rates are assigned according to

Problem 1. This model was first analyzed in [1], [7], where

under the hypothesis of exponentially distributed workloads,

the stochastic process nr is stable provided:
∑

r

Rlrρr < cl ∀l (3)

where ρr = λr/µr is the average load on route r. This stability

condition has also been extended in different ways in [25],

[26], [32], in particular to general workload distributions.

The stochastic stability of this system is therefore character-

ized. However, congestion control plays no role in enforcing

stability: if (3) is not satisfied, the number of ongoing connec-

tions will grow without bounds, up to a point where user im-

patience comes into play and connections are dropped. Some

authors [16], [27] argued that the above situation requires

admission control of connections. While simple admission

control rules may overcome instability, the remaining question

is how to carry it out in a way that fairness between users is

taken into account. We now investigate further this notion of

fairness.

IV. USER-CENTRIC FAIRNESS OVER MULTIPLE PATHS

Assume that there is a set of users, indexed by i, which

open connections in the network. Each user therefore has

a set of routes r and receives an aggregate rate of service

ϕi =
∑

r∈i ϕr. Let Ui be an increasing and concave utility

function that models user preferences instead of protocol

behavior. The associated user-centric notion of fairness can

be expressed through the following NUM problem:

Problem 2 (User Welfare):

max
ϕr

∑

i

Ui(ϕ
i)

subject to link capacity constraints yl =
∑

r Rlrϕr 6 cl ∀l.
Here, the sum in the constraints is done over all the network

routes. Each route is associated with a single user, and if

several users open connections along the same path, we

duplicate the index r accordingly. Note also that the above

framework is very general, with a user defined as a set of

routes. This can model users downloading data from several

locations, multiple parallel paths, the single-path case, etc.

A first step in our analysis will be to assume that users

cooperate by controlling the aggregate rate on each route:

we will construct a dynamics for the ϕr that globally drive

the system to the desired optimum, and then analyze how to

implement it through connection level control. Consider the

Lagrangian of Problem 2:

L(ϕ, p) =
∑

i

Ui(ϕ
i)−

∑

l

pl(yl − cl)

=
∑

i

Ui

(

∑

r∈i

ϕr

)

−
∑

r

qrϕr +
∑

l

plcl. (4)
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The KKT conditions that characterize the saddle point of L
on (4) imply that for each r,

either U ′
i

(

∑

r∈i

ϕ∗
r

)

= q∗r ,

or U ′
i

(

∑

r∈i

ϕ∗
r

)

< q∗r and ϕ∗
r = 0. (5)

In particular, (5) implies that U ′
i(ϕ

i,∗) = q∗i := minr∈i q
∗
r , i.e.

user i only sends traffic through minimum price paths. While

ϕi,∗ is determined by the above, the optimal rates ϕ∗
r need not

be unique. Problem 2 coincides with the multi-path congestion

control problem considered in [36], so a number of distributed

approaches are available to drive ϕr to the optimum. However,

some difficulties appear due to the lack of strict concavity in

the objective, which often leads to oscillatory behavior. Our

proposal is to use a variant of the primal-dual dynamics with

an additional damping term to obtain convergence. Consider

the following control law:

ϕ̇r = kr
(

U ′
i(ϕ

i)− qr − νq̇r
)+

ϕr
, (6a)

ṗl = γl(yl − cl)
+
pl
, (6b)

where y = Rϕ, q = RT p as before, and the gains kr, γl, ν >
0. (·)+v is the positive projection, which verifies (u)+v = 0
whenever v = 0 and u < 0, otherwise (u)+v = u.

Algorithm (6) is a modified primal-dual algorithm in which

end users adjust their rates according to a predicted route

price qr + νq̇r, thus anticipating possible changes. This idea

first appeared in [31] in the context of combined multi-path

congestion control and routing. Note that this damping term

does not affect the equilibrium, and due to the use of the

projection, the equilibrium of (6) verifies the KKT conditions

(5). We have the following:

Theorem 2: Under the control laws given in equation (6),

all trajectories converge to a solution of Problem 2.

The proof is based on the following Lyapunov function:

V (ϕ, p) =
∑

r

(ϕr − ϕ∗
r)

2

2kr
+
∑

l

(pl − p∗l )
2

2γl
+ ν(cl − y∗l )pl,

(7)

where (ϕ∗, p∗) is an equilibrium and y∗ = Rϕ∗. Note that

V > 0 for every ϕ, p > 0, in particular the last term is non-

negative due to the Problem constraints y∗l 6 cl and pl > 0.

Also, this term vanishes in any equilibrium due to (6b), which

in turn imposes the complementary slackness condition. The

full derivation is presented in the Appendix.

Theorem 2 shows that the dynamics (6) become a good

alternative for multi-path congestion control. This algorithm

is decentralized, since it only assumes that user i can control

the rate on its own routes, using only the total route price

and its derivative. However, instead of changing congestion

control procedures, we would like to derive connection-level

controllers that use the number of ongoing connections to drive

the system to equilibrium. This way, individual connections

relay on current transport layer protocols, which hide the

network complexity. The application layer then controls ϕr

only indirectly through the number of connections. We now

address this issue.

NetworkTCP 
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Fig. 1. Block diagram of the proposed connection level control

A. Connection-level control

We propose now a connection level dynamics for nr, the

number of connections on each route. In order to achieve this,

we shall consider a way to control nr such that ϕr = nrxr
follows equation (6). Note that in this case ϕ̇r = ṅrxr+nrẋr.

Consider the following control law:

ṅr = nr

[

k
(

U ′
i(ϕ

i)− qr − νq̇r
)

− ẋr
xr

]

. (8)

With this choice, it is easy to check that ϕ̇r =
kϕr

[

U ′
i(ϕ

i)− qr − νq̇r
]

, which is similar to (6) but with a

state-dependent gain kϕr.

The problem under consideration is best explained through

Fig. 1: on the right, we represent the network by an entity that

receives aggregate rates ϕr, and returns congestion prices qr
per route. These are used by congestion control to generate

the rate xr per connection; thus the inner loop represents TCP

congestion control, for fixed nr. What we wish to design

here is the outer loop (which operates at a slower time-

scale), controlling the nr such that the overall dynamics of

ϕr achieves the desired user-centric fairness.

For further clarity, and to facilitate implementation, it is

convenient to rewrite the dynamics of nr in terms of the

congestion price, eliminating the variable xr. Assume that

congestion control can be modeled using utilities from the

α−fair family, we have U ′
TCPr(xr) = wrx

−α
r or equivalently

xr = fTCPr(qr) = (qr/wr)
−1/α. The last term can be

rewritten as

ẋr
xr

= − 1

α

q
−1/α−1
r

q
−1/α
r

q̇r = − q̇r
αqr

and therefore the dynamics of nr becomes

ṅr = nr

[

k
(

U ′
i(ϕ

i)− qr − νq̇r
)

+
q̇r
αqr

]

. (9)

We have the following:

Proposition 1: The connection-level dynamics (9) globally

stabilizes the equilibrium of Problem 2.

The proof is based on a Lyapunov function similar to (7),

with a minor modification to account for the state-dependent

gain kϕr (see Remark 3 in the Appendix). Observe also that

in equation (9), the predictive terms in q̇r play opposing roles.

This suggests considering the simpler control law

ṅr = knr

(

U ′
i(ϕ

i)− qr
)

; (10)
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in fact when translated to ϕr, this yields dynamics very similar

to (6), with derivative action in the control of ϕ̇r, except

that the damping parameter νr = (αkqr)
−1 is time varying

and route dependent, which is not compatible with our earlier

stability argument. Extending the proof to this case remains

open at this time. For the single-path case, we proved in [10]

that the above dynamics are locally asymptotically stable.

Also, the control law (9), while having guaranteed global

properties, uses the derivative action term which can be hard to

implement in practice due to noisy measurements of the price.

The simpler law (10) is more amenable to implementation,

and extensive (both fluid and packet level) simulations show

that it is well behaved [9]. In Section VII we shall explore a

packet-level implementation of the latter mechanism.

V. UTILITY BASED ADMISSION CONTROL

The model in Section IV is applicable to the case where

users cooperate by opening or closing connections based

on an appropriate feedback from the network. Since selfish

incentives of users do not encourage this behavior, we cannot

generally count on this cooperation. In such cases, the network

must take the role of controlling connection numbers, for

which the simplest means is admission control. This approach

was advocated in [27], where a stochastic model of connection

arrivals and departures is discussed, and admission control

is used to ensure the stochastic stability of the system when

the average load is larger than the link capacity; this is done

without addressing fairness in the resulting resource allocation.

We now would like to derive a decentralized admission control

rule, that can be enforced at the network edge, and such that

in case of overload resources are allocated according to the

User Welfare Problem 2.

From our analysis in Section IV, we see that in order

to achieve fairness, each user must increase its number of

connections whenever U ′
i(ϕ

i) > qr, i.e. the user marginal

utility is greater than the current congestion price. If on the

other hand the inequality reverses, the number of connections

must be decreased. Consider the following admission control

rule for incoming (new) connections:

If U ′
i(ϕ

i) > qr → admit connections on route r.

If U ′
i(ϕ

i) 6 qr → drop connections on route r. (11)

where ϕi =
∑

r∈i ϕr, as before. We call this rule Utility

Based Admission Control. Equation (11) imposes a limit on the

number of connections a given user is allowed, and therefore

a strategic user will not get a larger share of bandwidth

simply by opening more connections, as in Theorem 1, since

eventually the admission condition will not be met. In a

scenario where all users are pushing the limits, the network

will operate in the region U ′
i(ϕ

i) ≈ qr for all r, i, which are

the KKT conditions of Problem 2.

We now formalize these arguments using a stochastic model

for the system. We discuss first the single-path case, and

postpone the discussion of the multi-path case to Section V-C.

A. Admission control in the single path case

In the single path case, each user i is associated with a

single route r, and thus we can write Ur for the user utility

function instead of Ui. In this case, the rule (11) reduces to:

if U ′
r(ϕr) > qr → admit connection,

if U ′
r(ϕr) 6 qr → drop connection. (12)

Assume each user on route r opens connections, which

arrive as a Poisson process of intensity λr, and bring an

exponentially distributed workload of mean 1/µr. Connection

arrival and job sizes are independent and also independent

between users. Assuming a time scale separation, i.e. that

congestion control operates faster than the connection level

process, the rate at which is connection is served is xr(n) =
ϕr(n)/nr, determined by the solution of Problem 1. Also, the

aggregate rate on route r is ϕr(n) and qr(n) is the route price.

This model was introduced by [1], [7]. When the admission

control rule (12) is added, the process n(t) is a continuous

time Markov chain with the following transition rates:

n 7→ n+ er with rate λr1{U ′

r(ϕr)>qr},

n 7→ n− er with rate µrϕr, (13)

where er is the vector with a 1 in coordinate r and 0 elsewhere,

and 1A is the indicator function.

Without the admission condition, [1], [7] prove that the

Markov chain is stable (positive recurrent) if the loads ρr =
λr/µr satisfy the natural condition

∑

r

Rlrρr < cl for each l. (14)

On the other hand, admission control should stabilize the

system in any situation. This is indeed the case for rule (12).

Proposition 2: The Markov chain given by (13) is stable.

Proof sketch: The proof relies on constructing a suitable

“box” set S = {n : ||n||∞ 6 n0} with n0 large enough such

that, if nr = n0, then the admission condition is violated.

Therefore, the process starting at an empty network cannot

leave S, and since the Markov chain is irreducible, it will

converge to an equilibrium distribution on a subset of the finite

set S. For details see [9].

B. Fluid limit analysis

Now that stability is assured, we proceed to analyze the

fairness of the admission control policy. We will do so by

deriving a suitable fluid model for the system (13). The model

is based in a large network asymptotic. The main idea is to

scale the network size appropriately, by enlarging the capacity

of the links and the arrival rate of flows, such that a law of

large numbers scaling occurs. An important remark is that, for

the scaling to work appropriately, we also have to scale the

user preferences with the size of the network.

More formally, we take a scaling parameter L > 0 and con-

sider a network with link capacities scaled by L, i.e. cLl = Lcl.
We also assign each user a utility UL

r (ϕ) = LUr(ϕ/L). Note

that with this choice, the utility functions verify the following

scaling property:

(UL
r )

′(Lϕ) = U ′
r(ϕ).

That is, the user marginal utility for obtaining L times band-

width in the scaled network is the same that the marginal

utility for the original amount in the original network.
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We denote by ϕL(n) and qL(n) the rate allocation and

route prices in the scaled network, and as before ϕ(n) and

q(n) denote the original values, i.e. L = 1. The following

relationships are direct from the KKT conditions:

Lemma 1: For any L > 0, the resource allocation and route

prices satisfy:

ϕL
r (Ln) = Lϕr(n), qLr (Ln) = qr(n) ∀r.

Using the above relationships, we now derive the fluid

model of the system. To avoid technicalities, we shall replace

the indicator function in (13) by a smooth approximation fǫ,
such that fǫ(x) = 1 if x > ǫ, and fǫ(x) = 0 if x < −ǫ. The

original model can therefore be approximated by:

n 7→ n+ er with rate λrfǫ(U
′
r(ϕr)− qr),

n 7→ n− er with rate µrϕr . (15)

Note that, as ǫ → 0 the above model approximates (13). We

have the following result, proved in the Appendix:

Theorem 3: Consider a sequence of processes nL(t) gov-

erned by equations (15) with λLr = Lλr, cLl = Lcl, µ
L
r = µr,

and utility functions that satisfy

UL
r (ϕ) = LUr

(ϕ

L

)

,

with L > 0 a scaling parameter. Consider also a sequence of

initial conditions nL(0) such that nL(0)/L has a limit n̄(0) >
0. Then, the sequence of scaled processes:

n̄L(t) =
nL(t)

L

is tight and any weak limit point of the sequence converges as

L→ ∞ to a solution of the following differential equation:

ṅr = λrfǫ(U
′
r(ϕr)− qr)− µrϕr, for nr > 0, (16)

where ϕ(n) and q(n) are the allocation maps for L = 1.

Remark 1: We have constrained the dynamics (16) to the

region nr > 0; a complete model would require describing

what happens if the trajectory reaches the boundary. In this

regard, we note that, if the user average loads ρr = λr/µr

satisfy the natural stability condition (14), it is shown in [1]

that the trajectory {nr} reaches zero in finite time. When nr =
0 for some r, the allocation ϕr drops to zero, but then the

arrivals term in (16) would move the state back into positive

values, and then back to zero as service rate appears. Thus the

state will remain “chattering” around zero, and should receive

an average service rate ρr, a behavior that is difficult to express

precisely in ordinary differential equation terms; see [19] for

fluid models that take this aspect into account.

Here, we are mainly interested in the case of overload,

where at least one link capacity is exceeded, and admission

control must apply to some of the users. There might be

certain users that are completely isolated from this overload,

using only non-congested routes; these would be stabilized

as discussed above. Therefore, without loss of generality we

assume henceforth that all participating users share at least one

of the overloaded links; in that case the equilibrium of (16)

will have nonzero nr for all r’s; we can thus avoid boundary

effects when analyzing the local dynamics around equilibrium.

The equilibrium condition for (16) is:

ϕ∗
r =

λr
µr
fǫ(U

′
r(ϕ

∗
r)− q∗r ) = ρrfǫ(U

′
r(ϕ

∗
r)− q∗r ).

Since ϕ∗
r > 0 and fǫ is bounded above by 1, the only

possibilities are:

ϕ∗
r < ρr and |U ′

r(ϕr)− qr| < ǫ or

ϕ∗
r = ρr and U ′

r(ϕr) > qr + ǫ.

As ǫ→ 0 the above translate to:

ϕ∗
r < ρr and U ′

r(ϕ
∗
r) = q∗r or (17a)

ϕ∗
r = ρr and U ′

r(ϕ
∗
r) > q∗r . (17b)

The interpretation of the above conditions is the following:

either the equilibrium allocation for user r is less than its

demand, and the system is on the boundary of the admission

condition, or the user is allocated its full average demand and

admission control is not applied.

We would like to relate this to the User Welfare Problem 2

defined before. Considered the following:

Problem 3 (Saturated User Welfare):

max
∑

r

Ur(ϕr),

subject to Rϕ 6 c and ϕr 6 ρr ∀r.
Problem 3 has the following interpretation: allocate resources

to the different users according to their utility functions, but do

not allocate a user more than its average demand. It amounts

to saturating the users to a maximum possible demand, given

by the value ρr.

We have the following Proposition, whose proof is direct of

the KKT conditions and equations (17):

Proposition 3: As ǫ → 0, the equilibrium points of (16)

converge to the optimum of Problem 3.

Therefore, the equilibrium allocation under admission con-

trol in an overloaded network is a solution of Problem 3. Note

that if traffic demands are very large (ρr → ∞), Problem 3

becomes the original User Welfare Problem 2, and admission

control is imposing the desired notion of fairness. Moreover,

if some users demand less than their fair share according to

Problem 2, the resulting allocation protects them from the

overload by allocating these users their mean demand, and

sharing the rest according to the user utilities. In Section VII

we shall give a numerical example of this behavior.

C. Admission control in the multi-path case

Consider now the situation where the user opens con-

nections on several paths, and obtains utility from the ag-

gregate. Assume that connection arrivals on each path are

independent, following a Poisson process of intensity λr,

and with exponentially distributed workloads of mean 1/µr.

For example, this would be the case of users downloading

data from different sources at the same time. The lower

layers of the network allocate resources as in the single path

situation, and each route has an average load ρr = λr/µr.

Assume that the network implements the admission control

rule (11), controlling the aggregate rate each user perceives.
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In this case, by a similar analysis, the dynamics become

ṅr = λrfǫ(U
′
i(ϕ

i) − qr) − µrϕr, and in the overload case,

the dynamics converges to the solution of:

Problem 4 (Saturated User Welfare (multi-path)):

max
∑

i

Ui(ϕ
i)

subject to Rϕ 6 c, ϕr 6 ρr ∀r.
This in turn implies that the admission control rule (11) applied

to the aggregate load can be effectively used to drive the

network to a fair allocation, even when users demands are

transported over different routes.

VI. CONNECTION-LEVEL ROUTING

The analysis of the preceding section assumes that each

user establishes connections through some set of predefined

routes, possibly with multiple destinations. The user manages

simultaneously several connections over these routes and de-

rives a utility from the aggregate rate. Moreover, the user has

an independent arrival rate λr for each route. We now focus

on a slightly different situation: here, each user has a set of

routes available to communicate with a given destination in

the network. These routes are indifferent for the user, all of

them serving the same purpose. Each user brings connections

into the network, and at each connection arrival, the user or the

edge router may decide over which route to send the data. This

is a typical instance of the multi-path load balancing problem,

but at the connection level timescale.

We consider an adaptation of the stochastic model for

connections of [1], [7] to this problem. Assume that users have

multiple routes available to serve their jobs. User i generates

incoming connections as a Poisson process of intensity λi,
and exponential file sizes with mean 1/µi. Thus ρi = λi/µi

represents the user average load. Here we do not distinguish

between the routes, since each user may be served by a set Ri

of possible routes. As for congestion control, we assume that

the TCP layer can be described as in the Congestion Control

Problem 1. The user or the network may now choose, at the

start of the connection, to which route to send the data from

the set Ri, but each connection behaves independently after

that, following a single specified path throughout its service.

Nevertheless, by appropriately choosing the route, the load

may be distributed across multiple paths.

We formalize a routing policy in the following way: given

the current state of the network, characterized by the vector

n = (nr) of ongoing connections per route, a routing policy

is a selection r ∈ Ri for a new connection. We denote by

Air ⊂ N
N the set of network states such that connections

arriving from user i are routed through route r ∈ Ri. If the

same physical route is possible for many users, we duplicate

its index r accordingly, and N is the total number of routes.

The only general requirement for the routing policy is that

the sets Air are a partition of the space for each i, i.e.:

∑

r∈Ri

1Air ≡ 1 ∀i. (18)

In a fluid limit, the dynamics of the number of connections

under the routing policy {Air} is given by:

ṅr = (λi1Air − µiϕr)
+
nr
. (19)

Here, ϕr = ϕr(n) as before denotes the total rate assigned

to the flows on route r depending on network state. The

saturation (·)+nr
is needed in this case because some routes

may not be used, and thus the number of flows must remain

at 0.

Remark 2: We could have also considered more general

routing policies, in which each routing decision is assigned a

probability pir(n) for each network state. The routing policy

constraint (18) in that case will be the same. However, in the

following we will only focus on deterministic routing policies.

Note also that the sets Air may be quite general. However,

for practical implementation, it is necessary that the routing

policy is decentralized, i.e. the decision of routing a flow of

user i over route r should be based on local information. We

defer this discussion for the moment and focus on necessary

conditions for stability of the system.

A. A necessary condition for stability

Our goal is to characterize the stability region of a routing

policy, with dynamics given by (19). More formally, we would

like to know for which values of ρi the fluid model goes

to zero in finite time. We recall that finite time convergence

of the fluid model is related (c.f. [34, Chapter 9]) to the

stochastic stability of the corresponding Markov chain models.

We will first derive a necessary condition for stability, which

generalizes the stability condition of [1], [7] to the routing

case.

For this purpose, introduce for each user i the simplex of

possible traffic fractions among available routes:

∆i =

{

αi = (αi
r)r∈Ri : α

i
r > 0,

∑

r∈Ri

αi
r = 1

}

.

The following is the main result of this section:

Theorem 4: A necessary condition for the existence of a

policy {Air} that stabilizes the dynamics (19) is that, for each

user i, there exists a split αi ∈ ∆i such that:
∑

l

Rlrα
i
rρ

i
6 cl ∀l. (20)

Condition (20) is the non-strict version of single-path con-

dition (14) for the split traffic loads ρr = αi
rρi. Thus, equation

(20) means that for a routing policy to exist, it is necessary

that the network is “stabilizable”, in the sense that there is

a partition of the user loads such that the underlying single

path network is stable. Of course, if each user has only one

possibility, then ∆i = {1} and we recover the single path

stability condition. The same condition (20) was obtained in

[14] for stochastic stability in the case of multi-path TCP. In

that case, however, the TCP layer must be modified to make

full simultaneous use of the available routes. Here each route

remains single-path, with standard congestion control, and the

routing policy is used to achieve the same stability region,

whenever possible.
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Proof of Theorem 4: Consider the convex and compact

subset of RL, with L the total number of links:

S =

{

z ∈ R
L : zl =

∑

r

Rlrα
i
rρ

i − cl, α
i ∈ ∆i

}

The set S represents the excess of traffic in each link for each

possible split. If (20) is not feasible for a given load vector ρi,
then the set S is disjoint with the closed negative orthant RL

−.

By convexity, there exists a strictly separating hyperplane [2,

Section 2.5], i.e. a fixed p̂ ∈ R
L with p̂ 6= 0 and such that:

p̂T z > a+ ǫ ∀z ∈ S,
p̂T z 6 a ∀z ∈ R

L
−.

The second condition implies in particular that p̂ has non-

negative entries, since if p̂l < 0, taking zl → −∞ we have

p̂lzl → +∞ and therefore the inequality is violated for any

a. Also, since z = 0 ∈ R
L
−, we have that a > 0. Define now

q̂ = RT p̂ and consider the following state function:

V (n) =
∑

i

1

µi

∑

r∈Ri

q̂rnr. (21)

Note that q̂r > 0 and q̂ 6= 0.

Differentiating V along the trajectories of (19) we get:

V̇ =
∑

i

1

µi

∑

r∈Ri

q̂rṅr =
∑

i

1

µi

∑

r∈Ri

q̂r[λi1Air − µiϕr ]
+
nr

>
∑

i

1

µi

∑

r∈Ri

q̂r (λi1Air − µiϕr) ,

where in the last step we used the fact that the term inside

the projection is negative whenever the projection is active. It

follows that:

V̇ >
∑

i

∑

r∈Ri

q̂r
(

ρi1Air − ϕr

)

=
∑

i

∑

r∈Ri

∑

l

Rlrp̂lρ
i
1Air −

∑

i

∑

r∈Ri

∑

l

Rlrp̂lϕr

>
∑

i

∑

r∈Ri

∑

l

p̂lRlrρ
i
1Air −

∑

l

p̂lcl.

In the last step, we used the fact that
∑

r Rlrϕr 6 cl due to

the resource allocation being feasible. Regrouping the terms

we arrive at:

V̇ >
∑

l

p̂l

(

∑

i

∑

r∈Ri

Rlrρ
i
1Air − cl

)

> a+ ǫ > 0,

since zl =
∑

r Rlrρ
i
1Air − cl ∈ S by the definition of

routing policy. We conclude that V is strictly increasing along

the trajectories, and being a linear function of the state, the

number of connections would grow without bounds. Thus (20)

is necessary for stability.

The above Theorem remains valid if we change the policy

1Air by a random splitting policy, possibly dependent on the

state pr(n), since pr(n) must also be in the set ∆i for all n.

We therefore have shown that if traffic cannot be split among

the routes such that each link is below its capacity on average,

then the system cannot be stabilized under any routing policy.

The analogue to the sufficient stability condition in this case

is:

∀i, ∃αi ∈ ∆i :
∑

l

Rlrα
i
rρ

i < cl ∀l, (22)

which is the strict version of (20). The following proposition

is direct from the single-path stability results of [1], [7]:

Proposition 4: If (22) holds, then there exists a routing

policy that stabilizes the system.

Proof: If such a choice of αi
r exists, then the random

splitting policy that sends an incoming connection on route r
with probability αi

r stabilizes the system. This is because the

system is equivalent to a single path process with arrival rates

λiα
i
r due to the Poisson thinning property, and condition (22)

is the stability condition of the single path case.

The above shows that the stability region of this system is

characterized completely. However, the random splitting policy

mentioned in the proof of Proposition 4 is not useful in a

network environment, since it is not decentralized. Each user

must know in advance the average loads of the whole system

in order to select the weights αi
r to fulfill (22).

B. A decentralized routing policy

In a multi-path setting in which each user may choose

among a set of routes, it is natural to try to balance the loads by

using the network congestion prices measured on each route.

A simple feedback policy for routing is, at each arrival, choose

the route with the cheapest price. In our previous notation this

amounts to taking:

Air =

{

n : qr(n) = min
r′∈Ri

qr′(n)

}

. (23)

Implicit in the above equation is some rule for breaking

ties when there are multiple routes with minimum price. Since

congestion price is inversely related with connection rate, this

is equivalent to routing new flows to the path with the best

current rate for individual connections. Note also that this is a

suitable generalization of the Join the Shortest Queue policy

[12]: in fact, in the case of parallel links of equal capacities,

the identification is exact. We shall see in Section VII that

this closed loop policy does not suffer from the problems of

simultaneously using all paths, which can lead to a loss in the

stability region, as analyzed in [20].

We shall investigate the stability of this policy under con-

dition (22). We need the following Proposition, proved in the

Appendix:

Proposition 5: Given n = (nr) ∈ R
N
+ , let ϕr(n) and qr(n)

be the corresponding rate allocation and route prices from the

Congestion Control Problem 1. Choose also αi that satisfies

(22). Then there exists δ > 0 such that:
∑

r

qr(n)α
i
rρ

i −
∑

r:nr>0

qr(n)ϕr(n) 6 −δ
∑

r

qr(n). (24)

The previous bound is similar to the one used in [1]

to prove stability in the single path scenario, but with the

gradient evaluated at the optimum, instead of another feasible

allocation. We now apply this bound to obtain the following

characterization of the routing policy:
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Theorem 5: Suppose (22) holds. Then under the dynamics

(19) with the routing policy given by (23) we have:

∑

r

qrṅr

µi
6 −δ

∑

r

qr (25)

Proof: We have that:

∑

r

qrṅr

µi
=
∑

r

qr
[

ρi1Air − ϕr

]+

nr

6
∑

r

qrρ
i
1Air −

∑

r:nr>0

qrϕr,

where the inequality is trivial if the projection is not active. If

the projection is active, nr = 0 and thus qrϕr = 0 by (28) so

the corresponding negative term can be omitted.

Regrouping the above in each user we get:

∑

r

qrṅr

µi
6
∑

i

ρi
∑

r∈Ri

qr1Air −
∑

r:nr>0

qrϕr

=
∑

i

ρi min
r∈Ri

qr −
∑

r:nr>0

qrϕr

6
∑

i

ρi
∑

r∈Ri

qrα
i
r −

∑

r:nr>0

qrϕr,

where we have used the definition of the routing policy and

the fact that the minimum price can be upper bounded by any

convex combination of the prices. Applying Proposition 5 we

complete the proof.

It remains to see if we can use the inequality (25) to

establish asymptotic stability of the fluid dynamics through

a Lyapunov argument. Although it is tempting to postulate a

Lyapunov function analogous to (21), there is an important

difference: the qr factor of (25) is a function of the state. This

implies that the left hand side of (25) may not be integrated

easily to get a Lyapunov function for the state space whose

derivative along the trajectories yields the desired result.

We focus on a special case where we can give an affirmative

answer. Assume that the network is composed by a set of

parallel bottleneck links. Each user in this network has a set

of routes established in any subset of the links. Moreover,

assume that all users have identical α−fair utilities denoted

by U(·) and file sizes are equal for each user, so we can take

without loss of generality µi = 1.

In such a network, the resource allocation of Problem 1 can

be explicitly computed as a function of the current number

of flows nr. In particular, all flows through bottleneck l face

the same congestion price qr = pl, and as they have the same

utility, they will get the same rate, given by:

xr(n) =
cl

∑

r′∈l nr′
.

By using that qr(n) = U ′(xr(n)) we have:

qr(n) = xr(n)
−α =

(
∑

r′∈l nr′

cl

)α

,

with l such that r ∈ l.
Since qr = pl if r ∈ l the link prices should have the form:

pl(n) =

(
∑

r:r∈l nr

cl

)α

.

We now state the stability result for this type of network,

and defer the proof to the Appendix:

Proposition 6: For the network of parallel links under con-

sideration, let the system be given by (19) with the routing

policy (23). Under the stability condition (22), the state n
converges to 0 in finite time.

We recall that (c.f. [34, Corollary 9.2]) finite-time con-

vergence to zero of the fluid model implies the stability

(ergodicity) of the corresponding Markov chain model.

C. Combining admission control and routing

Let us analyze now the possibility of extending the ad-

mission control rules derived in Section V to the connection

routing setting. Recall that, in order to perform admission

control, we associate with each user a utility function Ui(ϕ
i)

with ϕi being the total rate the user gets from the network.

Admission control over a route was performed by comparing

the marginal utility with the route price. In the new setting,

the end user may choose among several routes, and thus

the natural way to merge the results of Section V with the

connection level routing is the following combined law:

Admit new connection if min
r∈Ri

qr < U ′
i(ϕ

i)

If admitted: route connection through the cheapest path

The network dynamics in this case converges to 0 whenever

the stability condition (22) is met. In the overload case, it can

be shown that the equilibrium is in fact the solution of:

Problem 5 (Saturated User Welfare with Routing):

max
ϕr

∑

i

Ui(ϕ
i)

subject to Rϕ 6 c and ϕi 6 ρi for each i.
The above optimization problem is similar to Problem 3 but

the constraint ϕi 6 ρi is imposed on the aggregate rate of

each user and its total average load.

VII. IMPLEMENTATION AND SIMULATIONS

In this section we discuss practical implementation issues

and investigate the performance of the policies developed

through simulations. We do so in several scenarios: In the first

one we consider the case where users cooperate controlling

their number of active connections in a proactive way, to

achieve a fair resource allocation according to the User Welfare

Problem 2. Then we move on to explore the behavior of

utility based admission control on an overloaded network,

showing that it imposes the desired notion of fairness. Finally

we validate the connection level routing policy proposed in

Section VI-B in an example where uncoordinated control is

known to reduce the stability condition.

A. Scenario 1: Controlling the number of connections.

We implemented a packet level simulation of the control

law (10) in the network simulator ns2 [28]. We have two

users that download data from 3 servers, with the topologies

and link capacities depicted in Fig. 2. In order to introduce

an imbalance between users, routes have different round trip
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C1=4Mbps

C2=10Mbps

C3=6Mbps

User 1

User 2

r=1

r=2

r=3

r=4

Fig. 2. Topology simulated in Scenario 1.

times. Each user then begins with a single TCP connection

per route, governed by TCP/Newreno. With this choice, the

congestion price qr on route r is the packet loss probability

along that route, and this is measured by the users counting

the number of retransmitted packets within connections.

The users then maintain a variable targetN(r) for each

route, which is the target number of connections. This variable

is updated periodically by measuring the current values of ϕi

and qr and integrating (10). For this particular case, we choose

U1(ϕ) = U2(ϕ) = log(ϕ), which will give, in equilibrium, the

proportionally fair allocation ϕ1∗ = ϕ2∗ = 10Mbps.
Each second, a user chooses whether to open or close

a connection on route r by comparing the current num-

ber of connections along that route with the corresponding

targetN(r) rounded to the nearest integer. Results in Fig.

3 show that the number of connections on each route tracks an

equilibrium value, approximating the dynamics (10). The cor-

responding total rate evolves reaching the desired allocation.

This is achieved by splitting unequally the shared link, but in a

decentralized way. A similar scenario, but with uncooperative

users, was presented in [11]; in this case admission control

can be applied, leading to the same allocation.
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Fig. 3. Results for Scenario 1.

C1=20Mbps C2=15Mbps
User 3

User 1 User 2

Fig. 4. Topology for Scenario 2.

B. Scenario 2: Fairness via admission control.

In this case we simulated the linear network topology of Fig.

4, with single-path users that generate connections according

to a Poisson process as in Section V. The network applies

admission control using the rule (12), with utilities chosen

from the α fair family with α = 5 to approximate max-

min fairness. Simulations are performed in ns2 and individual

connections are again controlled by TCP/Newreno. The entry

router is in charge of measuring loss probability along the

routes. This is done in this case by sniffing the connections,

although other approaches such as Re-ECN [3] could be used.

The max-min allocation for this network is ϕ1∗ =
12.5Mbps and ϕ2∗ = ϕ3∗ = 7.5Mbps. In the first simulation,

the user loads are such that the network is overloaded, with

each user load ρi being greater than its fair share. The results

show that the users are admitted n1 ≈ 8, n2 ≈ 10 and n3 ≈ 20
connections in equilibrium, with total rates according to the

first graph in Fig. 5. The max-min allocation is approximately

achieved. Observe that, despite having the same equilibrium

rate than user 2, user 3 is allowed more connections into the

network because its RTT is higher and thus its connections

are slower.

In the second situation, we changed the load of user 2 to

ρ2 = 4Mbps (below its fair share), and it is therefore saturated
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Fig. 5. Results for Scenario 2: fully overloaded case (above) and when one
source is below its share (below).
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as in Problem 3. The resulting rates are shown in the second

graph in Fig. 5. Here admission control is protecting user 2 by

allowing its share of 4Mbps, and reallocating the remaining

capacity as in Problem 3 to ϕ1∗ = ϕ3∗ = 10Mbps, ϕ2∗ =
4Mbps.

C. Scenario 3: Connection level routing.

We now analyze the behavior of the decentralized routing

policy for connections presented in Section VI-B. We do so

in an example first identified by [20], which corresponds to a

network with the following routing matrix:

R =





1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0



 .

The network has 3 links and 3 users, each user with two

available paths: a one-hop or a two-hop route. Links are

of unit capacity. For the case of symmetric loads (ρi = ρ
for users i = 1, 2, 3), it is easily checked that the stability

condition of (22) implies ρ < 1, achievable by applying

each user’s load only in the one-hop path. To satisfy this

allocation at the transport layer, a multi-path TCP protocol that

coordinates path rates would be required; if instead users open

uncoordinated TCP flows in all their routes, it is shown in [20]

that the stability region is reduced to ρi < ρ∗ = 1+2−1/α

1+21−1/α for

α-fair TCP, in particular ρ∗ = 1/
√
2 < 1 for the case α = 2.

In our proposal, each connection remains single path and

there is no rate coordination between them, but connections

are routed to cheapest paths; thus we are able to stabilize the

full region ρ < 1. In Fig. 6 we show simulation results for a

stochastic traffic with loads ρi = 0.8 > ρ∗, starting from an

initial condition of nr = 20 on every route. We can see that

the number of connections on long routes is decreasing, and

eventually the system converges to a stable behavior. We also

show the fluid model trajectory according to dynamics (19)

with the rule (23). The fluid model reaches 0 in finite time,

consistent with the point at which the stochastic simulation

reaches steady state.
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Fig. 6. Results for Scenario 3 and comparison with the fluid model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed resource allocation in networks

from a connection-level perspective, with the intention to

bridge the gap between classical NUM applied to conges-

tion control and the user-centric perspective. New notions of

fairness appear, as user utilities are evaluated on aggregates

of traffic, which can model different interesting situations.

We showed how the control of the number of connections

can be used to impose these new notions of fairness, and

how the users can cooperate in order to drive the network

to a fair equilibrium. Moreover, we showed how admission

control and routing based on typical congestion prices can be

used to protect the network in overload, and simultaneously

impose fairness between its users. Finally, we showed practical

implementations of the mechanisms derived in our work, and

simulations based on these implementations show that the

proposals accomplish their goals.

In future work we plan to address several theoretical and

technical questions that are still open. Stability results for

admission control, and the stability region of the routing policy

proposed are two important theoretical questions. In practical

terms, it would be interesting to explore new network imple-

mentations based on current congestion notification protocols,

that will help make these decentralized admission control

mechanisms scalable to large networks.

APPENDIX

Proof of Theorem 1: Consider the map Φ : n 7→ ϕ
defined by Problem 1. This map is continuous when n > 0
[19]. We will also assume that in a neighborhood of the

solution, all links are saturated (if there are locally non-

saturated links, they can be easily removed from the analysis).

In this case, the KKT conditions of Problem 1 imply:

U ′
TCPr

(

ϕr

nr

)

= qr ∀r,
∑

r

Rlrϕr = cl ∀l.

From the first group of equations we have that:

ϕr = nrfTCPr(qr) ∀r, (26)

and substituting in the link constraints we have that the optimal

link prices must satisfy:

F(n, p) = Rdiag(n)fTCP (R
T p)− c = 0.

Here, diag(n) denotes a diagonal matrix with the entries of

n, c is the vector of link rates and fTCP (R
T p) is the vector

of flow rates determined by the demand curve in each route.

By using the Implicit Function Theorem we have that:

∂p

∂n
= −

(

∂F
∂p

)−1(
∂F
∂n

)

.

Define now the following matrices:

N = diag(n), F = diag(fTCP (R
T p)),

F ′ = diag(f ′
TCP (R

T p)).

The diagonal entries of N and F are strictly positive, and the

diagonal entries of F ′ are negative, since we assume the links
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are saturated and therefore the prices involved are positive.

After some calculations we arrive to:

∂F
∂p

= RNF ′RT ,
∂F
∂n

= RF,

and thus:
∂p

∂n
= −(RNF ′RT )−1(RF ).

Note that the first matrix is invertible since R has full row

rank and the diagonal matrix has definite sign.

We now turn to calculating ∂ϕ
∂n . From equation (26) we have:

∂ϕ

∂n
= F +NF ′RT ∂p

∂n
=
(

I −NF ′RT (RNF ′RT )−1R
)

F,

where I is the identity matrix. We would like to prove that the

diagonal terms of this matrix are non-negative. Since F is a di-

agonal matrix with positive entries, we can reduce the problem

to proving that the matrix M = I −DRT (RDRT )−1R has

positive diagonal entries, where D = −NF ′ is also a diagonal

matrix with strictly positive entries, so
√
D = diag(

√
dii) is

well defined and:
√
D

−1
M

√
D = I −

√
DRT (RDRT )−1R

√
D,

which is of the form I − AT (AAT )−1A. This last matrix

is symmetric and verifies (I − AT (AAT )−1A)2 = I −
AT (AAT )−1A. Thus, it is a self-adjoint projection matrix,

and therefore is positive semidefinite. From this we conclude

that the diagonal entries of
√
D

−1
M

√
D are non-negative,

and since the diagonal entries of M are not altered by this

transformation, M has non negative diagonal entries, which

concludes the proof.

Proof of Theorem 2: Consider the Lyapunov function in

(7). Differentiating along the trajectories we get:

V̇ =
∑

r

(ϕr − ϕ∗
r)

[

U ′
i

(

∑

r∈i

ϕr

)

− qr − νq̇r

]+

ϕr

+
∑

l

(pl − p∗l )(yl − cl)
+
pl
+
∑

l

ν(cl − y∗l )ṗl (27)

Noting that ϕ∗
r and p∗l are nonnegative, we can apply the

inequality (v − v0)(u)
+
v 6 (v − v0)u to get rid of both

positive projections. By inserting the values at equilibrium

appropriately we have:

V̇ 6
∑

r

(ϕr − ϕ∗
r)

(

U ′
i

(

∑

r∈i

ϕr

)

− q∗r

)

(I)

+
∑

r

(ϕr − ϕ∗
r)(q

∗
r − qr) (II)

−
∑

r

ν(ϕr − ϕ∗
r)q̇r (III)

+
∑

l

(pl − p∗l )(yl − y∗l ) (IV)

+
∑

l

(pl − p∗l )(y
∗
l − cl) (V)

+
∑

l

ν(cl − y∗l )ṗl (VI).

Note that (II) = −(ϕ−ϕ∗)T (q − q∗) = −(ϕ− ϕ∗)TRT (p−
p∗) = −(IV) so these terms cancel out. The complementary

slackness condition implies (V) 6 0 since either y∗l = cl and

(V) = 0 or p∗l = 0 and (V) 6 0. To bound (I) we associate

its terms on each user i to get:

∑

r∈i

(ϕr − ϕ∗
r)
(

U ′
i(ϕ

i)− q∗r
)

=

=(ϕi − ϕi,∗)
(

U ′
i

(

ϕi
)

− U ′
i(ϕ

i,∗)
)

+
∑

r∈i

(ϕr − ϕ∗
r)(U

′
i(ϕ

i,∗)− q∗r ).

The first term in the right hand side is 6 0 since U ′
i is

increasing. Each of the terms in the sum is also 6 0 due

to the optimality condition (5), and thus after summing over

i we conclude (I) 6 0. The remaining terms can be grouped

together and after some manipulations we have:

(III) + (VI) = −ν(ϕ− ϕ∗)T q̇ + ν(c− y∗)T ṗ

= ν
∑

l

γl(cl − yl)(yl − cl)
+
pl

6 0,

since each term in the last sum is either 0 or −γl(yl−cl)2 6 0.

We therefore conclude that the function V (ϕ, p) is decreasing

along the trajectories. Stability now follows from the LaSalle

Invariance Principle [22]. Assume that V̇ ≡ 0. In particular,

the terms (I) and (III)+(VI) must be identically 0 since they

are negative semidefinite. Imposing (I) ≡ 0 we conclude that

ϕi = ϕi,∗ for all i and ϕr = 0 for all routes which do not

have minimum price. Moreover, ϕ̇i =
∑

r∈i ϕ̇r = 0 since ϕi

must be in equilibrium. We also have that:

(III) + (VI) = ν
∑

l

γl(cl − yl)(yl − cl)
+
pl

≡ 0

requires that either pl = 0 or yl = cl at all times. Therefore,

ṗ = 0 and p must be in equilibrium. It follows that qr is in

equilibrium, and returning to the dynamics we must have ϕ̇r =
Kr a constant. If ϕ̇r = Kr > 0, it would mean that ϕr → ∞
implying that yl 6 cl is violated at some link, contradicting

ṗl ≡ 0. Therefore, Kr 6 0 and since
∑

r ϕ̇r = 0, we must

have Kr = 0. Therefore ϕr is in equilibrium. We conclude

that in order to have V̇ ≡ 0 the system must be in a point that

satisfies the KKT conditions (5), and therefore the system will

converge to an optimal allocation for Problem 2. Since V is

radially unbounded, the convergence holds globally.

Remark 3: In the case of a state-dependent gain krϕr > 0,

as required for the dynamics (8), we can change the terms

depending on ϕr in (7) to
∫ ϕr

ϕ∗

r

(u−ϕ∗

r)
kru

du, and equation (27)

follows. For further details we refer to [9].

Proof of Theorem 3: The proof is very similar to the

fluid limit result from [19], but with additional considerations

for the admission control term. We shall use the following

stochastic representation of the process nL(t), in terms of

standard Poisson processes with a time scaling. Consider

{Er(t)} and {Sr(t)} to be a family of independent Poisson

processes of intensities λr and µr respectively. Consider also
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the following processes:

τLr (t) =

∫ t

0

fǫ(U
′L
r (ϕL(nL(s))) − qLr (n

L(s))) ds,

TL
r (t) =

∫ t

0

ϕL
r (n

L(s)) ds

Here τr tracks the amount of time the admission condition

is satisfied, and Tr tracks the amount of service provided to

route r. The Markov chain evolution (15) of nL(t) starting at

nL(0) can be written as:

nL
r (t) = nL

r (0) + Er(Lτ
L
r (t))− Sr(T

L
r (t)),

where the term LτLr (t) comes from the fact that the arrival

rate of nL is Lλr.

Define T̄L
r = TL

r /L. Now for each r and t > 0:

T̄L
r (t) =

1

L

∫ t

0

ϕL
r (n

L(s)) ds =
1

L

∫ t

0

ϕL
r (Ln̄

L(s)) ds

=
1

L

∫ t

0

Lϕr(n̄
L(s)) ds =

∫ t

0

ϕr(n̄
L(s)) ds,

where we have used Lemma 1 for ϕL
r . We also have:

τLr (t) =

∫ t

0

fǫ(U
′L
r (ϕL

r (n
L(s)))− qLr (n

L(s))) ds

=

∫ t

0

fǫ(U
′L
r (Lϕr(n̄

L(s))) − qr(n̄
L(s))) ds

=

∫ t

0

fǫ(U
′
r(ϕr(n̄

L(s)))− qr(n̄
L(s))) ds.

Therefore, the process n̄L satisfies the following:

n̄L
r (t) =

nL
r (0)

L
+

1

L
Er(Lτ

L
r (t))−

1

L
Sr(LT̄

L
r (t)),

T̄L
r (t) =

∫ t

0

ϕr(n̄
L(s)) ds,

τLr (t) =

∫ t

0

fǫ(U
′
r(ϕr(n̄

L(s)))− qr(n̄
L(s))) ds.

The conclusion now follows from the same arguments in

[19] applying the hypothesis for nL(0) and the functional

law of large numbers for the processes Er and Sr, namely,
1
LEr(Lu) → λru and 1

LSr(Lu) → µru. Note that the

functions T̄r are Lipschitz since they are the integral of a

bounded function (ϕr is bounded by the maximum capacity

in the network). Also, τLr is Lipschitz because fε is bounded

by 1. We conclude that any limit point of n̄L must satisfy:

n̄r =n̄r(0) + λr

∫ t

0

fǫ(U
′
r(ϕr(n̄(s)))− qr(n̄(s))) ds

− µr

∫ t

0

ϕr(n̄(s))ds.

Differentiating the above equation at any regular point of the

limit, we get the desired result.

Proof of Proposition 5: The proof of the Proposition is

based on the following result, proved in [9]. which deals with

the quantities qr(n)ϕr(n) when nr → 0. Let n̄ be such that

n̄r = 0 for some r. Then we have:

lim
n→n̄,nr>0

qr(n)ϕr(n) = 0 (28)

Since the inequality in (22) is strict, we can choose δ > 0
such that ψr := αi

rρ
i + δ, ∀r is such that Rψ 6 c.

Consider now n > 0. Since ϕ(n) is the optimal allocation,

and ψ is another feasible allocation for the convex Problem 1,

the inner product must satisfy:

∇ϕ

(

∑

r

nrUTCPr(ϕr/nr)

)

(ψ − ϕ) 6 0.

Otherwise, one could improve the utility of solution ϕ by

moving it in the direction of ψ.

Applying the above condition to ψr = αi
rρ

i + δ and using

∂ (
∑

r nrUTCPr(ϕr/nr))

∂ϕr
= U ′

TCPr

(

ϕr

nr

)

= qr(n),

we conclude that:
∑

r

qr(n)
(

αi
rρ

i + δ − ϕr(n)
)

6 0.

The above can be rewritten as
∑

r

qr(n)α
i
rρ

i −
∑

r

qr(n)ϕr(n) 6 −δ
∑

r

qr(n),

which proves the result for n > 0 component-wise.

If now n is such that nr = 0 for some r, we can take limits

from points inside the orthant n > 0 and use (28) to obtain

the result.

Proof: Consider the candidate Lyapunov function:

V (n) =
1

α+ 1

∑

l

1

cαl

(

∑

r:r∈l

nr

)α+1

. (29)

The above function is continuous and non-negative in the

state space, radially unbounded and is only 0 at the equilibrium

n = 0. Its derivative along the trajectories verifies:

V̇ =
∑

l

(
∑

r:r∈l nr

)α

cαl

(

∑

r:r∈l

ṅr

)

=
∑

r

qrṅr. (30)

Invoking Theorem 5 we conclude that V̇ 6 0 in the state

space, and it is only 0 when all prices are 0 which can only

happen at the origin. This implies asymptotic stability of the

fluid dynamics.

To obtain finite time convergence note that V verifies:

V (n) =
1

α+ 1

∑

l

p
α+1

α

l cl 6 (Kmax
l
pl)

α+1

α ,

where K > 0 is an appropriate constant.

We can obtain the following bound:

V
α

α+1 6 Kmax
l
pl 6 K

∑

l

pl 6 K
∑

r

qr,

and thus −δ∑r qr 6 − δ
KV

α
α+1 . Combining this with the

result from Theorem 5 we get V̇ 6 − δ
KV

α
α+1 .

Integrating the above inequality yields:

V (t)
1

1+α 6 V (0)
1

1+α − δ

K(1 + α)
t,

and we conclude that V , and therefore n, reach 0 in finite

time, proportional to V (0)
1

1+α .
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