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ABSTRACT
In this paper we analyze the hit performance of cache sys-
tems that receive file requests with general arrival distribu-
tions and different popularities. We consider timer-based
(TTL) policies, with differentiated timers over which we op-
timize. The optimal policy is shown to be related to the
monotonicity of the hazard rate function of the inter-arrival
distribution. In particular for decreasing hazard rates, timer
policies outperform the static policy of caching the most
popular contents. We provide explicit solutions for the op-
timal policy in the case of Pareto-distributed inter-request
times and a Zipf distribution of file popularities, including a
compact fluid characterization in the limit of a large num-
ber of files. We compare it through simulation with classical
policies, such as least-recently-used and discuss its perfor-
mance. Finally, we analyze extensions of the optimization
framework to a line network of caches.

1. INTRODUCTION
Caching systems are widely deployed in computer net-

works to improve performance. By storing frequently re-
quested content near end users, latency and access time are
reduced and a lighter load is imposed on network resources.
In recent years, with the exponential growth in available con-
tent in the Internet, caching has become an integral compo-
nent of network architectures. Content Delivery Networks
(CDNs) have become the standard approach used by content
providers to serve large client populations. Current trends
take this point further, using terms such as Content-Centric
Networking (CCN) [21] or Information-Centric Networking
(ICN) [1] to describe architectures designed to connect end
users directly to content instead of a traditional server.

With the advent of these new technologies, there is a re-
newed interest in the performance analysis of caching sys-
tems, which has old roots in studies of CPU processing and
memory paging [28]. Most models for cache performance
analysis fall into two categories; the first are replacement
policies, where a finite amount of memory is actively admin-
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istered to maintain the most requested contents at hand.
Within these, the Least-Frequently-Used (LFU) policy is
known to be optimal under independent requests, albeit
requiring a large state. A simpler algorithm is the Least-
Recently-Used (LRU) policy [11, 28], where upon arrival of
a new request not presently stored, the object not requested
for the longest time is evicted from the cache. Exact analy-
sis of this policy has proven difficult, even with simple traf-
fic models such as the independent reference model (IRM),
where successive requests are assumed independent and sta-
tionary. Further references on LRU models are given in Sec-
tion 2.

Another class of cache management algorithms are timer
based policies (Time-to-live, TTL). In this case the evic-
tion of a file from the cache is performed after the expira-
tion of some timer, which is independently set upon arrival
of requests for each content. The main advantage of these
policies is that eviction is decoupled amongst objects, thus
simplifying analysis of the system. This simple policy also
guarantees weak consistency, providing a bound on the stor-
age of outdated content, which is the reason why it has been
implemented in DNS systems and Web caching. The main
disadvantage is that now memory usage can only be bounded
on average. Another important point is that TTL caches
with fixed timers can be used to approximate the behavior
of the LRU system, as pointed out by Che et. al in [10].
This approximation procedure has been further developed
in recent papers which we review in Section 2.

In this paper we study the optimal TTL policy for a
cache, in the sense of maximizing the hit rate obtained, over
the choice of timer parameters. Building upon the models
in [5,16,29] and with very general hypotheses on the request
arrival processes, we formulate the optimal timer policy as a
nonlinear optimization program in Section 3. The key char-
acteristic behind the structure of the optimal policy turns
out to be the hazard rate function of the inter-request times.
For the simple case where arrivals come from a Poisson pro-
cess (constant hazard rate), it is well known that the opti-
mal policy is to statically store the most popular files. A
first contribution of this paper is to show that this holds as
well for any interarrival distribution with increasing hazard
rate. The most interesting case is, however, when hazard
rates are decreasing ; here the optimization problem can be
transformed into a convex program, and the optimal policy
characterized as choosing timer values that equalize the haz-
ard rates of the stored contents. This implies in particular
that the static policy (and hence, the LFU policy) is not
always optimal. These results are described in Section 4.



The decreasing hazard rate case is important because it
appears when inter-request distributions are heavy tailed, a
typical model of bursty behavior. In Section 5 we develop
this case in detail, assuming Pareto inter-arrival times, in
combination with a Zipf power-law distribution for file pop-
ularities, also a commonly used model. The optimal policy is
identified as a function of the tail parameters, where in par-
ticular no contents are permanently cached. A streamlined
characterization of this optimal policy in the case of large
number of files is obtained through a fluid limit, with explicit
analytic expressions in terms of the model parameters. In
particular, we show that the maximal hit rate achievable by
TTL policies is strictly less than 1 for power-law populari-
ties with tail parameter β < 1. For the case β ≥ 1, we show
that the maximal hit rate approaches 1 and that also the
static policy is asymptotically optimal. We also analyze the
memory usage of the TTL policy, showing through a law of
large numbers that the cache operates close to its average
capacity.

In Section 6 we evaluate the performance of the optimal
TTL policies by simulation experiments. We validate our
results and analyze the speed of convergence to the asymp-
totic limits. We also provide a practical variant of the TTL
policy that enforces constant memory usage, with small de-
viations from the ideal case. Comparisons with static (LFU)
policies as well as LRU replacement policies are carried out.
The main observation is that both classical policies may be
suboptimal, but each performs well in a certain regime which
we can characterize through the hazard rate function of the
request process.

In Section 7 we include some generalizations. In the first
place we discuss how to generalize our optimization frame-
work to consider timers which are themselves random, in
particular exponentially distributed. We also investigate the
situation of a line of caches, where contents displaced from
one are moved upstream to the next. In the exponential and
deterministic timer cases, we show how this situation can be
analyzed through an appropriate Markov model, and results
are given on how to optimize performance.

Conclusions are provided in Section 8. Some of the proofs
can be found in the extended version of this paper [13].

2. BACKGROUND AND RELATED WORK
The performance analysis of caching algorithms goes back

to the seminal works of [19, 28] on replacement algorithms.
Despite the simplicity of replacement policies, analysis be-
comes complex even for a single cache: in [28], the author
gives an explicit expression of the hit probability of the LRU
policy, with exponential complexity. In [19], it is shown
that under the IRM assumption, similar replacement poli-
cies such as first-in-first-out achieve the same hit probabil-
ity. Since exact computation is intractable, [11] provides
an approximate computational procedure, again under the
IRM assumption. This method has been further extended
recently by [30] to the case of networks of cache systems.
In [18], another approach is given for list-based replacement
policies.

Another line of work related to our results is the asymp-
totic characterization of cache performance. A first step in
this direction is [14], which addresses the limit cost of the
Move-to-Front rule in self-organizing lists. By exploiting the
connection between MTF and the LRU policy, [23] provides
an asymptotic expression for the hit probability under IRM

assumptions and Zipf popularities with parameter β > 1.
These results are extended in [25] to the case β 6 1 and
some LRU generalizations. Following a fundamentally dif-
ferent approach, the same limit result is obtained in [4] by
using the Laplace transform of the asymptotic search cost.
In our work, we follow a similar limit procedure to charac-
terize the performance of the optimal TTL policies. Going
beyond IRM, [22, 24, 26] show some insensitivity properties
of LRU in the asymptotic regime, with dependent requests
and β > 1, and also provide conditions for the capacity scal-
ing for such insensitivity to hold. In this paper, we will
show that in fact several policies achieve an optimal hit rate
in this scenario, but for β < 1 temporal locality may have
an impact.

By far, the most popular technique for analyzing cache
performance of LRU under IRM is the so called“Che approx-
imation”, introduced in [10] in the context of Web caching.
Here, a characteristic time is defined for the cache system
which amounts to the average eviction time of the files. The
authors of [17] provide additional evidence on why the ap-
proximation is good through a central limit argument. It
turns out that this approximation amounts to choosing a
uniform timer to approximate LRU behavior.

The analysis of policies based on timers goes back to [27]
who gave expressions for the steady state hit probabilities,
later extended in [3] to include update delay. More re-
cently, [15, 16] laid the foundations for analyzing TTL poli-
cies under deterministic and random timers with general ar-
rival processes. In [5] the analysis is extended to a family of
TTL policies with the focus of approximating LRU perfor-
mance in linear and tree networks, and a different policy is
proposed in [6] with the aim of maximizing hit ratios by vari-
ance reduction. In [7] the Che approximation is analyzed in
a more general setting and in [29], it is extended, using TTL
cache tools, to renewal arrivals, showing good accuracy in
the case of small caches and Zipf popularities. In particular,
temporal locality in requests is observed to have an impact
in cache performance. A reverse engineering approach based
on utility maximization links TTL policies with list based
ones, as recently shown in [12].

Building upon these models, the main contribution of our
paper is to identify the structure of the optimal TTL based
policy, give an exact analysis of the asymptotic behavior
in the case of heavy tailed arrivals and show that it can
outperform static and LRU policies in this setting.

3. SYSTEM MODEL
We now introduce our TTL cache model with the aim

of determining the optimal TTL policy. We build on the
models of [5,16,29] and introduce a unified notation for the
system. The main assumption under TTL caches that sim-
plifies analysis is that per content metrics can be dealt with
separately. We first derive these metrics and then introduce
our definition for the optimal policies.

The main tradeoff we want to analyze in these systems is
between the hit probability, which is a property of the arriv-
ing requests and how they find the system upon arrival, and
the memory occupation in steady state, which is a system
property. Following [16], the correct mathematical setting
to deal with the analysis of these metrics is the Palm for-
mulation for stationary point process in the line [2], which
enables to compute system-wide and job-related measures



by conditioning upon arrivals. We follow this approach be-
low to obtain the relevant metrics.

Consider a cache system that receives requests for files or
content. Assume that requests for content n arrive into the
system as a stationary point process [2] on R with intensity

λn. Let {τ (n)k }k∈Z denote the arrival times, with the usual

numbering convention τ
(n)
0 6 0 < τ

(n)
1 , and X

(n)
k = τ

(n)
k+1 −

τ
(n)
k denote the interarrival times for content n. Define:

Fn(t) = P
(n)
0

(
X

(n)
k 6 t

)
(1)

the interarrival time distribution in the Palm space of the
arrival process, which is independent of k due to stationarity.
We have:

E
(n)
0 [X

(n)
k ] =

∫ ∞
0

1− Fn(t)dt =
1

λn
.

The TTL policy is as follows: for every arrival k, a timer
Tn ∈ [0,∞] is chosen; for most of this paper it will be as-
sumed deterministic. Upon arrival of a request, the file is
stored in the cache for a time Tn: if the next arrival occurs
before Tn then the next request will be a hit and the timer
is reset. If the interarrival time exceeds Tn the next request
will be a miss, implying a performance penalty due to the
need of retrieving the content from a remote repository.

From the above assumptions, the stationary hit probabil-
ity is thus:

hn := P
(n)
0

(
τ
(n)
1 6 Tn

)
= P

(n)
0

(
X

(n)
0 6 Tn

)
= Fn(Tn).

(2)
From a system perspective, the main concern is cache oc-

cupation. Define by Zn(t) ∈ {0, 1} the stationary process
indicating whether content n is stored at time t, i.e.:

Zn(t) = 1{τ(n)
k(t)

+Tn>t}
,

where τ
(n)

k(t) is the last request before time t. The stationary

occupation probability is given by un := E[Zn(t)]. Due to
stationarity, this probability can be computed at time 0 by
using the Palm inversion formula [2]:

E[Zn(0)] = λnE
(n)
0

[∫ τ
(n)
1

0

Zn(s)ds

]

Noting that under the Palm space τ
(n)
0 ≡ 0, Zn(s) = 1{Tn>s}

for s ∈ [0, τ
(n)
1 ] and therefore:

un = E[Zn(0)] = λnE
(n)
0

[∫ τ
(n)
1

0

1{Tn>s}ds

]
= λnE

(n)
0

[
min{X(n)

0 , Tn}
]

= λn

∫ Tn

0

1− Fn(s)ds =: F̂n(Tn). (3)

Here F̂n(t) is the well known residual lifetime distribution
associated to Fn. Equation (3) simply states that the sta-
tionary probability un of storing the content is just the prob-
ability that the time elapsed since the last request is less than
the timer Tn.

We are now ready to state the problem: consider a TTL
cache system where requests come from independent arrival
processes for each file. Let N be the total number of files,

each having a popularity qn stemming from a probability
distribution, i.e.

∑N
n=1 qn = 1. Without loss of generality,

we shall assume that the files are labeled in decreasing order
of popularity, i.e. qn is a strictly decreasing sequence. We
assume that the arriving requests for content n form a sta-
tionary and simple point process of intensity λn = λqn > 0.
Here 0 < λ < ∞ represents the total request rate into the
system. Each content is assigned a timer value Tn ∈ [0,∞]
possibly dependent on n.

From equation (2), the overall hit rate in the system is
given by:

H(T1, . . . , Tn) :=

N∑
n=1

λnFn(Tn). (4)

Suppose now the system should maintain a certain occu-
pation level, due to memory constraints. One way to keep
cache occupation at bay is to impose:

E

[
N∑
n=1

Zn(0)

]
6 C,

where C 6 N is the average memory allocated to the cache.
Typically one should have C � N . Using eq. (3) the above
constraint translates into:∑

n

F̂n(Tn) 6 C (5)

Therefore, the optimal TTL policy should solve the fol-
lowing optimization in the timer variables T1, . . . , TN :

Problem 1 (TTL cache optimization).

max

N∑
n=1

λnFn(Tn),

s.t.:
∑
n

F̂n(Tn) 6 C.

Problem 1 is a non-linear optimization with a non-linear
constraint. Note also that typical timer policies that are
feasible for Problem 1 include:

• The static policy that stores the C most popular con-
tents, i.e. Tn = ∞ for 1 6 n 6 C and Tn = 0 other-
wise.

• The homogeneous timer policy, used in [10, 29] to ap-
proximate cache systems operating under the Least
Recently Used (LRU) replacement algorithm, which
amounts to choose Tn ≡ TC as the solution of:

N∑
n=1

F̂n(TC) = C (6)

We want to characterize the optimal timer policy in terms
of the interarrival distribution characteristics. To this end,
it is useful to express Problem 1 in terms of the occupation
probabilities by performing the change of variables:

un = F̂n(Tn)⇔ Tn = F̂−1
n (un),

where t = F̂−1
n (u) := inf{t : F̂n(t) > u} is the generalized

inverse function. With the change of variables Problem 1
becomes:



Problem 2.

max
un∈[0,1]

N∑
n=1

λnFn(F̂−1
n (un)),

s.t.:

N∑
n=1

un 6 C.

Now we are dealing with a non-linear optimization with a
linear constraint. We have the following:

Lemma 1. Let Fn(t) have a density fn(t) in its support
[0, F−1

n (1)] and define

ηn(t) :=
fn(t)

1− Fn(t)
, t ∈ [0, F−1

n (1)). (7)

Then:

∂

∂un
Fn(F̂−1

n (un)) =
1

λn
ηn
(
F̂−1
n (un)

)
=

1

λn
ηn(Tn). (8)

Proof. From eq. (3) we have that:

∂

∂Tn
F̂n(Tn) = λn(1− Fn(Tn)).

Applying the chain-rule and the inverse function theorem to
the continuously differentiable function F̂n we then have:

∂

∂un
Fn(F̂−1

n (un)) = fn(F̂−1
n (un))

∂

∂un
F̂−1
n (un)

=
fn(F̂−1

n (un))

λn(1− Fn(F̂−1
n (un)))

,

as stated.

The function ηn(t) is the well known hazard rate function
associated to Fn and will play an important role in what
follows.

4. OPTIMAL TIMER POLICY
We now discuss the structure of the optimal TTL policy

under further assumptions on the hazard rate function. We
begin with the simplest case where arrivals form a Poisson
process.

4.1 Constant hazard-rate: the Poisson model
Assume requests for each file arrive according to a Poisson

process of intensity λn = λqn. In this case Fn(t) = F̂n(t) =
1 − e−λqnt, which is just a restatement of the memoryless
property of the exponential distribution. Therefore, the hit
and occupation probabilities coincide, hn = un, as expected
due to the PASTA property of Poisson arrivals. Problem 2
becomes:

max
un∈[0,1]

N∑
n=1

λnun,

s.t.:

N∑
n=1

un 6 C.

Since this is a linear program, the solution should be at-
tained at a vertex of the feasible region [8]. Since the weights
λn = λqn are strictly decreasing it is readily verified that the
unique optimum is:

u∗n = 1 for 1 6 n 6 C

and 0 otherwise. In the original timer variables, Tn =∞ for
the C most popular contents and 0 otherwise, i.e. the opti-
mal policy is the static policy where the C most popular con-
tents are stored. This result is well known in the context of
the independent reference model (IRM) where the sequence
of requests is iid. Under Poisson arrivals, the memoryless
property ensures this is in fact the case, and thus we recover
the static policy in the optimum.

The underlying fact here is that Problem 2 becomes linear
because the hazard rate function of the exponential distri-
bution is constant. We now analyze two cases where we
deviate from this assumption, and hence of the IRM model.

4.2 The increasing hazard rate case
Assume now that the arrival processes are such that ηn(t)

is increasing in t within the support (IHR). In this case,
once some time t has elapsed since a request it becomes
increasingly likely to have a new request for the same file.
This is associated with request processes that are in some
sense more periodical than the Poisson process. A simple

example is when X
(n)
k follows an Erlang distribution with

m > 1 stages, or the extreme case where X
(n)
k approaches

the deterministic distribution concentrated in 1/λn.
Applying Lemma 1, if ηn(t) is increasing, then:

∂hn(un)

∂un
=

1

λn
ηn
(
F̂−1
n (un)

)
is increasing in un, since F̂−1

n (un) is also increasing. There-
fore, the objective function of Problem 2 is convex.

We are thus faced with maximizing a convex function over
a convex domain. It is easy to see that also in this case there
is a solution at an extremal point of the convex set: if u is not
an extremal point, it can be written as a convex combination
of two points in the set, and thus the function value should
be less that the maximum value at the extremes.1

The extreme points of the set are again the static policies
where un = 1 or 0. Since the support of the interarrival and
lifetime distributions coincide, Fn(F−1

n (un)) = un whenever
un ∈ {0, 1}. Therefore, the hit rate at the extreme policies
are simply the sum of the arrival rates of the stored files,
and again the optimal policy is to store the most popular
contents statically. We have thus proved:

Theorem 1. Provided that the arrival distributions sat-
isfy the increasing hazard rate (IHR) property, the optimal
TTL caching policy defined by Problem 1 is to statically store
the C most popular contents.

In this case, the optimal hit rate is given by:

H∗ =

C∑
n=1

λn. (9)

4.3 The decreasing hazard rate case
We now turn our attention to the case where the haz-

ard rates ηn(t) are (strictly) decreasing in t (DHR). This
assumption implies that after some time t has elapsed, re-
quests are less and less likely to come. This type of inter-
arrival distribution is associated with heavy tailed arrival
processes (e.g. Pareto). This constitutes an important case

1The optimum is necessarily extremal if the function is
strictly convex, which occurs for strictly increasing hazard
rates.



in practice, since it can be used to model requests that come
in “bursts” separated by a few very long interarrival times.

In this case, due to Lemma 1, the objective function in
Problem 2 is strictly concave and we thus have a proper
convex optimization problem. Let us write the Lagrangian
of Problem 2:

L(u, p) =
∑
n

λnFn
(
F̂−1
n (un)

)
− p

(∑
n

un − C

)
, (10)

where p > 0 is the multiplier associated with the memory
constraint. The saddle point conditions for the optimal u∗

and the associated multiplier p∗ are:
∑
n u
∗
n ≤ C, p∗ ≥ 0,

u∗n = argmax
un∈[0,1]

L(u, p∗) ∀n, (11a)

p∗
(∑

n

u∗n − C

)
= 0. (11b)

Applying Lemma 1, we have:

∂L
∂un

= ηn
(
F̂−1
n (un)

)
− p.

A first observation is that, if C < N , the multiplier p at the
saddle point must be strictly positive, since otherwise L is
increasing in un ∈ [0, 1] and therefore u∗n = 1 ∀n, violating
the constraint. Given this, we have three possibilities:

ηn(0) 6 p∗ =⇒ u∗n = 0,

ηn(0) > p∗ > ηn(∞) =⇒ ηn
(
F̂−1
n (u∗n)

)
= p∗,

ηn(∞) > p∗ =⇒ u∗n = 1.

(12)

Expressing these conditions in terms of the original TTL
values, we have proved:

Theorem 2. Provided that the arrival distributions sat-
isfy the decreasing hazard rate (DHR) property, the optimal
TTL caching policy defined by Problem 1 is such that:

ηn(T ∗n) ≡ constant (13)

for every n such that 0 < T ∗n <∞.

Remark 1. The optimality condition (13) has the follow-
ing economic interpretation: ηn(Tn) is the marginal utility
derived from increasing the timer to Tn+dt, since this is the
probability that an arrival will occur immediately after Tn.
For a given budget, then the optimal allocation is to equalize
the marginal gains whenever possible.

Despite this characterization, it is difficult to give an ex-
plicit expression for the timer values without choosing a suit-
able parametric family for the problem primitives Fn and qn.
We now deal with an important case that can be solved in
detail.

5. HEAVY TAILED ARRIVALS AND POP-
ULARITIES.

To obtain further results we now focus on a specific para-
metric form for the inter-arrival time distributions and file
popularities. In both we will consider heavy-tailed distri-
butions, reflecting the burstiness in time of demands for a
specific content, and the natural fact that content files have
widely disparate popularities. For simplicity we assume from
now on that the total arrival rate of requests is λ = 1, which
amounts to a choice of units.

A typical distribution for content popularities is the well
known Zipf(β), defined by:

λn =
1

nβSN (β)
, n = 1, . . . , N ; (14)

where for the normalizing constant we are using the notation
SN (γ) :=

∑N
m=1

1
mγ

.
Note that for γ ∈ (−∞, 1) when the series diverges we

have the equivalent

SN (γ) =

N∑
m=1

1

mγ
∼ N1−γ

1− γ as N →∞. (15)

For the distribution Fn of inter-arrival times in requests
for file n, we adopt a Pareto distribution with with param-
eter α > 1, namely:

Fn(t) = 1−
(

θn
θn + t

)α
.

Here θn is a scale-parameter, that must satisfy λn = α−1
θn

to
be consistent with the mean arrival rate. It follows directly
from the definition in (3) that F̂n is also Pareto, given by:

F̂n(t) = 1−
(

θn
θn + t

)α−1

.

Applying the change of variables of the preceding Section
we obtain the convex problem:

max
un∈[0,1]

N∑
n=1

λn
[
1− (1− un)

α
α−1

]
, (16)

s.t.:

N∑
n=1

un 6 C. (17)

We assume as before that C < N . Later on we will let the
problem size N grow and choose a specific growth rate for
C(N).

The Lagrangian of our problem with respect to the capac-
ity constraint is

L(u, p) =

N∑
n=1

{
λn
[
1− (1− un)

α
α−1

]
− pun

}
+ pC,

where p > 0. We have

∂L
∂un

= λn
α

α− 1
(1− un)

1
α−1 − p.

As before, at the saddle point p > 0, otherwise un = 1 ∀n,
which would violate the constraint. Given p > 0 , we have
two possibilities for the optimal u∗n, corresponding to the
two first cases in (12):λn

α
α−1

6 p ⇒ u∗n = 0;

λn
α
α−1

> p ⇒ u∗n = 1−
(
p(α−1)
αλn

)α−1

.
(18)

In this case, u∗n < 1 always, so it is never optimal to store a
file all the time.

Also, at least one file must be stored with positive prob-
ability, so the second case in (18) must hold for the largest
λn, which occurs at n = 1; it will continue to hold until a
maximum value

M := max

{
1 6 n 6 N : λn =

1

nβSN (β)
> p

(α− 1)

α

}
,

(19)



which corresponds to the number of files that are cached a
nonzero amount of time in the optimal policy. The remain-
ing files, if any, are never stored. Note that

C =

M∑
m=1

u∗m < M, (20)

so the number of stored files always exceeds capacity. In
practice, if capacity is large the system will store all files
a positive amount of time (M = N), but in a situation of
more scarcity it is optimal to store only a number M < N
of objects.

5.1 Asymptotic behavior of the optimal policy
A more streamlined representation of the optimal storage

policy can be obtained by taking the limit in the problem
size, N → ∞, where it is natural to also let the capacity
grow, CN → ∞. A first observation that follows from (20)
is that MN → ∞. This holds regardless of the growth rate
of CN .

From now on we will focus mainly on the case CN = cN ,
c < 1, i.e. the cache size grows linearly with the number
of files. We will characterize the asymptotic behavior of the
optimal storage policy and the resulting cost. To analyze
the growth rate of the resulting MN we define

x0 := lim sup
N→∞

MN

N
. (21)

Clearly from (20) we have x0 ∈ [c, 1]. The following propo-
sition provides an exact characterization. Its proof can be
found in the extended version of this paper [13].

Proposition 1. x0 = min{ c
cα,β

, 1}, where

cα,β :=
β(α− 1)

1 + β(α− 1)
. (22)

Also the lim sup in (21) is an actual limit.

We thus characterize the optimal fraction of contents that
get stored a positive amount of time in the system, in the
asymptotic limit. There are two relevant cases, correspond-
ing to those in the preceding example, characterized by the
structural threshold cα,β < 1 defined in (22).

If c < cα,β , only a strict fraction x0 < 1 of the objects
will be cached. If c > cα,β , then x0 = 1, furthermore in the
proof we show that for large N we have MN = N , i.e. it is
optimal to cache all contents. In the border case we could
have convergence to unit fraction from below, a case we will
for simplicity not consider further.

5.1.1 Asymptotic file caching probabilities
Having characterized asymptotically how many objects

are cached, we now turn to the fraction of time they must
be stored. We begin by recalling the optimal solution policy
(18), reproduced below with emphasis on the dependence
with N :

u∗,Nn =

[
1−

(
pNSN (β)(α− 1)

α
nβ
)α−1

]
1{n6MN}. (23)

In order to characterize its asymptotic behavior in N , we will
express this policy in terms of a continuous variable that rep-
resents the fraction n/N of the popularity rank. Specifically,

define the function u∗,N (x) = u∗,NbxNc, x ∈ [0, 1].

The following theorem characterizes the limiting behavior
of this function.

Theorem 3. If CN = cN for 0 < c < 1, then as N →∞,
u∗,N (x) converges pointwise to

u∗(x) =
[
1− κx(α−1)β

]+
, (24)

where [w]+ = max{w, 0} and the constant κ is such that the
following constraint holds:∫ 1

0

u∗(x)dx = c. (25)

The proof is given in [13], by distinguishing the two cases
present in the previous discussion. In particular it is shown
that if c < cα,β we have

u∗(x) =

[
1−

(
x

x0

)β(α−1)
]
1{x<x0}; (26)

on the other hand if c ≥ cα,β the result spreads over [0, 1]:

u∗(x) = 1− (1− c)(1 + β(α− 1))xβ(α−1). (27)

In Figure 1 below we show the asymptotic optimal policy
functions for fixed values of α = 2, β = 0.8 (cα,β ≈ 0.44),
and increasing values of the cache size parameter c. For
comparison, we also plot the corresponding optimal policy
calculated numerically for a catalog of N = 1000 files, show-
ing that the approximation is indeed good.
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Figure 1: Asymptotic Optimal Policy

5.1.2 Asymptotic optimal cost
We are interested here in finding a limiting expression for

large N for the optimal hit probability.
Here a new distinction appears in terms of popularity dis-

tribution. The most interesting case is when β < 1, i.e. the
popularities are more heavy-tailed. In that case we will see
that the optimal hit probability remains strictly below unity,
and can be characterized asymptotically by integrating the
optimal law described above. The proof of the following
result can be found in [13].

Theorem 4. Suppose β < 1, and CN = cN for c < 1.
Then as N →∞, the optimal hit probability converges to

H∗ = (1− β)

∫ 1

0

x−β
[
1− (1− u∗(x))

α
α−1

]
dx, (28)



where u∗(x) is the optimal policy from Theorem 3.
In particular:

H∗ =


(

c
cα,β

)1−β
αβ

αβ+1−β , c < cα,β

1− (1− β)(1− c)
α
α−1 [1 + β(α− 1)]

1
α−1 , c > cα,β

(29)

Suppose we let β ↑ 1 in the previous expressions. It is
easily verified that we obtain H∗ → 1, indicating that the
optimal policy becomes efficient when the popularity dis-
tribution has lighter tails. Indeed, we show below that this
situation holds for β > 1, while maintaining the heavy tailed
arrivals. Note that in this case the limiting H∗ is no longer
characterized by an integral of the continuum optimal policy,
in particular the integral in (28) would become divergent.

Proposition 2. Consider a cache system as before with
capacity CN = cN , and λn = 1

Sn(β)
1
nβ

with β > 1. Then

the optimal hit rate verifies H∗,N −→N 1 and moreover the
static policy that stores only the CN most popular contents
is asymptotically optimal.

Proof. Since the static policy is feasible for Problem 2,
we will have:

1 > H∗,N >
CN∑
n=1

λn =

CN∑
n=1

1

SN (β)

1

nβ
=
SCN (β)

SN (β)
.

If β > 1, then SN (β) has a finite limit ζ(β) as N → ∞.
Since CN also goes to infinity we have:

SCN (β)

SN (β)
−→
N

1,

which proves this case.
When β = 1, SN (1) diverges but we have the well known

equivalent SN (1) ∼ log(N) which upon substitution yields:

lim
N

SCN (1)

SN (1)
= lim

N

log(c) + log(N)

log(N)
→N 1.

Remark 2. Note that in the case β > 1, since the tail
of the popularities decays fast enough, the same result holds
provided CN → ∞, regardless of the speed of convergence.
Therefore, as long as sufficient capacity is allocated in the
cache, the hit rate can be made arbitrarily high.

5.1.3 Some limiting cases
By considering some extreme cases, we can further com-

pare the optimal policy with the static (LFU) case.

Remark 3. Suppose the tail parameter of the interarrival
times α → ∞. In this case, it is easy to see that cα,β → 1,
x0 → c and the optimal policy converges to u(x) = 1{x6x0},
which amounts to the static most popular policy. In fact,
in this case, it is easy to show that the inter-request times
converge, as n → ∞ to exponential random variables with
parameter λn, thus recovering the result of Poisson arrivals.

Remark 4. Suppose that β → 0, i.e. the popularities
become more and more equal. In this case cα,β → 0 and the
optimal timer policy from (29) satisfies:

H∗ −→
β→0

1− (1− c)
α
α−1 .

Note that 1−(1−c)
α
α−1 > c, which will be the hit rate of any

static policy that stores a fraction c of the contents. Here the
gain of TTL based policies is evident: under bursty arrivals,
the timer policy is able to take advantage of the successive
requests, enlarging the hit rate. The effect is greater as α↘
1 (the heavier the tails of the interarrival times).

5.2 Capacity usage of the optimal policy
When using TTL policies, the memory constraint (5) im-

poses a limit of cache occupation only on average. One con-
cern is that memory usage may overshoot the capacity con-
straint C by large amounts. We now show how to estimate
memory usage and prove that in the asymptotic limit these
overshoots are negligible.

Consider the total occupation process, given by ZN (t) :=∑N
n=1 Zn(t). Under the optimal TTL policy, E[Z(0)] =∑N
n=1 u

∗,N
n = C by construction. Moreover, since the oc-

cupation processes of every file are independent, we have:

Var(ZN (0)) =

N∑
n=1

Var(Zn(0)) =

N∑
n=1

u∗,Nn (1− u∗,Nn ) 6
N

4
,

since each term comes from a Bernoulli random variable.
By a direct application of Chebysev’s inequality we have
the following law of large numbers.

Proposition 3. Let the buffer size scale as CN = cN
and let N → ∞, then under the optimal TTL policy the
occupation process verifies, for every δ > 0:

P
(
ZN (t) > (1 + δ)C

)
→
N

0.

Thus, the relative deviations from the average occupation
are negligible in the limit.

By approximating the value of
∑N
n=1 u

∗,N
n (1− u∗,Nn ) by a

Riemann integral as in the proof of Theorem 4, we can com-
pute the asymptotic variability of the occupation process.

Proposition 4. Under the same scaling, the variance of
the occupation process under the optimal TTL policy satis-
fies:

lim
N

1

N
Var(ZN (0)) =

∫ 1

0

u(x)(1− u(x)) dx

where u(x) is given by (26) for c < cα,β or (27) for c > cα,β.

The above proposition shows that in fact the variance
scales linearly with N . The constant can be readily cal-
culated. For instance, a direct computation of the integral
for the case c < cα,β yields:

1

N
Var(ZN (0))−→

N

c

2β(α− 1) + 1
.

Analogously, one can solve for c > cα,β .

6. NUMERICAL EXPERIMENTS
In this Section, we will analyze the performance of the

optimal TTL policy in several scenarios, and compare with
other policies such as the static policy that stores the most
popular files, and the LRU replacement algorithm. We also
provide a new approximation for finite N of the optimal hit
rate, and provide a variation of the TTL policy that ensures
constant memory usage, yet maintains high performance.
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Figure 2: Hit probability as a function of β, asymp-
totic limit and simulations. α = 2, c = 0.1.

To evaluate the algorithms, we implemented a discrete-
event simulator on Java that emulates cache behavior under
different policies (TTL, LRU, Static). The system is fed by
general renewal arrival processes of intensity λn and total
arrival rate λ = 1. Popularities are chosen as the Zipf(β)
distribution as described before. Recall that a typical mea-
sured value for the popularity parameter is β = 0.8 [9].

To implement the optimal TTL policy described in Section
5 in the heavy-tailed case, we first solved the optimization
Problem 2 in Matlab using the convex optimization library
CVX [20]. Solving for the exact policy in large instances of
this problem is computer intensive despite the convex struc-
ture. However, numerical trials show that, as long as the
catalog size N > 500, the optimal occupation probabilities
u∗,Nn can be well approximated by the fluid limit function
u(x) from Theorem 3. Therefore, in our simulations, we
simply derive the optimal occupation probabilities from the
relative rank of the file and the fluid limit value, and set the
timers accordingly. Note that this only requires knowledge
of the tail parameters α, β of the distributions involved.

6.1 Convergence of the hit probability
We begin by analyzing the convergence to the limit H∗

as the catalog size N grows. We simulated the system for
different values of N with varying popularity parameter β ∈
(0, 1.3). Inter-request times follow a Pareto distribution with
α = 2 and the storage capacity is fixed at c = 0.1 (i.e.
10% of the files stored on average). In Figure 2 we plot the
simulation results as well as the limit given by equation (29)
for β < 1. For β > 1 Proposition 2 shows that H∗ = 1.

As N grows, the hit probability approaches the computed
limit, although it does so slowly for critical values of β. This
is not a limitation of approximating the optimal policy by
the fluid limit u(x), which indeed shows fast convergence;
rather, the issue is the slow convergence of the Riemann
sum to the integral in the proof of Theorem 4. Seeking
a better estimate for finite N , we computed the difference
between rectangular and trapezoidal approximations to the
integral in question, and used a more precise approximation
of SN (β). This yields the following correction for the hit
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Figure 3: Optimal TTL policy and static policy per-
formance as a function of β. α = 2, β = 0.1.

rate with finite N :

H∗N ≈
(2N)1−β

(2N)(1−β) − 1
H∗ − (1 + β).(2−β)

(2N)(1−β) − 1
. (30)

These approximations are marked in Fig. 2 as boxes, show-
ing that indeed the approximation captures the hit proba-
bility for finite N and can be used to predict system perfor-
mance.

6.2 Comparison with the static policy
In the case of decreasing hazard-rates, it was shown that

the optimal TTL policy outperforms the optimal static pol-
icy, which is also the limit of the least-frequently-used (LFU)
policy in steady state. We now quantify this for the case
analyzed in Section 5. Note that, under the same scaling
CN = cN , the asymptotic hit probability of the static pol-
icy can be computed for β < 1 as:

lim
N

1

SN (β)

CN∑
n=1

1

nβ
= lim

N

SCN (β)

SN (β)
= lim

N

(cN)1−β

N1−β = c1−β .

where we have used the equivalent in (15). For β > 1, Propo-
sition 2 shows that the static policy also achieves maximal
hit probability asymptotically.

In Figure 3 we plot the the asymptotic hit rates (dashed
lines) as well as simulation results for the case of α = 2,
varying β. Here and in the remainder of the section we will
use for simulations a catalog size N = 10000 and a cache
size C = 1000, (c = 0.1). We remark that variations in c
were explored as well, but they do not affect the qualitative
conclusions which we draw in each case.

The main observation is that, when the arriving requests
satisfy the decreasing hazard rate property, the static pol-
icy (and hence LFU) is no longer optimal. Indeed, because
of its accommodation for traffic burstiness, the TTL policy
performs better than the static policy across all ranges of
β, with a stronger advantage in the case of more uniform
popularities (lower values of β).

6.3 The effect of the hazard-rate on LRU
We now analyze the performance of the LRU policy, which

is a popular policy within cache implementations due to its
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Figure 4: Optimal TTL policy vs. LRU in the
Poisson and increasing hazard rate case. c = 0.1,
N = 10000.

simplicity, since it does not require previous knowledge of
the request distribution and popularities. It turns out that
our analysis based on hazard rates sheds some light on when
LRU can provide near-optimal performance.

The main point is that LRU can be well approximated by
an homogeneous timer policy: this is the key idea from Che
et al. [10] and recently extended in [29] for general inter-
request distributions. The eviction time TC in LRU is ap-
proximately constant and homogeneous across files in a large
system, and can be approximated by the solution of eq. (6)
as discussed in Section 3. Therefore, in the situations when
the optimal TTL policy assigns homogeneous timers, LRU
performance should be near-optimal.

As a first example, we consider the constant (Poisson) to-
gether with the increasing hazard rate (IHR) case; in both
the optimal TTL policy coincides with the static policy. For
IHR we used inter-request times following a Uniform distri-
bution in [0, 2/λn].

Results are shown in Figure 4. In this case LRU is clearly
suboptimal, and its deficiency becomes more severe in the
IHR case. Note that in both cases, the optimal TTL solution
is highly inhomogeneous due to the convexity of the objec-
tive function: some files are statically stored and the other
ones never are (an extremal point). As in this case requests
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Figure 5: Optimal TTL policy, LRU and static pol-
icy for Pareto inter-request times with α = 2, c = 0.1,
N = 10000.
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Figure 6: Hit rate of the optimal TTL, LRU and
static policies for Pareto inter-request times with
varying α. β = 0.8, c = 0.1, N = 10000.

are more periodical in time, LRU is unable to quickly evict
the less popular files once they get stored.

The situation is more interesting when inter-request times
have the decreasing hazard rate property. In Figure 5 we
plot the simulation results for Pareto (α = 2) inter-arrival
times, comparing the hit rates of LRU, the static policy, and
the optimal TTL.

Note that in this case LRU may outperform the static pol-
icy. In fact, for lower values of β, LRU achieves near-optimal
performance as compared to the TTL policy. An explana-
tion for this lies in the fact that, in the DHR case, the opti-
mal solution tends to equalize the hazard rates of the stored
files: as β ↘ 0, popularities become similar and hazard rates
become homogeneous. Therefore, the optimal timer policy
has more homogeneous timers, and the LRU policy with its
near fixed timer provides near optimal performance. This
increase in the performance of LRU over the static policy
was already observed in [29] for hyper-exponential distribu-
tions (which satisfy the DHR property) in some situations.
Note also that in the limit case of Poisson arrivals, the LRU
policy also approaches the optimal as β ↘ 0 in Figure 4.

One could wonder if the TTL’s gains over LRU are based
on the fact that capacity is imposed only on average, allow-
ing the buffer occupation to go temporarily beyond C. To
test this, we implemented also a variation of the optimal
policy which we called constrained TTL. This is a similar to
the Practical TTL policy described in [16] to maintain con-
stant buffer occupation2: upon arrival of a request (with the
buffer full), the object with the least time remaining in its
timer is evicted immediately. If a timer expires, the object is
not evicted until a request not present in the buffer arrives,
and in that case the object with longest overdue timer is
evicted. Thus, the constrained TTL policy maintains con-
stant buffer occupation, and as shown in Figure 5 it achieves
close-to-optimal performance.

As a final example, we analyze the performance of LRU
against the optimal TTL and static policies with varying
tail parameter α and fixed β = 0.8. As we can see in Fig.
6, as the burstiness of traffic increases (α ↘ 1), LRU also
outperforms the static policy, by storing temporarily less
popular contents but which may be requested again soon,

2The main difference with [16] is that here timers are com-
puted following the optimal TTL policy from Theorem 3.
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due to the DHR property. As α grows, we approach the
Poisson case as discussed in Section 5.1, and the static policy
becomes optimal.

6.4 Capacity usage
Finally, we analyze the steady state memory usage of the

optimal TTL policy. In Figure 7, we plot the number of
stored objects under the optimal TTL policy as a function
of time, for Pareto arrivals with α = 2 and popularity pa-
rameter β = 0.8. The catalog and buffer size are the same as
before. As expected from Proposition 3, the capacity usage
has low overshoot from the average occupation. This also
justifies why the Constrained TTL policy performs almost
as well as the optimal. Using Proposition 4, one can esti-
mate the occupation variance in this case as V ar(C(t)) ≈ 40,
which is in accordance with the simulation.

7. GENERALIZATIONS
In this section we explore two generalizations of the op-

timal timer based policy characterized by Problem 1. We
first analyze the case of exponentially distributed timers,
first studied in detail in [16]. We show how to cast the op-
timal timer policy by writing an optimization problem by
means of Laplace transforms. Then we proceed to analyze
lines of cache networks, using both exponential and deter-
ministic timers, and show also how to derive a timer based
policy with desirable optimality properties.

7.1 Exponential timers
In Section 3 we assumed that timers associated to each

file were deterministic. Random timers with general dis-
tribution are discussed in [16], in particular the case when

T
(n)
k ∼ exp(µn). Under this policy, upon arrival of request
k for content n, a random timer Tnk is chosen independently
for each arrival, and the file is evicted upon timer expiration
as before. The authors of [16] derive the hit probability and
occupation probability, which we reproduce here using our
notation.

The hit probability for file n in steady state is simply:

P
(n)
0

(
X

(n)
0 < T

(n)
0

)
=

∫ ∞
0

e−µnxdFn(x) = F ∗n(µn),

where F ∗n(s) is the Laplace transform of the inter-request

time X0, i.e. E
(n)
0

[
e−sX0

]
.

By the same reasoning of Section 3, the occupation prob-

ability un can be computed as:

un = E[Zn(0)] = λnE
(n)
0

[
min{X(n)

0 , T
(n)
0 }

]
= λn

∫ ∞
0

e−µnx(1− Fn(x))dx

=

∫ ∞
0

e−µnxdF̂n(x) =: F̂ ∗n(µn), (31)

where in the second equality we used the distribution func-
tion of the minimum of two independent random variables,
and F̂ ∗n(s) is the Laplace transform of the residual lifetime

distribution F̂n.
Using these results, the optimal timer policy amounts to

choosing the eviction frequencies {µn} according to:

Problem 3 (Optimal exponential TTL policy).

max
µn>0

N∑
n=1

λnF
∗
n(µn)

s.t.:
∑
n

F̂ ∗n(µn) 6 C.

Problem 3 is different from Problem 1 with deterministic
timers, but has a similar structure: instead of the inter-
request distributions and their associated residual lifetimes,
the corresponding Laplace transforms appear, evaluated at
the eviction frequencies instead of the eviction times.

The Laplace transforms F ∗n and F̂ ∗n are convex and de-
creasing functions over the positive real line. This means
Problem 3 is seeking to maximize a convex function over
a convex domain, not a convex optimization program. As
argued before, the result should be at the extreme points of
the convex set, but in this case this set can be the whole
boundary

∑
n F̂
∗
n(µn) = C.

As in Section 3, one can rewrite this problem in terms
of the occupation probabilities, by performing the change
of variables un = (F̂ ∗n)−1(µn), obtaining the analogue of
Problem 2:

Problem 4.

max
un∈[0,1]

N∑
n=1

λnF
∗
n((F̂ ∗n)−1(un)),

s.t.:
∑
n

un 6 C.

In the case of Poisson arrivals, Fn = F̂n and thus problem
reduces to the linear program of Section 4.1, so the solu-
tion again degenerates to the static policy, as expected due
to the PASTA property. Obtaining more general convexity
conditions for general inter-request distributions under the
same change of variables proves harder in this case, and will
be pursued in future work.

7.2 Infinite line of TTL caches
We now extend our analysis of optimal TTL caching be-

yond the case of a single cache. Consider instead a line of
TTL caches, with requests arriving at one end, and the fol-
lowing management policy: only one copy of each content is
stored at some cache k in the line, with k = 0 representing
the cache that receives external requests. When content n
is requested, the object is moved to cache 0 and a timer is
started. Upon timer expiration, it is evicted and moved to
the next cache in line, where the process is repeated.



This “move to front” rule tends to keep popular objects
in the first caches of the line, while less requested content
drifts away and is stored further away from the users. Note
again that one copy of the file is kept at any point in time.

We first analyze this policy in the case of Poisson arrivals
with intensity λn and exponentially distributed timers of fre-
quency µn. Since each file behaves independently, we begin
by modeling the position of each file in the line. For sim-
plicity, we will assume that the line is infinite, but the same
analysis can be carried out for finite lines.

Let Ln(t) denote the position of content n in the line over
time. It is easy to see that, under the memoryless assump-
tions above, Ln(t) is a continuous-time Markov chain with
state space k ∈ {0, 1, 2, . . .} and transition rates:

qk,k+1 = µn, qk,0 = λn.

This Markov chain is always stable, and by solving its
global balance equations it can be shown that its invariant
distribution is geometric:

πn(k) = P (Ln = k) =

(
λn

λn + µn

)(
µn

λn + µn

)k
.

Therefore, the expected search cost of file n, measured by
the number of hops needed to retrieve the content, is given
in steady state by:

E[Ln] =

µn
λn+µn

1− µn
λn+µn

=
µn
λn
. (32)

Assume now that caches have an average capacity C.
The average occupation of cache k in the line is given by∑
n πn(k). Since πn is decreasing in k for each n, the most

restrictive cache is the first in the line. Therefore, we can
formulate an optimization problem to determine the eviction
frequencies that minimize the average search cost:

Problem 5.

min
{µn>0}

N∑
n=1

λnE[Ln] =

N∑
n=1

µn,

s.t.:

N∑
n=1

πn(0) =

N∑
n=1

λn
λn + µn

6 C.

The above is a convex optimization program that can be
readily solved to yield the optimal eviction frequencies.

We now extend the above result to the case of determin-
istic timers. The key property is to show that the steady
state distribution of Ln(t) is again geometric, by using a
method of stages. Namely, to model a deterministic timer
distribution with value Tn, we divide the level k in S con-
secutive stages k1, . . . , kS , each with an exponential timer of
parameter Sµn and µn = T−1

n . With this change, the time
in each stage follows an Erlang distribution of parameters
S and Sµn. As the number of stages S grows large, this
approximates the deterministic distribution concentrated at
Tn, due to the law of large numbers.

This procedure yields a modified Markov chain L̃n(t), the
state space is now l ∈ {0, 1, 2, . . .} and the set {kS 6 l <
(k+1)S} corresponds to the event {Ln = k}, i.e. the object

is cached in level k of the line. The transition rates for L̃n
are given by:

q̃l,l+1 = Sµn, q̃l,0 = λn,

and therefore by the same reasoning as before:

π̃n(l) = P (L̃n = l) =

(
λn

λn + Sµn

)(
Sµn

λn + Sµn

)l
.

Accumulating this distribution over {kS 6 l < (k+ 1)S},
the stages of level k, yields again a geometric distribution:

πn(k) = P (Ln(t) = k) = P
(
L̃n ∈ {kS, . . . , (k + 1)S − 1}

)
=

(
λn

λn + Sµn

)S [(
Sµn

λn + Sµn

)S]k
.

As the number of stages S →∞, we have the limit:(
Sµn

λn + Sµn

)S
−→
S→∞

e
−λn
µn = e−λnTn .

We have thus proved:

Proposition 5. Let Ln(t) denote the process tracking the
level at which a file is stored in a line of TTL caches, where
requests arrive as a Poisson process of intensity λn, and the
file is evicted to the next cache in line after a deterministic
time Tn. Then, Ln in steady state verifies:

P (Ln(t) = k) =
(

1− e−λnTn
)(

e−λnTn
)k
, (33)

and thus the average search cost is given by:

E[Ln] =
e−λnTn

1− e−λnTn =
1

eλnTn − 1
.

We can use this result to formulate the optimal TTL prob-
lem equivalent to Problem 5. However, while the search cost
E[Ln] for file n is convex in Tn, the occupation probability at
cache k = 0 is given by un = 1−e−λnTn , a concave function.
Nevertheless, we can use the idea of Section 4, changing to
variables un, posing the optimal TTL problem as:

Problem 6.

min
{un∈[0,1]}

N∑
n=1

λnE[Ln] =

N∑
n=1

λn
1− un
un

,

s.t.:

N∑
n=1

πn(0) =

N∑
n=1

un 6 C.

By solving this convex optimization, the optimal timers are
obtained from Tn = − 1

λn
log(1− u∗n).

Remark 5. Note that we could also have recast Problem
5 in terms of the occupation probabilities, and obtained the
same convex program as Problem 6. This implies that the
optimal performance is the same for exponential or deter-
ministic timers. The reason behind it is that both yield a ge-
ometric distribution for the stage probabilities, so in essence
we are optimizing over the parameter of this distribution, in-
directly through the choice of timers or eviction frequencies.

8. CONCLUSIONS
In this paper, we analyzed from a theoretical perspective

the performance of caching systems operating under timer
based eviction policies. Building upon previous results for
the relevant performance metrics, we formulated an opti-
mization problem that characterizes the optimal choice of
timers that maximizes the hit probability. This enables us



to understand the structural properties of the system. In
particular, we proved that the convexity of this problem is
tightly related to the monotonicity of the hazard rate of the
inter-request times, and provided a detailed analysis of the
case of heavy tailed inter-request distributions and popu-
larities, which are relevant in practice. Through simulation
and numerical evaluation, we also analyzed the performance
of alternative cache management algorithms. We also pur-
sued some generalizations to random timers and networks
of caches which will be explored in future work.
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