
15

Controlling the Variability of Capacity Allocations
Using Service Deferrals

ANDRES FERRAGUT and FERNANDO PAGANINI, Universidad ORT Uruguay
ADAM WIERMAN, Caltech, USA

Ensuring predictability is a crucial goal for service systems. Traditionally, research has focused on design-
ing systems that ensure predictable performance for service requests. Motivated by applications in cloud
computing and electricity markets, this article focuses on a different form of predictability: predictable al-
locations of service capacity. The focus of the article is a new model where service capacity can be scaled
dynamically and service deferrals (subject to deadline constraints) can be used to control the variability of
the active service capacity. Four natural policies for the joint problem of scheduling and managing the active
service capacity are considered. For each, the variability of service capacity and the likelihood of deadline
misses are derived. Further, the paper illustrates how pricing can be used to provide incentives for jobs to
reveal deadlines and thus enable the possibility of service deferral in systems where the flexibility of jobs is
not known to the system a priori.

CCS Concepts: � Mathematics of computing → Queueing theory; � Information systems → Data
centers; � Hardware → Smart grid;

Additional Key Words and Phrases: Scheduling, deadlines, service variability, incentives

ACM Reference Format:
Andres Ferragut, Fernando Paganini, and Adam Wierman. 2017. Controlling the variability of capacity
allocations using service deferrals. ACM Trans. Model. Perform. Eval. Comput. Syst. 2, 3, Article 15 (August
2017), 27 pages.
DOI: http://dx.doi.org/10.1145/3086506

1. INTRODUCTION

Controlling variability in service systems is of crucial importance when the goal is
to provide predictable performance. As such, there is a large literature that seeks to
characterize and optimize the variability (and thus predictability) of service systems
through the design and analysis of resource allocation policies. This literature has
provided analysis of the variability of response time and queue occupancy, for example,
see the surveys in Kleinrock [1975] and Harchol-Balter [2013], as well as more detailed
analysis of the tail of the response time and queue length distributions, for example, see
Boxma and Zwart [2007], Wierman and Zwart [2012], Nuyens et al. [2008], Mandjes
and Zwart [2006], and Borst et al. [2000]. These results have had a remarkable impact

The research in this paper has been partially supported by IADB–Ministerio de Industria y Energı́a–Uruguay
ATN/KF 13883 UR (Component 3) and ANII–Uruguay under grant FSE_1_2014_1_102426. Additional fund-
ing for this work was provided by the NSF through grants CNS-1319820, CNS-1518941, and CPS-1545096
as part of the NSF/DHS/DOT/NASA/NIH Cyber-Physical Systems Program.
Authors’ addresses: A. Ferragut and F. Paganini, Universidad ORT Uruguay. Cuareim 1451, 11100, Montev-
ideo, Uruguay; emails: {ferragut, paganini}@ort.edu.uy; A. Wierman, Computing and Mathematical Sciences,
California Institute of Technology, 1200 E. California Boulevard, MC 305-16, Pasadena, CA 91125; email:
adamw@caltech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 2376-3639/2017/08-ART15 $15.00
DOI: http://dx.doi.org/10.1145/3086506

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

http://dx.doi.org/10.1145/3086506
http://dx.doi.org/10.1145/3086506

15:2 A. Ferragut et al.

on applications in service systems, communication networks, and cloud computing. A
recent example of this impact is the literature on controlling the “tail at scale,” which
is highlighted in Dean and Barroso [2013] as one of the fundamental challenges for
Googlés cloud systems.

The focus of this article is on providing predictability in service systems, but our goal
is distinct from that of the classic literature mentioned above. Instead of focusing on the
predictability of performance, we focus on providing acceptable performance (i.e., meet-
ing deadlines), while ensuring predictability of the active service capacity in the system.

Concretely, we study a setting where jobs that are potentially deferrable (i.e., subject
to a deadline constraint larger than its service time) arrive to a service system that has
the ability to dynamically scale the active capacity quickly and efficiently. The caveat
is that the system incurs a cost associated with the variability of the active service
capacity. Thus, the system could choose to scale capacity such that every job can be
served quickly (immediately upon arrival), but this would incur significant expense
due to variability in the active service capacity. Instead, the system would be better
off strategically deferring the service of (some) jobs, while still ensuring deadlines are
met, to smooth the active service capacity. The task of designing a policy for deferring
jobs that minimizes the variability of the active service capacity subject to meeting job
deadlines is delicate and challenging and is our focus in this article.

The discussion above highlights an inherent tradeoff between optimizing the perfor-
mance of jobs and maintaining a flat, predictable active service capacity. This tradeoff is
increasingly common in service systems as the ability to dynamically adjust the active
service capacity emerges. For example, this tradeoff is fundamental when performing
dynamic capacity provisioning in cloud systems. Startups such as Dropbox and Netflix,
which run on top of cloud computing providers such as Amazon EC2 and Microsoft
Azure, typically have the ability to scale computing resources to match demand, which
is highly nonstationary. They contract compute instances through a mixture of long-
term and real-time (on-demand) purchases. Long-term contracts are typically much
cheaper, and so the bulk of compute resources are purchased there and variability is
handled through the (more expensive) on-demand market purchases. Thus, limiting
the variability of capacity has a direct impact on the financial bottom-line (see Zhu and
Agrawal [2010], Vaquero et al. [2011], Liu et al. [2011], and Lin et al. [2013]). In partic-
ular, in recent work (Adnan et al. [2012] and Adnan and Gupta [2014]), the use of defer-
rals has been proposed to decrease variability in service capacity in data-center environ-
ments. Another example where variability is an issue is the case of distributed energy
resources, such as electric vehicle charging stations. These resources often participate
in electricity markets for ancillary services, where there is a direct financial incentive
for controlling variability—participants in ancillary service markets are charged for
the deviations of electricity demand (service capacity) around a target operating point.
Thus, controlling the active capacity is crucial for distributed energy resources that
wish to participate in these markets. See Sortomme and El-Sharkawi [2012], Quinn
et al. [2010], Chen et al. [2014], and Tomić and Kempton [2007] for more details.

1.1. Contributions of this Article

In this article, we introduce queueing models that incorporate service deferral as a
means to control service capacity variability. Our objective is to devise simple and/or
decentralized policies for managing jobs in such a way that overall service capacity
remains as constant as possible, while at the same time guaranteeing job performance
in the sense of meeting their deadlines. The complexity we wish to avoid is in keep-
ing centralized detailed information of individual job properties or having scheduling
commands that must micro-manage individual jobs.

In Section 2, we set up a queueing model in which service deferral is specified by a
scalar parameter, the service level. Jobs arrive with an individual demand for capacity

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:3

as in an M/G/∞ queue, but service is deferred by scaling down capacity to a fraction
u of the demand. The main issue is how the choice of this fraction impacts both the
variability of active service capacity and the ability of jobs to meet their deadlines.

In Section 3, we analyze two implementations for which the service level u has
global meaning. The simplest, Equal Service policy distributes the available capacity
uniformly among all jobs present, scaling down all job capacities to this fraction. The
more complex Least Laxity First (LLF) policy provides maximal capacity to a fraction
u of jobs, choosing those with smallest laxity, that is, spare time. Interestingly, under
exponential service times, the variability of the service capacity is the same under
the two policies. However, LLF significantly outperforms Equal Sharing in terms of
the probability of keeping job deadlines. The downside to this improved performance
is the complexity required to implement LLF: indeed, a centralized scheduler must
be aware of all current job deadlines and make individualized decisions on service for
each job.

In Section 4, we explore two more alternatives that meet our simplicity and de-
centralization requirement and, furthermore, are guaranteed to strictly meet all job
deadlines. Expiring Laxity extends the Equal Service policy to the setting of hard
deadlines, applying the deferred service only to jobs with remaining laxity. Jobs aware
of the laxity expiration can request maximum capacity at this moment, providing a
decentralized means to ensure deadlines. The service variability obtained under this
policy is shown to be, not surprisingly, larger than the Equal Service. The other alter-
native explored is Exact Scheduling; here, each job receives upon arrival the capacity
necessary to complete the job exactly at its deadline. While this implies service levels
are individualized, the policy is also amenable to decentralization, since jobs are aware
of their own deadlines. Again, we analyze variability and find that it improves with
respect to Expiring Laxity, although it is still worse than Equal Service or LLF.

To achieve such decentralized implementation, the preceding strategies must relay
the control at least in part to job owners themselves. The question arises as to what
incentives users would have to participate in this deferral program. For instance, a job
can extract a higher rate simply by declaring no laxity, or equivalently selecting the
maximum capacity in Exact Scheduling. Motivated by this, Section 5 focuses on how
to design a pricing mechanism that can provide incentives for jobs to contribute with
their laxity to the reduction of aggregate variability. We propose for the system man-
ager to offer a monetary reward (discount) to customers that offer flexibility through
revealing deadlines that allow flexibility in allocation of service capacity. Our results
in this section provide a characterization of how to design such discounts to minimize
a combination of service variability and cost (from the payment of the discounts). Our
results provide pricing mechanisms under both the assumption that a model of ag-
gregate customer response is known and in a model-free setting, where the customer
responses must be learned.

Partial results leading up to this article were presented in Ferragut and Paganini
[2015].

1.2. Related Work

The task of understanding (and minimizing) the variability of job performance in queue-
ing systems is classical. At this point, results are known in very general settings for a
wide variety of scheduling policies. However, the goal of this article is different—our
focus is on controlling the variability of the active service capacity, rather than the
variability of job performance. As explained before, this is motivated by work in appli-
cations such as cloud computing and electricity markets, where capacity can be scaled
dynamically, but there is a significant cost associated with the resulting variability of
the capacity.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:4 A. Ferragut et al.

Within the literature on service systems, there is a large classic literature on schedul-
ing jobs with deadlines; for example, see Pinedo [1983], Lehoczky [1997], Bhattacharya
and Ephremides [1989]. Many of the policies we consider in this article have appeared
in various settings. For example, our analysis on LLF builds on the early work of
Hong et al. [1989], and our analysis on Exact Scheduling builds on extending classical
M/G/∞ results [Robert 2003; Zachary 2007]. In more recent articles, the problem of
dynamically controlling service rate or admission in queues with deadlines has been
analyzed [Plambeck et al. 2001; Maglaras and Mieghem 2005; Çelik and Maglaras
2008] by using fluid and diffusion approximations of the underlying queueing model
[Gromoll and Kruk 2007]. In this regard, we emphasize that the queueing literature
has been dominated by the analysis of fixed capacity systems, where deadlines are the
main issue. In our article, we focus on dynamically scaled systems, and as such new
tradeoffs appear.

In this line of work, it is worth mentioning some direct precedents: for instance, the
recent works by Nayyar et al. [2013] and Subramanian et al. [2013], which analyze
the use of LLF scheduling for an aggregate of residential power loads with focus on
variability control, providing a direct motivation for the analysis here. In the context of
cloud computing, Adnan et al. [2012] and Adnan and Gupta [2014] also propose to use
job deferrals to control variability of power usage in data center, also with renewable
energy considerations. The main contribution of this article over such works is giving
a queueing perspective to the analysis.

Additionally, the results focused on the design of pricing mechanisms for extracting
information about job deadlines are related to the literature on strategic queues. A
classical article in this regard for fixed service capacity is Mendelson and Whang [1990].
Surveys of this literature can be found in Hassin and Haviv [2003] and Hassin [2016].
The relationship between deadlines (lead-time), service delay, and pricing mechanisms
has been analyzed in Afèche and Mendelson [2004], Akan et al. [2012], Afèche and
Pavlin [2016]. However, the context considered in this article is novel due to the scalable
resources.

Finally, our focus in this work is on understanding the inherent tradeoff between job
performance and service capacity variability, rather than on any specific application.
We do, however, take motivation from two specific areas where this issue manifests
strongly: cloud computing and regulation services in power systems. The issue of con-
trolling variability in these contexts has been studied in depth in recent years, for exam-
ple, Zhu and Agrawal [2010], Vaquero et al. [2011], Liu et al. [2011], Adnan et al. [2012],
Lin et al. [2013], Adnan and Gupta [2014], and Tomić and Kempton [2007], Quinn et al.
[2010], Sortomme and El-Sharkawi [2012] and Chen et al. [2014], respectively.

2. A QUEUEING MODEL WITH DEFERRABLE SERVICE

To study the tradeoff between service capacity variability and job performance, we
consider a service system where jobs arrive as a random process. The service system
can serve jobs in parallel and directs each job to a server immediately upon arrival. The
system controls the service capacity allocated to each job, under the constraint that the
allotted service capacity cannot exceed a nominal value, p0, in units of work/second.
The active capacity may, however, be smaller, corresponding to a fraction uk ∈ (0, 1) of
the nominal capacity, which we refer to as the service level for job k. If uk < 1, then job k
is being throttled down to a lower service level, and thus its completion time is deferred.

Job requests are assumed to arrive as a Poisson process of intensity λ, requiring a
random amount of work that, if served at nominal capacity, would result in a nominal
service time denoted by σk. Deferral is allowed but is constrained by the deadline of the
job, dk, which is assumed to exceed σk. We denote by Tk the actual service time attained
by job k.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:5

Fig. 1. Service-laxity tradeoff.

For ease of notation, we introduce the concept of the laxity of a job, �k = dk−σk, which
is the amount of spare time or slackness the job has upon arrival. The interpretation
of �k is that, if the job were to receive no service at all during this amount of time, then
service must be provided at full rate afterward to meet the deadline. Thus, service at
partial capacity results in a gradual consumption of laxity and, if the laxity becomes
negative at any point in time, the job will miss its deadline. To illustrate the model,
consider the following example.

Example 2.1 (The Evolution of Laxity). Suppose a job arrives to the system at time
tk with nominal service time σk, laxity �k. Further, suppose that the system allocates to
the job a fixed fraction uk of the nominal capacity.

Figure 1 gives two representations of the evolution. The first uses a dashed line
to represent the evolution of the job’s residual service time; the lower dotted line
represents the lower bound imposed by the nominal (maximum) capacity, and the upper
boundary represents the evolution of the deadline horizon. By serving at a fraction of
the maximum speed both service time and laxity are consumed, at respective rates uk
and 1 − uk; the net service time will be Tk = σk/uk, and thus the choice of uk directly
determines whether the deadline will be met.

The second graph of Figure 1 plots the trajectory in the (service time, laxity) space.
Here, uk determines the slope of the trajectory, ranging from a horizontal in the case of
full service rate, to a vertical in the case of no service. Reaching σ = 0 indicates service
completion, reaching l = 0 before that implies a missed deadline.

Another important concept is the individual relative laxity, which we define as follows
for each job k:

δk := �k

σk
. (1)

The relative laxity specifies the individual job’s tolerance for delay relative to the
nominal service time.

An important measure of the system’s flexibility is given by the ratio of average
laxity versus average service time, that is,

� := E[�k]
E[σk]

, (2)

and will be called the deferrability factor of the job profile. (Note that � �= E[δk] except
when jobs are deterministic). For the initial portions of this article, we assume that σk,
�k are independent random variables, with E[σk] = 1/μ and E[�k] = 1/γ . In this case,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:6 A. Ferragut et al.

the deferrability factor is given by � = μ

γ
. In Section 5, we discuss this assumption

further when considering user incentives.
Finally, we use n(t) to denote the number of jobs present at time t. Since each job k

receives service capacity p0uk, the overall active service capacity is thus

p(t) = p0

n(t)∑
k=1

uk.

Note that if all the jobs stay in the system until service is completed (i.e., there are no
abandonments or blocking), then the average active capacity of the system should be
equal to the average arrival rate times the average work requirement:

p̄ = λE[p0σk] = p0
λ

μ
, (3)

and this quantity is independent of any decision on job deferral or scheduling.
System objectives: We can now formally state the goals of the system operator,

which highlight the tradeoff between job performance and variability in service
capacity.

(1) Serve all the jobs within deadlines with high probability, that is, keep P(Tk > dk)
small.

(2) Maintain a smooth profile of active service capacity: if δp(t) := p(t) − p̄, then in
steady state one should have E[(δp)2] small.

To highlight that these system objectives are in direct conflict, we consider a simple,
motivating example in the following.

2.1. Equal Service Policy

The equal service policy is perhaps the most natural policy to consider first. It offers
a constant, homogeneous service level u ∈ (0, 1] (fraction of nominal capacity) applied
to all jobs present in the system. To begin the analysis, note that the aggregate active
capacity simplifies to

p(t) = p0n(t)u. (4)

We can impose the steady-state condition Equation (3), which then yields

p̄ = p0
λ

μ
= E[p] = E[p0nu].

This implies that, for a fixed service level u, the expected number of jobs in the system
is

n̄ = λ

uμ
. (5)

Next, we can invoke Little’s law to obtain the mean time a job spends in the system,
T̄ = E[Tk]:

T̄ = n̄
λ

= 1
uμ

= E[σk]
u

.

To meet deadlines in an average sense, we should have T̄ < E[σk + �k], that is,

u >
E[σk]

E[σk] + E[�k]
= 1

1 + �
. (6)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:7

Here, η := 1
1+�

is a minimum service level that jobs should receive to meet their
deadlines on average. As deferrability increases, η → 0 and the system gains in flex-
ibility, meaning that jobs arrive with larger slack time. In the following sections, we
expand on this issue with a more precise measure, the missed deadline probability
α := P(Tk > σk + �k).

On the other hand, let us observe the impact of lowering the service level on system
variance. Since all requests are served in parallel, the system behaves as an infinite
server (M/G/∞) queue, with arrival rate λ and average service time E[Tk] = 1/(uμ).
In particular, the number of jobs in steady state satisfies

n ∼ Poisson
(

λ

uμ

)
. (7)

In particular, this is consistent with the mean value n̄ found in Equation (5). However,
we can also use the distribution to compute the variance of active capacity,

E[(δp)2] = E[(p − p̄)2] = p2
0u2Var(n) = p2

0u2 λ

uμ
= p0 p̄u. (8)

A more normalized way of expressing variability is the coefficient of variation cv2(p)
defined by

cv2(p) = Var(p)
p̄2 ,

which can be readily computed from Equations (3) and (8) to yield

cv2(p) = p0

p̄
u. (9)

This illustrates that variability reduces linearly with the service level u. From this
perspective there is an incentive toward service deferral, which must be balanced
against the likelihood of missed deadlines. In the following, we investigate this tradeoff
for a variety of different scheduling and deferral strategies with a strong focus on simple
policies that are amenable to implementation and decentralization.

3. TRADING OFF VARIABILITY AND JOB DEADLINES

The Equal Service policy considered above serves as the starting point for our explo-
ration of different strategies to trade off job performance and service variability. In this
section, we initially provide with a more precise analysis of this tradeoff under Equal
Service, starting with a quantification of the baseline performance of Equal Service in
terms of meeting deadlines.

We then move to considering other policies. This exploration is motivated by the
observation that the same aggregate service rate p(t) can be obtained if, instead of
serving all jobs at a fraction u of nominal rate, we decide to serve a fraction u of jobs
at full rate. This poses a crucial question of scheduling, that is, which jobs to serve.
This question opens the door for different policies that share the variability of Equal
Service but may perform better in meeting job deadlines.

A simple scheduling strategy is to pick such a subset at random, which can be seen
to perform similarly to Equal Service. Clearly there are better options, however. A
more sophisticated alternative is least-laxity-first (LLF) scheduling, studied classically
in Hong et al. [1989]. LLF serves the jobs with least spare time remaining first, up to
the aggregate capacity determined by the service level.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:8 A. Ferragut et al.

Fig. 2. Equal service scheduling for u = 1/3. Arrivals in the shaded area are bound to miss their deadline.

3.1. Missed Deadlines in Equal Service

We now carry out a more precise analysis of the Equal Service policy, for which every
job is throttled to a reduced rate p0u. We have already shown that the number of jobs
n(t) in steady state follows the Poisson distribution Equation (7), and its variance is
given by Equation (9).

We now turn our attention to deadline misses. The probability of missing a deadline
is

α = P (Tk > σk + �k) = P
(σk

u
> σk + �k

)
= P

(
σk

u
>

�k

1 − u

)
. (10)

This equation can be interpreted as follows: when a job arrives with service time σk,
initial laxity �k, and is served at rate u, then after a time dt the remaining service time
will be σ ′ = σk − udt. Since its deadline is σk + �k − dt time units ahead, the remaining
laxity after a time dt is

�′ = σk + �k − dt − (σk − udt) = �k − (1 − u) dt.

This means that for service level u, laxity is consumed at rate 1 − u, and Equation (10)
simply states that laxity is consumed before service. A depiction of the equal service
policy in the service-laxity space is given in Figure 2: all jobs present in the system
consume service and laxity in certain fixed proportions, therefore points move following
the same vector. Arrivals in the shaded area are bound to miss their deadline.

Assume now that (σk, �k) are exponentially distributed; then α can be readily calcu-
lated by observing that σk

u ∼ exp(uμ) and �k
1−u ∼ exp((1 − u)γ). Using the minimum of

two exponential random variables, we have

α = γ (1 − u)
μu + γ (1 − u)

= (1 − u)
�u + (1 − u)

. (11)

Deadline misses are decreasing in u, as expected. In particular, for u = η = 1
1+�

, which
results from the previous analysis in the mean, we have α = 1/2.

Analogous calculations can be performed for any joint distribution in (σk, �k). For
comparison purposes, we compute also the probability for deterministic service time
σk ≡ 1

μ
and exponential laxity, which yields

αds = P
(

1
μu

>
�k

1 − u

)
= 1 − e− 1

�
1−u

u .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:9

Fig. 3. Missed deadline probability as a function of u for � = 2.

Fig. 4. LLF scheduling for u = 1/3 and frontier level θ .

For deterministic laxity �k ≡ 1
γ

and exponential service time, the corresponding expres-
sion is

αdl = P
(

σk

u
>

1
γ (1 − u)

)
= e−� u

1−u .

The three cases are depicted in Figure 3 for a deferrability parameter of � = 2. As
we can see, deadline misses are rather high even for moderate values of u > η. This
provides a baseline for contrasting with more sophisticated policies such as LLF.

3.2. Least Laxity First (LLF)

Least Laxity First (LLF) can be formally defined as follows: sort the current jobs by
increasing laxity and serve the first k(t) = 	n(t)u
 at the nominal rate. The remaining
jobs consume laxity until they are scheduled. This policy was introduced in the context
of processor time scheduling by Hong et al. [1989], and has been thoroughly analyzed in
the case of single-server queues (see Gromoll and Kruk [2007] for a recent treatment).
The difference here is that we are dealing with an infinite server system.

A depiction of the LLF policy in service-laxity space is given in Figure 4. It is conve-
nient to define the frontier process as follows:

θ (t) := sup

{
� :

n(t)∑
k=1

1{�k��} < n(t)u

}
. (12)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:10 A. Ferragut et al.

The frontier process, θ (t), represents the maximum laxity of the jobs currently in
service. Jobs with laxity greater than θ (t) only consume laxity and are not served.

We now move to the analysis of LLF, with focus on the case of exponentially dis-
tributed service times σk. Our first proposition shows that under this assumption the
occupancy process is the same as an equal service policy.

PROPOSITION 3.1. Under the LLF policy and exponential service times, the total occu-
pation process n(t) is a birth-death process with birth rate λ and death-rate μnu, and
thus is equal in distribution to the occupation process of the equal service policy.

PROOF. Under LLF, at any time t there are n(t)u jobs in service. Due to the memoryless
property of the exponential distribution and the fact that laxities are independently
chosen, the service process of the system for occupation state n(t) and service level
u corresponds to n(t)u exponential servers in parallel. Therefore, the total population
evolves as a birth-death process with birth rate λ and death rate μnu, which are the
rates of an M/M/∞ with individual service level u as in the equal service policy.

From this proposition, we can conclude that, in steady state, n ∼ Poisson
(
λ/(μu)

)
,

the average system occupation is again n̄ = λ/(μu), and the output variance is again
given by Equation (9), that is, it is linear in u. This was already observed empirically
in Bliman et al. [2015].

To continue our analysis, we focus on the case when the scale is large (λ → ∞). To
illustrate the system’s behavior, we plot in Figure 5 two simulation experiments for a
system with λ/μ = 500 and � = 2 (η = 1/3). In the first case u = 0.5 > η and the
frontier process θ (t) finds a positive equilibrium θ∗. Jobs arriving with laxity greater
that θ∗ consume laxity down to level θ∗ and then they are served, while jobs with laxity
less than θ∗ are served upon arrival. In practice, most jobs get served before their
deadlines expire.

In the second case, with u = 0.2 < η, the system finds an equilibrium value of θ∗ < 0.
In this case, jobs consume all their laxity and are further delayed an amount |θ∗| before
receiving service. In particular, this means that deadlines are not being honored.

By applying Little’s law to our analysis of the occupancy of LLF, we can characterize
the equilibrium value θ∗ through a fixed-point analysis. Recall that, from Proposi-
tion 3.1, the average number of clients in the system is n̄ = λ/(μu). Therefore, the
average time in the system by Little’s law is T̄ = 1/(μu). Also, since jobs are not served
up to reaching laxity level θ∗, we can compute the average time in the system as

T̄ = E[(�k − θ∗)+] + E[σk].

The first term simply states that jobs arriving with laxity greater that θ∗ should wait
to consume their laxity up to level θ∗ before being served. By combining the preceding
equations and using that E[σk] = 1/μ, we have that θ∗ should satisfy

E[(�k − θ∗)+] = 1
μ

1 − u
u

. (13)

We have the following characterization:

PROPOSITION 3.2. For u ∈ (0, 1), the value of θ∗, solution of Equation (13), is unique
and satisfies θ∗ > 0 ⇔ u > η = 1

1+�
.

PROOF. Consider the function g(θ) = E[(�k − θ)+]. For fixed �, the function (� − θ)+
is decreasing in θ and strictly decreasing if θ < �. By taking expectations, we conclude
that g(θ) is also decreasing and is strictly decreasing in θ provided P(�k > θ) > 0. If the
distribution of �k has upper bounded support, then g(θ) = 0 for θ beyond this bound.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:11

Fig. 5. Remaining service and laxities for LLF when u > η (above) and u < η (below). The load is λ/μ = 500.

Since �k � 0, for θ < 0, E[(�k − θ)+] = E[�k − θ] and thus g(θ) = 1
γ

− θ . As θ → +∞,
g(θ) → 0 by the dominated convergence theorem (and is exactly 0 if �k is bounded).
In conclusion, g(θ) is strictly decreasing from ∞ up to reaching 0, and therefore Equa-
tion (13) admits only one solution for u > 0. To prove the second statement, note that
g(0) = 1

γ
, and thus,

θ∗ > 0 ⇔ 1
μ

1 − u
u

<
1
γ

⇔ u >
γ

μ + γ
= η.

As an example, consider the case where �k ∼ exp(γ). If u > η, then Equation (13)
becomes

1 − u
μu

= 1
γ

e−γ θ∗
,

or equivalently,

θ∗ = 1
γ

log
[

�u
1 − u

]
. (14)

Note that Equation (14) yields a positive solution provided u > η, and (asymptotically)
all deadlines are achieved.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:12 A. Ferragut et al.

Fig. 6. Empirical missed deadline probability as a function of u for LLF scheduling with � = 2 (η = 1/3)
and λ/μ = 500.

For the case u < η, we can solve for

θ∗ = 1
γ

− 1
μ

1 − u
u

< 0. (15)

Therefore, in steady state, the frontier converges to a negative equilibrium and all
deadlines are missed.

This behavior is valid only in the large scale limit, where the frontier process becomes
a constant in steady state. However, simulations show that the approximation is indeed
good for moderate values of λ, as depicted in Figure 6, where a sharp decline in missed
deadline probability is observed around u = η.

In summary, the main conclusion of this analysis is that, for large-scale systems
using LLF, the service level can be reduced up to nearly η (thereby reducing variance),
without great impact on deadline misses. Of course, this comes at the cost of using
a complex scheduling policy (one that requires knowledge of job laxities). In the next
section, we analyze a different class of policies that cope with deadlines in ways that
are more amenable to decentralized scheduling.

4. DECENTRALIZED CONTROL OF VARIABILITY SUBJECT TO HARD DEADLINES

The previous section focuses on scheduling policies that allow some deadlines to be
missed. Note that the allowance for these soft deadlines provides more flexibility for
scheduling and service capacity allocation than if deadlines were strictly enforced (hard
deadlines). We now analyze this second case. As we shall see, this still allows the system
room to exploit the deferrability of jobs, but clearly there is a more limited ability to
defer in this setting. Thus, we should not expect policies here to perform as well as LLF,
and indeed they do not. Nevertheless, these policies also require less information from
the system state, and are thus more amenable to decentralization, a desirable feature.

In particular, we focus on two specific policies in this setting: Expiring Laxity and
Exact Scheduling. Expiring Laxity is a variation on the Equal Service policy that only
throttles jobs that have positive remaining laxity, but ensures that jobs with expired
laxity receive the nominal service capacity to meet their deadline. In contrast, Exact
Scheduling throttles jobs individually so they complete their jobs exactly when their
laxity expires (i.e., exactly at their deadline).

4.1. Expiring Laxity

Expiring Laxity is a simple variation of Equal Service. It operates by applying a fixed
service level to jobs with positive remaining laxity. Since this is not an homogeneous
service level across all jobs, we denote this quantity by ũ ∈ (0, 1]. Jobs for which the
laxity has already expired are served with the nominal capacity.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:13

Fig. 7. Laxity expiring scheduling for u = 1/3 and Markov chain model.

A depiction of the trajectories of this policy is given on the left in Figure 7. Its main
advantage is that it is very easy to decentralize. The system operator fixes a service
level ũ for those jobs that still have laxity and distributes this as a common signal.
When a given job reaches the point where it cannot be deferred any longer, it scales up
its consumption to the maximum rate.

We again focus on the case of exponential job sizes and laxities, where the analysis
is clean. Let n(t) denote the number of jobs with positive laxity and m(t) those whose
laxity has expired. Then (n(t), m(t)) is a continuous time Markov chain with state space
N

2 with the transition rates depicted in Figure 7. The Markov chain has a product form
solution given by the following proposition, which can be readily verified by substituting
in the global balance equations.

PROPOSITION 4.1. The equilibrium distribution of the Markov process of the laxity-
expiring policy is given by

π (n, m) = e−ρn−ρm
ρn

n

n!
ρm

m

m!
, n, m ∈ N; (16)

that is, in steady-state n and m behave as independent Poisson random variables with
parameters

ρn = λ

μũ + γ (1 − ũ)
, ρm = γ (1 − ũ)

μ
ρn.

To interpret the above, let us now introduce the following parameters:

υ := μũ + γ (1 − ũ), α := γ (1 − ũ)
μũ + γ (1 − ũ)

.

Here, 1/υ is the average time before either the laxity or the service of a given job
ends, and α is the probability that the laxity expires before the job ends, and thus the
job starts service at full rate. Note that α has the same form as the missed deadline
probability for the equal sharing policy in the previous section. With this choice of
notation, we can rewrite

ρn = λ

υ
, ρm = αλ

μ
.

Noting that the total service rate p(t) is p0ũ for the first n jobs and the nominal value
p0 for the remaining m jobs, we can compute

p̄ = E[p] = E[p0(nũ + m)] = p0

(
ũ

λ

υ
+ αλ

μ

)
= p0

λ

μ

[
ũμ + υα

υ

]
︸ ︷︷ ︸

=1

= p0
λ

μ
,

as expected, since all jobs are eventually served.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:14 A. Ferragut et al.

We can also quantify the deviations from equilibrium in steady-state as

E[(δp)2] = Var[p0(nũ + m)]

= p2
0(ũ2Var(n) + Var(m))

= p2
0

(
ũ2ρn + ρm

)
= p2

0

(
ũ2 λ

υ
+ αλ

μ

)

= p2
0
λ

μ

[
1 − μũ(1 − ũ)

υ

]
,

where we have used that n and m are independent random variables in steady state
due to the product form distribution, and the definitions of υ and α.

Observe that E[(δp)2] � p2
0

λ
μ

. This bound is achieved for ũ = 0 or ũ = 1. The case ũ = 0
corresponds to not giving any service until laxity expires, effectively delaying arrival
for all jobs to the second queue and losing control on deferrability. The case ũ = 1
corresponds to serving the jobs at full rate upon arrival, also abandoning deferrability
as in the Equal Service policy with u = 1.

Again, it is better to express the variability in normalized units, by computing the
coefficient of variation as

cv2(p) = E[(δp)2]
p̄2 = p0

p̄

[
1 − �ũ(1 − ũ)

�ũ + (1 − ũ)

]
. (17)

The above expression is minimized at

ũ∗ = 1

1 + √
�

, (18)

and the minimal value of cv2(p) for this policy is

cv2(p) |ũ=ũ∗ = p0

p̄

[
1 − 1

(1 + √
1/�)2

]
.

Note that both the optimal value of ũ as well as the ratio between optimal and maximal
variance do not depend on the arrival rate and only on the deferrability factor.

4.2. Exact Scheduling

The final policy that we discuss is Exact Scheduling, which aims at finishing all jobs
exactly at their deadline by tailoring the individual service level. Namely, for a job with
service time σk and laxity �k, the service level is chosen to be

uk = σk

σk + �k
.

This choice implies that job k spends a time

Tk = σk

uk
= σk + �k

in the system, that is, it departs exactly at its deadline. A depiction of the policy is
given in the first graph of Figure 8. We remark here that this policy is designed with
decentralized implementation in mind: provided that jobs can throttle their service
level, they can self tune it to the appropriate value, since job requests are already
aware of their respective service time and deadline.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:15

Fig. 8. Exact scheduling depicted in service-laxity space and in the service-relative laxity coordinates.

To analyze this policy it is more convenient to work with the job’s relative laxity,
δk = �k/σk, and to express the service level as

uk = 1
1 + δk

.

In the coordinates (σ, δ) the service trajectory follows horizontal lines, with δ fixed
throughout service, as depicted in the second graph of Figure 8. This is due to the
fact that the job moves toward the origin in the service-laxity space, thus maintain-
ing a constant ratio between remaining service time and laxity. The speed of service
(horizontal motion in the second graph) is decreasing with the vertical coordinate δ.

Since deadlines are strictly enforced, our objective is simply to compute the steady-
state variance of active capacity E[(δp)2] for this system. In this policy, we can carry out
the analysis under more general assumptions. As before, we assume arrivals over time
form a Poisson process, but no longer require exponential service times and laxities.
Instead, assume arrival k carries a service time-relative laxity (σk, δk), distributed over
the positive orthant with a joint density function g(σ, δ). Note that if the model is
specified via a joint density f (σ, l) over service time and absolute laxity, the change of
variables � = σδ with Jacobian ∣∣∣∣ ∂(σ, l)

∂(σ, δ)

∣∣∣∣ = σ (19)

leads to the joint density g(σ, δ) = σ f (σ, σδ) in the desired variables.
The state of the system at time t can be expressed through the following counting

measure, as in Robert [2003] (Chapter 8):

�t(B) =
n(t)∑
i=1

1{(σi ,δi)∈B}, (20)

where σi represents the remaining service of job i and δi its relative laxity,
With the above definitions, �t is a measure-valued Markov process with the following

dynamics: new points arrive as a Poisson process, and a new point (σk, δk) is chosen
with joint density g(σ, δ). Each point in the system moves to the left at a fixed rate
1/(1 + δ), determined by the mark δk. Since all jobs are served in parallel, the system
behaves as a mixture of infinite server queues of different speeds. Applying results on
the steady-state characteristics of the M/G/∞ queue (see Robert [2003] and Zachary
[2007]), we obtain:

THEOREM 4.2. Under the exact scheduling policy with requests distributed as g(σ, δ),
the distribution of �t in steady state is a Poisson point process on R

+ × R
+ with mean

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:16 A. Ferragut et al.

measure density

h(σ, δ) = λ

∫ ∞

σ

(1 + δ)g(z, δ)dz. (21)

As a consequence of this result, average characteristics of the steady-state process
can be computed by suitable integrals with respect to the above density; we refer
to Baccelli and Błaszczyszyn [2009] for these derivations. To summarize, the mean
number of jobs present in the system is

n̄ = E[n] =
∫ ∞

0

∫ ∞

0
h(σ, δ)dσdδ. (22)

The expected service rate of the jobs is given by

E[p] = p0 E
[∑

i
1

1+δi

]
= p0

∫ ∞

0

∫ ∞

0

1
1 + δ

h(σ, δ)dσdδ. (23)

Finally, the variance of the service rate is given by

Var[p] = p2
0Var

[∑
i

1
1+δi

]
= p2

0

∫ ∞

0

∫ ∞

0

1
(1 + δ)2 h(σ, δ)dσdδ. (24)

In the case of Equation (23), note that by substitution with Equation (21), we obtain

p̄ = E[p] = p0λ

∫ ∞

0
dσ

∫ ∞

0
dδ

∫ ∞

σ

g(z, δ)dz = p0λ

∫ ∞

0
dσ

∫ ∞

σ

g1(z)dz

= p0λ

∫ ∞

0
[1 − G1(σ)]dσ = p0λE[σk]

= p0
λ

μ
;

here, we have denoted g1(σ) the marginal density of σk, G1(σ) its cumulative distribu-
tion; thus, our mean service capacity is consistent with Equation (3).

To evaluate the variance, we focus on two special cases: (i) independent exponential
service and laxity and (ii) independent service and relative laxity. The first provides us
the ability to contrast the variance under all the policies discussed to this point, and
the second provides the building blocks for our pricing analysis in Section 5.

4.2.1. Independent, Exponential Service and Laxity. Concretely, in this section, we assume
that the joint density of service time and (absolute) laxity is

f (σ, �) = μγ e−μσ−γ �, σ, � > 0.

By performing the change of variables mentioned in Equation (19), we have

g(σ, δ) = σ f (σ, σδ) = μγσe−(μ+γ δ)σ . (25)

Define v := μ + γ δ, then the steady-state density is given by computing the integral
in Equation (21) to yield

h(σ, δ) = λμγ (1 + δ)
[
vσ + 1

v2

]
e−vσ .

With this density, we can carry out the calculations indicated in Equations (22)–(24).
In particular, it is easily checked that∫ ∞

0
h(σ, δ)dσ = 2λμγ (1 + δ)

v3 = 2λμ

(
1
v2 + γ − μ

v3

)
; (26)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:17

integrating now over δ and applying the change of variables v = μ + γ δ yields

n̄ = 2λμ

∫ ∞

μ

(
1
v2 + γ − μ

v3

)
dv

γ
= 2λμ

γ

(
1
μ

+ γ − μ

2μ2

)

= λ

(
1
μ

+ 1
γ

)
. (27)

Equation (27) simply states that the average number of customers in the system is the
arrival rate λ times the expected service time E[σk + �k] = 1

μ
+ 1

γ
, consistent with the

fact that the system behaves as an M/G/∞ queue. Also, as shown above, in general,
we have E[p] = p0λ/μ = p̄.

While service level in this system is job dependent, an effective service level can be
computed as point of comparison as follows:

ueff := E[p]
p0 E[n]

= λ/μ

λ
(1

μ
+ 1

γ

) = γ

μ + γ
= 1

1 + �
= η,

that is, the exact scheduling policy works at a service level comparable to taking u = η
in the soft deadline policies.

More importantly, using Equations (24) and (26) yields after some calculations the
following expression for the steady-state variability:

E[(δp)2] = p2
0λμγ

[
− 1

(μ − γ)μ2 − 2
(μ − γ)2μ

+ 2
(μ − γ)3 log

(
μ

γ

)]
. (28)

As before, we can compute the coefficient of variation in terms of the deferrability
factor:

cv2(p) = p0

p̄

[
1

1 − �
− 2�

(1 − �)2 − 2�2 log(�)
(1 − �)3

]
. (29)

4.2.2. Independent Service and Relative Laxity. We now move to a different scenario, where
the independent stochastic primitives are service time and relative laxity δ. These
primitives facilitate the analysis of pricing in Section 5.

The basic assumption in this section is that g(σ, δ) = g1(σ)g2(δ). In this case, from
Equation (21), we have

h(σ, δ) = λ(1 + δ)(1 − G1(σ))g2(δ),

and therefore

E[(δp)2] = p2
0λ

∫ ∞

0

1
1 + δ

g2(δ)dδ

∫ ∞

0
(1 − G1(σ))dσ

= p2
0λE

[
1

1 + δk

]
E[σk]

= p2
0
λ

μ
E

[
1

1 + δk

]
= p0 p̄E[uk]. (30)

The above expression is very similar to Equation (8); in that case, the service level u
was fixed across jobs. Here, we are adapting to the offered, random uk of each job, yet
we find an analogous expression for the variance of service capacity, replacing u by its
mean E[uk].

An alternative interpretation of exact scheduling is to assume that service level uk
is itself under the control of the jobs, and this quantity is chosen independently of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:18 A. Ferragut et al.

Fig. 9. Normalized coefficient of variation for the different scheduling policies.

service time. What we find is that this offered reduction in nominal capacity translates
directly, and linearly, to the variance of the aggregate service capacity.

4.3. Contrasting Scheduling Policies

Before leaving the analysis of scheduling policies, it is useful to summarize the vari-
ability results so far. We have studied four policies: Equal Service, Least Laxity First,
Expiring Laxity, and Exact Scheduling. For each policy, we considered varying assump-
tions on laxity and service times, but we provided analysis for all policies in the case of
independent, exponential service times and laxities. Thus, our comparison here focuses
on that case.

We summarize the cv2 of each policy in the following. For Equal Service and LLF, we
use the value for u = η, which is the minimum value for which they can comply with
deadlines on average (note that the missed deadline probability can be much lower in
LLF). For Expiring Laxity, we use the optimal value u∗ computed in Equation (18). For
Exact Scheduling the variability is determined from Equation (29).

cv2(p)ES = cv2(p)LLF = p0

p̄
1

1 + �
, (31a)

cv2(p)ExpL = p0

p̄

[
1 − 1

(1 + √
1/�)2

]
, (31b)

cv2(p)ExS = p0

p̄

[
1

1 − �
− 2�

(1 − �)2 − 2�2 log(�)
(1 − �)3

]
. (31c)

(31d)

The above expressions are plotted in Figure 9. A first remark is that variability is
always lower if p0/ p̄ is small, which in fact is the statistical multiplexing effect of
the system scale. The ratio p̄/p0 between average service in the system as a whole
and individual service at full rate is, in fact, a measure of the size of the system.
Thus, variability can be reduced by aggregation, which is the main point behind cloud
computing for instance.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:19

We can further improve the variability by using the jobs laxities. We can see in
Figure 9 that, as deferrability increases (� grows), the variability goes to 0, with the
best policy in this regard being LLF. But, LLF does not guarantee that deadlines are
met and requires the system scheduler to have detailed information on the current
system state, which makes it challenging to decentralize. Among the hard deadline
policies, Exact Scheduling is closest to matching the variance of LLF. Further recall
that Exact Scheduling is much simpler and easier to decentralize. Further, it does not
miss any deadlines.

5. PRICING INCENTIVES TO CONTROL VARIABILITY

Up to this point, the article has focused on a setting where there is a system scheduler
that has access to job deadlines (or equivalently, to their corresponding laxities). This is
perhaps too optimistic: In many situations, for example, our motivating applications of
right-sizing in cloud computing and participating in ancillary service energy markets,
jobs may not communicate their deadlines/laxities to the system scheduler.

Our analysis has shown that obtaining this information is crucial to effective schedul-
ing. However, gathering this information from jobs requires paying close attention to
the incentives they may have. For example, under LLF or exact scheduling and without
proper incentives, it is in the best interest of a job to convey that it has zero laxity to
be scheduled in priority or at a higher rate. Thus, the question of how to introduce a
pricing mechanism that can extract deadline information from jobs is both crucial and
challenging.

In this section, we tackle this question by assuming that a monetary reward is offered
to every customer for each time unit of laxity offered to our system. One should think of
this reward as a discount from the main charge of providing service. For instance, in a
scenario of an electrical vehicle charging participating in an ancillary service market,
the customer would pay the full charge for service at the fastest speed (full power), but
the fare would be reduced if the customer is willing to allocate some spare time, that is,
expose its laxity. Concretely, our analysis assumes the customer k receives the linear
reward r�k for offering a laxity �k to the system.

In what follows, we first provide a model for customers responding strategically to
these rewards, based on a private utility they assign to timeliness. Subsequently, we
study the optimization by the service system of the offered reward, incorporating a cost
for capacity variance, assuming the aggregate customer response is known. Finally, we
provide a learning algorithm for the system operator to optimize its global cost while
simultaneously estimating the customer response.

5.1. Modeling Customer Responses to Rewards for Deferred Service

We assume that customers assign a utility to their received service that is decreasing
and concave with the amount of allocated laxity. Specifically, we work with the form

Vk(�) = ckσk f
(

�

�̄k

)
. (32)

Here, ck is a proportionality constant that translates utility to units of money and
possibly depends on the customer type; σk is the requested service, and the utility
is assumed to scale linearly with this quantity. The decreasing, concave function f :
R+ → R, with f (0) = 1, captures the loss of valuation as service time is delayed; the
scale parameter �̄k characterizes the customer’s value for timeliness. For concreteness,
we look at the following instances of the function f (·):

Example 5.1. Let f (x) = 1 − x2, x ≥ 0. In this case, the utility will remain positive
provided � ≤ �̄k.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:20 A. Ferragut et al.

Example 5.2. Let f (x) = 1 + log(1 − x), x ∈ [0, 1). In this case, �̄k represents a hard
barrier, the maximum laxity the customer is willing to accept.

When facing a reward r�, the customer’s decision is the convex optimization

max
�

Vk(�) + r� = max
�

ckσk f
(

�

�̄k

)
+ r�. (33)

We denote the maximizing solution by �k and further assume, for now, that it occurs at
an interior point. This assumption means that the optimality condition is

ckσk

�̄k
f ′

(
�k

�̄k

)
= −r. (34)

From here, we can solve for �k:

�k = �̄k[f ′]−1
(

− r�̄k

ckσk

)
.

It is more convenient to express the above response in terms of the relative offered
laxity δk = �k

σk
, and also δ̄k = �̄k

σk
, which represents the “nominal” value for the customer’s

relative laxity, an individual characteristic that represents the customer’s “patience.”
With this notation, the preceding expression has the form

δk = δ̄k[f ′]−1
(

−rδ̄k

ck

)
=: ϕ

(
δ̄k,

r
ck

)
. (35)

Note that ϕ represents the offered relative laxity in terms of customer parameters, and
the reward, being a increasing function of the latter. We illustrate this offer curve by
reconsidering the preceding examples.

Example 5.3. If f (x) = 1 − x2, then Equation (34) becomes

ckσk

�̄k
· 2

�k

�̄k
= r, =⇒ �k = r

2ck

�̄2
k

σk
,

or in terms of relative laxities, the expression

δk = r
2ck

δ̄k
2
.

Example 5.4. If f (x) = 1 + log(1 − x), then Equation (34) leads to
�k

�̄k
= 1 − ckσk

r�̄k
,

provided the right-hand side is positive; otherwise, the optimum is �k = 0. The
expression

δk =
[
δ̄k − ck

r

]+
,

where [·]+ = max{·, 0}, summarizes the resulting offer curve.

We note that with the customer response captured generically by Equation (35), and
in particular in the example instances, the mapping between δ̄k and δk does not involve
the amount σk of work requested by the customer. Assume now that customers are
drawn randomly from a population, with independent choice of the parameters (σk, δ̄k)
(and, if applicable, the type ck). This is arguably a natural assumption: when measured

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:21

in relative terms to service time, the willingness to wait is a separate choice. In contrast,
the independence of σk and �̄k is less natural: if σ1 � σ2, the first customer should more
readily accommodate a small extra service time as compared to the second.

Under the above assumption, we have the following attractive property: the inde-
pendence will be preserved by the consumer response Equation (35), that is, the pairs
(σk, δk) offered to the system will remain independent random variables. This allows us
to invoke the theory of Section 4.2.2 regardless of the model for consumer choice.

5.2. Optimizing the Offered Rewards

We now consider the point of view of the service system operator, who has the objective
of smoothing out the service capacity profile, and for this purpose offers rewards for
service deferral. The offered reward price must be found by balancing the cost of these
outlays themselves, against the penalty for service variability.

We assume here that Exact Scheduling is used, which implies that every job exits
from the system at exactly its deadline. By Equation (30), the variance of service
capacity takes the form

E[(δp)2] = p2
0
λ

μ
E

[
1

1 + δ

]
,

where the expectation depends only on the distribution for the relative laxities offered
by the customers. We assume a penalty per unit time proportional to this quantity.

On the other hand, the mean rewards paid per unit time will be equal to the mean
reward per customer, times the rate of customers/second, that is,

λrE[l] = λrE[σδ] = λ

μ
rE[δ],

assuming again independence between δ and σ . The overall cost to the system operator
as a function of the price r is, therefore,

C(r) = λ

μ

{
κE

[
1

1 + δ

]
+ rE[δ]

}
; (36)

here, κ is a suitable weighting constant. Note that the above cost depends on r not
only in its explicit appearance, but also implicitly through the offered relative laxities
δ, which as discussed before are increasing in r. In this way, the first component of the
cost decreases in r, and the second increases; its correct tradeoff is the optimization
problem in the hands of the system operator.

In general, the operator may not know how this customer responds to its rewards; in
the next section, we describe a learning approach for online optimization of the above
tradeoff. To gain more insight, we first assume the customer response is known and
equal to the one in Example 5.3, namely

δ = r
2c

δ̄2.

For simplicity, we set c = 1, which amounts to a choice of units of money. The system
optimization is, therefore,

min
r≥0

{
κE

[
1

1 + r
2 δ̄2

]
+ r2

2
E[δ̄2]

}
. (37)

Recall that δ̄ is the parameter that characterizes the consumers’ utility functions; as
such, it will obey a certain exogenous probability distribution.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:22 A. Ferragut et al.

We now show that this problem has a well-defined positive optimum. Indeed, differ-
entiation of the cost in Equation (37) with respect to r yields the optimality condition

κE

[
δ̄2/2

(1 + r
2 δ̄2)2

]
= rE[δ̄2]; (38)

the left-hand side is monotone decreasing in r, from κ
2 E[δ̄2] to zero, so it intersects the

straight line on the right at a unique point r∗ > 0. For concreteness, we work out a
specific case in the following example.

Example 5.5. Suppose that δ̄ is uniformly distributed in [0, 1] (corresponding to
nominal laxity �̄ of at most 100% of service time). Then, we have

E

[
1

1 + r
2 δ̄2

]
=

∫ 1

0

dx
1 + r

2 x2 = arctan(
√

r/2)√
r/2

.

Also, E[δ̄2] = 1
3 , so the optimal reward is the solution of

min
r>0

κ
arctan(

√
r/2)√

r/2
+ r2

6
.

As an example, consider a value of κ = 103, giving more weight to variability costs,
returns the optimal value r∗ ≈ 21.4, and a 55% savings with respect to the variability
cost when offering no rewards.

5.3. Online Optimization of Rewards

The preceding analysis shows that a suitable tradeoff between variability cost and
rewards given to clients can be found by appropriately choosing the reward value r∗ as
the minimizer of the cost function Equation (36). However, this assumes knowledge of
the customer response by the service manager. This final section provides an algorithm
for learning the optimal reward value online in a model-free manner. The algorithm
uses measurements of the clients’ responses to the current reward levels, to drive the
system to the optimal value.

Specifically, we consider the following system behavior. Job requests arrive as a
Poisson process of intensity λ, and when a job arrives at time tk, it is offered a reward
r(tk). At this point, the user informs the system its relative laxity δk, based on its own
optimization for the current reward level, as in Equation (33). The system allocates
service to the client using exact scheduling to meet the job deadline, that is, sets
uk = 1/(1 + δk), and can now use this measured response to adjust the reward level for
future users.

This setup can be represented as an online convex optimization (OCO) problem; see
Flaxman et al. [2005] for background. The main challenge beyond classical OCO is
that, while the cost function is easy to measure, its gradient is harder to estimate
directly, since it depends on the sensitivity of clients to the rewards. Thus, the problem
is a “bandit” version of online convex optimization.

There are standard approaches for learning in bandit OCO settings but, as we show
below, one can improve upon them by taking advantage of the structure of the problem
here. We consider three algorithms in the following: Bandit Gradient Descent from
Flaxman et al. [2005], Kiefer-Wolfowitz (KW) stochastic gradient descent from Kiefer
and Wolfowitz [1952], and a new algorithm we term Smoothed KW.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:23

5.3.1. Algorithms. To begin, we consider a standard algorithm for bandit OCO prob-
lems: Bandit Gradient Descent (BGD) from Flaxman et al. [2005]. The algorithm
works as follows: at any given arrival time tk the algorithm has a current estimate
of the reward rk. Instead of using this reward, the system operator chooses a random
search direction ξk = ±1 uniformly and offers the reward r̃k = rk + ξkdr accordingly,
where dr is a perturbation value. The system then obtains a response δk and evaluates
the current cost as a one-sample estimate of the real cost in Equation (36):

Ck := λ

μ

[
κ

1
1 + δk

+ rkδk

]
. (39)

Here, we assumed the average workload λ/μ as known, since it can be easily estimated
from historical measurements, and focus only on the laxity response.

Using this measurement, the system updates its current reward estimate as

rk+1 = (rk − νCkξk)+,

where ν is a step size and the projection is to ensure that rewards remain positive.
The successive perturbations enable the algorithm to estimate the gradient on average
over successive steps, and with appropriate choices of the perturbation dr and step size
ν, it can be shown it converges to the optimal value.

The second algorithm we study is an adaptation of the well-known Kiefer-Wolfowitz
(KW) stochastic gradient descent proposed by Kiefer and Wolfowitz [1952]. At any
given arrival time tk, the algorithm has a current estimate of the reward rk, but offers
the arriving job a reward rhi

k = rk + dr, with dr again a perturbation value. The next
job arriving at time Tk+1 is offered a reward rlo

k = rk − dr. By using these two rewards,
the system operator is able to obtain two offered laxities, δhi

k and δk+1 = δlo
k , which can

then be used to obtain one sample estimates of the cost, Chi
k and Clo

k . Combining these
estimates, we can update the offered reward as

rk+2 =
(

rk − ν
Chi

k − Clo
k

rhi
k − rlo

k

)+
,

where again, ν is a step size. The above procedure provides a simple gradient estimate
every two arrivals that on average lead to a suitable gradient descent optimization.

The main drawback of the above algorithms is that they rely on one-sample estimates
and long-term averaging to reach the optimum, which can induce rapid variations on
the offered rewards. Such variabilities are not well suited to a pricing and reward
scheme where short-term unfairness and variability can be introduced between suc-
cessive jobs.

Our third approach is based on the KW iterative procedure, but instead extending
the averaging period to provide a better estimate and search direction; hence, we refer
to it as Smoothed KW. It works as follows. Fix a time �T over which rewards are
kept constant. Half of the arriving users are offered a high reward rhi

k = rk + dr and
the other half a low reward rlo

k = rk − dr. Successive responses from jobs are stored
and averaged over all arrivals to obtain C̄hi

k and C̄lo
k , replacing the expectation by

empirical averages in Equation (36). Using these averages, we perform a gradient
step rk+1 = (rk − ν

C̄hi
k −C̄lo

k
rhi

k −rlo
k

)+, as before. When �T is small, averaging is removed and it
resembles the KW algorithm.

5.3.2. Numerical Experiments. To highlight the improvements that come from Smoothed
KW, we compare the three approaches by using the framework of Example 5.5. To do
this, we use a discrete-event simulation environment where jobs, arriving as a Poisson

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:24 A. Ferragut et al.

Fig. 10. Reward evolution vs. time for the online optimization algorithms analyzed.

Fig. 11. Cost evolution vs. time for the online optimization algorithms analyzed.

process, are offered rewards r(tk), which are then adjusted following the preceding
algorithms. For this example, we chose λ = 50, μ = 1, and κ = 103 as before, leading to
an average occupation of n̄ = 50 and variance V ar(

∑
i ui) = V ar(n) = 50, when r = 0

and an average cost C(0) = κλ/μ = 5 × 104.
We start the system in the state corresponding to the steady state when no rewards

are offered and then let the algorithms find the optimal reward, which in this case
is r∗ ≈ 21.4, with an average occupation of n∗ ≈ 233 due to the increased laxity. The
optimal cost is C∗ ≈ 2.3 × 104 and the optimal variance is V ar(

∑
i ui) ≈ 19.5.

In Figure 10, we plot the reward evolution for the three algorithms, using the same
step sizes. The figures highlight that all three online algorithms approximately find
the correct reward level, with Smoothed KW offering a more predictable evolution of
rewards, as expected.

This result is more evident in Figure 11, where the cost measurements are compared
against each other. The cost estimation of the Smoothed KW makes a better prediction
of the current cost, and drives the system toward the optimum, while BGD and KW have
very noisy estimations of the current cost, albeit when averaged they show convergence
to the optimal value.

Since the system operator objective was to reduce variability in the service rate, it
is worth showing how this quantity evolves over time when using Smoothed KW. In
Figure 12, we compare the active service rate, when there are no rewards, with the
one obtained using Smoothed KW. After an initial learning phase, we can see that
variability is reduced when using rewards. This is achieved at the expense of having
a larger system occupation by extending the jobs’ service time, purchasing laxity from
users. For this example, the variance in steady state is E[(δp)2] ≈ 20, down from an
original value of λ/μ = 50 when no rewards are present.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:25

Fig. 12. Service rate variability reduction by using rewards: service rate evolution for a system with p̄ = 50.

6. CONCLUDING REMARKS

In this article, we have studied service systems that can adjust the capacity offered to
each job, with the objective of reducing the variability of the aggregate service capacity.
We are motivated by applications, such as cloud computing or smart energy grids, for
which there is a cost penalty associated from deviations in the required service rate
from the provisioned amount.

Our results highlight the tradeoffs between the variability of service capacity and the
timeliness of the service offered to jobs, in particular meeting their deadlines. We stud-
ied four policies in this regard, computing the capacity variance through a stochastic
queueing analysis, as a function of load deferrability parameters. In two of these poli-
cies deadline misses are allowed, and their probability must be quantified; the other two
strictly enforce deadlines. The alternatives were compared in their performance and im-
plementation simplicity, in particular, the ability to operate in a decentralized manner.

Since deferral decisions must be based on information about the job deadlines, an
important question for the system operator is how to ensure their truthful declaration.
We explored the possibility of offering rewards to jobs for their spare time and posed an
economic tradeoff between the cost penalty for variability and the reward payments. We
investigated decentralized ways to optimize this tradeoff through stochastic gradient
algorithms that effectively probe the job population’s willingness to defer service.

The goal of this article is to initiate analysis of this new model and the tradeoffs
therein, and thus there are many avenues for future study building on the results in
this article. For example, our study of service deferral has covered four representative
policies, with an emphasis on those with simple implementation. These policies are far
from exhaustive and a natural question task for future research is to develop policies
that outperform the four studied here. Similarly, our study of incentives focused on
Exact Scheduling and it would be very interesting to understand the interaction of
other policies with offered rewards and to optimize the tradeoff between performance
and the cost of providing incentives.

REFERENCES

Muhammad A. Adnan and Rajesh K. Gupta. 2014. Workload shaping to mitigate variability in renewable
power use by data centers. In Proceedings of the IEEE 7th International Conference on Cloud Computing.
96–103.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

15:26 A. Ferragut et al.

Muhammad A. Adnan, Ryo Sugihara, and Rajesh K. Gupta. 2012. Energy efficient geographical load balanc-
ing via dynamic deferral of workload. In Proceedings of the IEEE 5th International Conference on Cloud
Computing (CLOUD’12). 188–195.

Philipp Afèche and Haim Mendelson. 2004. Pricing and priority auctions in queueing systems with a gener-
alized delay cost structure. Manage. Sci. 50, 7 (2004), 869–882.

Phlippe Afèche and J. Michael Pavlin. 2016. Optimal price/lead-time menus for queues with customer choice:
Segmentation, pooling, and strategic delay. Management Science 62, 8 (2016), 2412–2436.

Mustafa Akan, Baris Ata, and Tava Olsen. 2012. Congestion-based lead-time quotation for heterogenous
customers with convex-concave delay costs: Optimality of a cost-balancing policy based on convex hull
functions. Operat. Res. 60, 6 (2012), 1505–1519.

François Baccelli and Bartlomiej Błaszczyszyn. 2009. Stochastic Geometry and Wireless Networks, Volume
I—Theory. Now Publishers.

Partha P. Bhattacharya and Anthony Ephremides. 1989. Optimal scheduling with strict deadlines. IEEE
Trans. Automat. Control 34, 7 (1989), 721–728.

Federico Bliman, Andres Ferragut, and Fernando Paganini. 2015. Controlling aggregates of deferrable loads
for power system regulation. In Proceedings of the 2015 American Control Conference, Chicago, IL.

Sem Borst, Onno Boxma, and Predrag Jelenkovic. 2000. Asymptotic behavior of generalized processor sharing
with long-tailed traffic sources. In Proceedings of the IEEE/Infocom 2000, Vol. 2. IEEE, 912–921.

Onno Boxma and Bert Zwart. 2007. Tails in scheduling. ACM SIGMETRICS Perform. Eval. Rev. 34, 4 (2007),
13–20.

Sabri Çelik and Constantinos Maglaras. 2008. Dynamic pricing and lead-time quotation for a multiclass
make-to-order queue. Manage. Sci. 54, 6 (2008), 1132–1146.

Niangjun Chen, Lingwen Gan, Steven H. Low, and Adam Wierman. 2014. Distributional analysis for model
predictive deferrable load control. In Proceedings of the IEEE 53rd Annual Conference on Decision and
Control.

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.
Andres Ferragut and Fernando Paganini. 2015. Queueing analysis of service deferrals for load management

in power systems. In Proceedings of the 53rd Annual Allerton Conference on Communication, Control
and Computing.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. 2005. Online convex optimization in
the bandit setting: Gradient descent without a gradient. In Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms. 385–394.

Hans C. Gromoll and Łukasz Kruk. 2007. Heavy traffic limit for a processor sharing queue with soft deadlines.
Ann. Appl. Probabil. 17, 3 (2007), 1049–1101.

Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press.

Refael Hassin. 2016. Rational Queueing. CRC Press.
Refael Hassin and Moshe Haviv. 2003. To Queue or not to Queue: Equilibrium Behavior in Queueing Systems.

Vol. 59. Springer Science & Business Media.
J. Hong, X. Tan, and D. Towsley. 1989. A performance analysis of minimum laxity and earliest deadline

scheduling in a real-time system. IEEE Trans. Comput. 38 (1989), 1736–1744.
Jack Kiefer and Jacob Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. The

Ann. Math. Stat. 23, 3 (1952), 462–466.
Leonard Kleinrock. 1975. Queueing Systems, Volume I: Theory. Wiley Interscience.
John P. Lehoczky. 1997. Real-time queueing network theory. In Proceedings of the 18th IEEE Real-Time

Systems Symposium. 58–67.
Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. 2013. Dynamic right-sizing for

power-proportional data centers. IEEE/ACM Trans. Network. 21, 5 (2013), 1378–1391.
Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L. H. Andrew. 2011. Geographical

load balancing with renewables. ACM SIGMETRICS Perform. Eval. Rev. 39, 3 (2011), 62–66.
Constantinos Maglaras and Jan A. Van Mieghem. 2005. Queueing systems with leadtime constraints: A

fluid-model approach for admission and sequencing control. Eur. J. Operat. Res. 167, 1 (2005), 179–
207.

Michel Mandjes and Bert Zwart. 2006. Large deviations of sojourn times in processor sharing queues.
Queueing Syst. 52, 4 (2006), 237–250.

Haim Mendelson and Seungjin Whang. 1990. Optimal incentive-compatible priority pricing for the M/M/1
queue. Operat. Res. 38, 5 (1990), 870–883.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

Controlling the Variability of Capacity Allocations using Service Deferrals 15:27

A. Nayyar, J. Taylor, A. Subramanian, K. Poolla, and P. Varaiya. 2013. Aggregate flexibility of a collection of
loads. In Proceedings of the 52nd IEEE Conference on Decision and Control.

Misja Nuyens, Adam Wierman, and Bert Zwart. 2008. Preventing large sojourn times using SMART schedul-
ing. Operat. Res. 56, 1 (2008), 88–101.

Michael Pinedo. 1983. Stochastic scheduling with release dates and due dates. Operat. Res. 31, 3 (1983),
559–572.

Erica Plambeck, Sunil Kumar, and Michael J. Harrison. 2001. A multiclass queue in heavy traffic with
throughput time constraints: Asymptotically optimal dynamic controls. Queueing Syst. 39, 1 (2001),
23–54.

Casey Quinn, Daniel Zimmerle, and Thomas H. Bradley. 2010. The effect of communication architecture on
the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. J.
Power Sources 195, 5 (2010), 1500–1509.

Philippe Robert. 2003. Stochastic Networks and Queues. Springer.
Eric Sortomme and Mohamed A. El-Sharkawi. 2012. Optimal scheduling of vehicle-to-grid energy and an-

cillary services. IEEE Trans. Smart Grid 3, 1 (2012), 351–359.
A. Subramanian, M. J. Garcia, D. S. Callaway, K. Poolla, and P. Varaiya. 2013. Real-time scheduling of

distributed resources. IEEE Trans. Smart Grid 4 (2013), 2122–2130.
Jasna Tomić and Willett Kempton. 2007. Using fleets of electric-drive vehicles for grid support. J. Power

Sources 168, 2 (2007), 459–468.
Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. 2011. Dynamically scaling applications in the

cloud. ACM SIGCOMM Comput. Commun. Rev. 41, 1 (2011), 45–52.
Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling possible? Operat. Res. 60, 5 (2012), 1249–

1257.
Stan Zachary. 2007. A note on insensitivity in stochastic networks. J. Appl. Probabil. 44 (2007), 238–248.
Qian Zhu and Gagan Agrawal. 2010. Resource provisioning with budget constraints for adaptive applications

in cloud environments. In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, 304–307.

Received November 2016; accepted April 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 3, Article 15, Publication date: August 2017.

