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Abstract. Motivated by the novel coronavirus disease (COVID-19) pandemic, this paper aims5
to apply Gunter Stein’s cautionary message of respecting the unstable to the problem of controlling6
the spread of an infectious disease. With this goal, we study the effect that delays and capacity7
constraints have in the test, trace and isolate (TeTrIs) process, and how they impact its ability to8
prevent exponential disease spread. Our analysis highlights the critical importance of speed and scale9
in the TeTrIs process. Precisely, ensuring that the delay in the TeTrIs process is much smaller than10
the doubling time of the disease spread is necessary for achieving acceptable performance. Similarly,11
limited TeTrIs capacity introduces a threshold on the size of an outbreak beyond which the disease12
spreads almost like the uncontrolled case. Along the way, we provide numerical illustrations to13
highlight these points.14
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1. Introduction. The opening lines of Gunter Stein’s classic paper Respect the17

Unstable [24], published 13 years after his inaugural Bode Lecture of the same name,18

read:19

“The practical, physical (and sometimes dangerous) consequences of20

control must be respected, and the underlying principles must be21

clearly and well taught.”22

The message to the control engineer and researcher is clear. Not only must the many23

benefits of feedback be understood (pedagogically, mathematically, and in practice),24

but also its limitations. The principle of feedback is after all inherently about trade-25

offs, constrained by conservation laws just as fundamental as any law of physics.26

Whilst these ‘laws of feedback’ apply to the control of all systems, Gunter Stein gave27

special attention to unstable systems for three main reasons:28

1. Unstable systems are fundamentally, and quantifiably, more difficult to con-29

trol than stable ones.30

2. Controllers for unstable systems are operationally critical.31

3. Closed-loop systems with unstable components are only locally stable.32

In this paper we aim to revisit these points from the perspective of designing contact33

tracing policies to mitigate the spread of disease throughout a population.34

1.1. Control of Disease Spread. The control of disease spread is not the35

traditional hunting ground of the control engineers, so a degree of caution from our36

community is perhaps of even greater relevance than normal. That said, controlling37

the spread of a disease has many of the elements of the most challenging control38
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problems. Accurate models of the spread of a highly infectious disease are at best39

controversial, but certainly unstable (at least in a population with high susceptibility40

to the disease). The mechanisms for identifying infectious members of the population41

may be subject to significant delays and inaccuracies, compromising the quality of the42

available information for performing feedback. And finally, the options for mitigating43

the spread can be blunt, unpredictable, and subject to severe capacity constraints.44

Since emerging in late 2019, the novel coronavirus disease (COVID-19) pandemic45

has made abundantly clear the effect that these challenges have on mitigating disease46

spread. At the time of writing (Oct. 2020), COVID-19 had reached a significant47

global spread (45 M documented cases) [7] and vaccines were not yet available; this48

meant that the primary public health tools available to limit the spread were non-49

pharmaceutical interventions (NPIs), such as social distancing and contact tracing50

[11]. Many NPIs can be understood in terms of feedback control, and as such abide51

by the fundamental ‘laws of feedback’ that Gunter Stein referred to. This work52

illustrates the impact of these limitations, placing a particular emphasis on the role53

of delays and saturation. We focus on contact tracing as it exhibits several of the54

features described above.55

1.2. Contact Tracing. Contact tracing is the process of testing, tracing and56

isolating people known to have been in close proximity with infected individuals. All57

three of these steps are essential, so for this reason contact tracing is also referred58

to by the acronym TeTrIs. This intervention can disrupt chains of infection to slow59

and potentially end the spread of an infectious disease. It has been employed in the60

control of sexually transmitted infections [6, 12, 19], in limiting the severe acute respi-61

ratory syndrome (SARS) epidemic [5] and at an unprecedented scale in the COVID-1962

pandemic [23, 1].63

The execution of TeTrIs varies significantly from region to region, and is rapidly64

evolving. Regardless of the specifics, two key characteristics contribute to the success65

of TeTrIs. The first is the delay between the moment an individual becomes infected66

and the moment that individual becomes isolated from the rest of the population. A67

larger delay allows the infected individual to infect more people. The second is the68

capacity of the TeTrIs program. We think of this capacity as the number of active69

cases the TeTrIs program can process at once without the delay growing significantly.70

These characteristics are determined by the structure of the TeTrIs program. But71

more practically, achieving sufficient performance in these characteristics must be72

used to determine the structure of the TeTrIs program. Thus, in this paper we seek73

to characterize sufficient delays and capacity of a TeTrIs program to successfully74

control the spread of an infectious disease.75

The effects of these characteristics have been studied in the past. Many works76

analyze the impacts of contact tracing using computer simulations [18, 10]. Math-77

ematical analysis of TeTrIs has typically relied on two methodologies. In the first,78

an ordinary differential equation (ODE) models spread over a certain fixed contact79

graph [9, 14]. In the second, the impact of TeTrIs is modeled as a branching process80

[21, 20].81

1.3. Contributions of this Work. In this work, we take a control theoretic82

perspective on the impacts of delays and saturation. These two phenomenon have83

been widely studied in the control systems field. We provide two rules of thumb for84

the requisite speed and capacity of a TeTrIs system. First by analyzing the system85

sensitivity function, we show that delays of even just one quarter of the doubling86

time of the disease may suffice to overwhelm a TeTrIs system. For infectious diseases87
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like COVID-19, the optimistic allowable delay to control their initial outbreak is88

approximately 1 day. Another implication of the analysis points to the importance of89

effective isolation. If we fail to isolate two thirds of the cases, such a system may not90

even be stabilising without delay. Second, we model the contact tracing process and91

show that the saturation of its limited capacity may disable an otherwise efficacious92

TeTrIs system. With saturation, we identify a threshold behavior of disease spread93

that implies stability regions beyond capacity and potentially significant degradation94

of performance.95

The paper is structured as follows. First, we discuss the effects of delay on the96

efficacy contact tracing. We introduce contact tracing as a feedback loop on the classic97

SIR model. We derive an upper bound on delay to prevent exponential disease spread98

in this setting. Then, we generalize this analysis from the SIR model to general LTI99

and nonlinear system models with an exponentially unstable mode. This demonstrates100

that these limitations are fundamental, rather than an artifact of particular modelling101

choices. Second, we discuss the effects of saturation on the efficacy of contact tracing.102

We introduce two compartmental models that respectively capture the contact tracing103

efforts devoted to infected and uninfected populations and introduce the saturation104

effects of tracing capacity. Reduced stability regions are observed based on a nonlinear105

threshold analysis.106

Notation. Transfer functions of linear-time-invariant (LTI) systems will be de-107

noted with bold face letters. For example G (s) = 1/ (s+ 1) is the transfer function108

from u to x for the system dx
dt = −x+u, and G (s) = exp (−sT ) the transfer function109

for the delay x (t) = u (t− T ). The set of all proper real rational transfer functions,110

i.e. functions of the form111

G (s) =
a0s

n + a1s
n−1 + . . . + an

sn + b1sn−1 + . . . + bn
, ai ∈ R, bk ∈ R112

will be denoted by R. The H-infinity norm of a transfer function G is defined as113

‖G‖∞ := sup {|G (s)| : s ∈ C,Re (s) > 0} .114

The H-infinity norm is a central notion in the robust performance of control systems,115

see for example [8, §2] for an introduction.116

2. Contact tracing: The Need for Speed. The basic rationale behind TeTrIs117

is simple. Disease spreads through the contact between infectious and susceptible118

members of a population. So by rapidly isolating infectious individuals as soon as119

they are detected, as well as everyone they’ve recently contacted (who may now be120

infectious themselves), it may be possible to shut off all the routes of spread, and stop121

an outbreak in its tracks. But how accurate does the testing need to be to ensure122

that enough cases are traced? And how fast must the system be to halt an outbreak123

before it becomes an epidemic?124

In this section we will explore these questions from the control-theoretic perspec-125

tive, with a particular focus on feedback based fundamental limitations. TeTrIs is a126

feedback process, in which infectious people are isolated in response to measurements127

about a population. Therefore, TeTrIs is subject to conservation laws and perfor-128

mance limitations (see [24, 2] for an introduction). We will discuss the consequences129

of these, placing a particular focus on the following inequality:130

(2.1) ‖S‖∞ ≥ 2
Tdelay

Tdoubling .131
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Fig. 1. Trade-off between disturbance amplification and time delay when controlling an unstable
system. Typically ‖S‖∞ less than 1.2–2 is necessary for good performance.

The precise meanings of all these terms will be made clear when it is derived in Sub-132

section 2.2, but here S is the sensitivity function (in the usual control theoretic sense),133

Tdoubling the doubling time of the unstable process1, and Tdelay the sum of delays in134

the feedback loop. This inequality imposes a fundamental limit on the size of the135

sensitivity function, and shows that when very unstable processes (smaller doubling136

times) are controlled subject to large delays, the sensitivity function will always be137

large. This is illustrated in Fig. 1. Since the sensitivity function determines how138

disturbances are amplified and attenuated, (2.1) demonstrates that in such systems,139

bad performance is inevitable. Indeed the conventional wisdom is that a value of140

‖S‖∞ less than 1.2–2 is a prerequisite for acceptable performance (see e.g. [3, 8]).141

The size of ‖S‖∞ is also intimately related to many other measures of performance142

and robustness, such as gain and phase margins [3, §7.2].143

Equation (2.1) gives the implication144

Tdelay > Tdoubling log2 kperf =⇒ ‖S‖∞ > kperf .145

The consequences of this inequality are quite striking in the context of controlling dis-146

ease spread using TeTrIs. For example, it shows that given a disease with a doubling147

time of 8 days, if the delays between becoming infectious and being isolated are greater148

than 2 days, then ‖S‖∞ > 1.2 (picking the more conservative target might be advis-149

able when trying to control a highly uncertain system such as disease spread). This150

bound holds even under extremely optimistic assumptions about the implementation151

of contact tracing. Specific implementations can certainly be worse!152

What makes the bound useful is that it provides direct insight into our original153

questions. For example, if we set a target of ‖S‖∞ ≤ 1.2, the system set up to154

1Here Tdoubling := ln 2
p

, where p > 0 is the location of the unstable pole.
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conduct contact tracing must be at least four times faster than the doubling time of155

the disease:156

‖S‖∞ ≤ 1.2 =⇒ 4Tdelay ≤ Tdoubling.157

Slower implementations are guaranteed to fail this objective, and as a result be more158

vulnerable to disturbances (e.g. failing to identify an infectious person could result159

in a large number of new infections). It is interesting to note that the same rule of160

thumb based on more ad-hoc arguments can be found in [4, §III.B-4)]. Inequalities161

such as (2.1) provide further evidence for the necessity of a fast TeTrIs system.162

2.1. Understanding the Issue. In this section we will demonstrate the funda-163

mental limitation discussed above from the perspective of a simple model of contact164

tracing. This will allow us to put these abstract ideas in a more concrete setting, so165

as to better understand them. Studying a simple model will also allow us to derive166

specialised analysis tools along the way that can provide additional insight. In what167

follows we will first outline a simple SIR-based model for contact tracing, before il-168

lustrating the fundamental limitations through simulations and additional theoretical169

tools.170

2.1.1. An SIR-based Model for Disease Control with TeTrIs. The so171

called SIR model is one of the simplest and most widely used models of disease spread172

[16]. It is centred around three compartments - S (t), I (t) and R (t) - which specify the173

proportion of the population that are susceptible, infectious, and recovered at time t.174

So if S (0) = 1, then at time t = 0 the entire population is susceptible to the disease,175

or if R (1) = 0.5 then half the population has recovered (or died) at time t = 1. The176

population shifts between these compartments over time according to two rates, which177

model the effect of the infectious population mixing with the susceptible population178

and transferring the disease, and the infectious population recovering, respectively.179

This can be visualised on a graph with a node for each compartment, and a directed180

edge specifying the transition rates between them:181

IS R
βSI γI

182

Here β is a mixing parameter, specifying the average number of ‘significant’ (those183

that could result in the transmission of the disease) interactions that each individual184

has per unit time. Each infectious person then has an average of βS such events185

with the susceptible population, resulting in βSI new infections per unit time. The186

second rate is justified by saying that on average it takes 1/γ units of time for an187

infectious person to recover, which corresponds to members of the I compartment188

being transferred to the R compartment with rate γI.189

When written as a set of differential-algebraic equations, the SIR model is190

(2.2)
d

dt

SI
R

 =

−1
1
0

βSI +

 0
−1
1

 γI, 1 = S + I +R.191

Of central importance in the study of the SIR model (and disease spread in general)192

is the so-called basic reproduction number R0. R0 is defined to be the number of193

secondary infections caused by a single primary infection in a population in which194

everyone is susceptible to the disease. Consequently if R0 > 1 a small outbreak will195

grow, whereas if R0 < 1 it will not. For the SIR model, R0 = β/γ. This is closely196
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related to notions of stability and doubling times. For the SIR model197

(2.3) Tdoubling =
ln 2

β − γ
=

ln 2/β

1− 1/R0
.198

The SIR model describes the process of disease spread, but not the impact of TeTrIs.199

To model this, we first split the infectious population into two groups Q and Imix,200

where Q corresponds to the subpopulation that has been quarantined, and Imix the201

remainder of the infectious population. We can incorporate the effect of quarantining,202

by modifying the rate between the susceptible and infectious population as shown203

below. The rationale here is that after taking quarantining into account there should204

be βSImix new infections per unit time, and that Imix = I −Q.205

Q

Imix
S R

βS (I −Q) γI

206

The effect of this change is to slightly modify the original SIR equation in (2.2):207

(2.4)
d

dt

SI
R

 =

−1
1
0

βS (I −Q) +

 0
−1
1

 γI, 1 = S + I +R.208

All that remains is to close the loop, and specify how the number of people who are209

quarantined at time t depends on the contact tracing. For simplicity, we propose to210

model this process through the equation211

(2.5) Q (t) = αe−γTdelayI (t− Tdelay) ,212

where 1 ≥ α ≥ 0 and Tdelay ≥ 0. In words this equation says that we are able to213

test, trace and isolate a proportion α of those that were infectious Tdelay days ago2.214

Together (2.4) and (2.5) constitute a simple model for understanding how TeTrIs can215

be used to control disease spread.216

2.1.2. Analysis of the Simple Model. Before performing a theoretical analy-217

sis of the model, it is instructive to run some simulations. The evolution of the218

infectious population after an outbreak affecting 0.01% of the population is shown in219

Fig. 2 for a range of different values of the time delay. The simulation parameters for220

this figure are:221

• α = 0.8, meaning that 80% of cases are tested, traced and isolated.222

• γ = 0.1, meaning the disease has an average recovery time of 10 days.223

• β = 0.3, giving the disease a basic reproduction number of 3.224

The first thing to note is that if the delay is short, the outbreak is contained and225

no epidemic ensues. It is also interesting to see the degradation in behaviour as the226

delay increases. By the time Tdelay is 5 days, an epidemic not dissimilar to that227

without TeTrIs occurs. Even more strikingly though is that by the time Tdelay is just228

2 days, the initial outbreak sees a tenfold increase before it is brought under control.229

This relatively short delay has seemingly brought TeTrIs to the verge of instability.230

When you consider that there may be several simultaneous outbreaks, or capacity231

constraints on how many people that can be tested-and-traced, it is clear that short232

delays may already be enough to overwhelm a TeTrIs system.233

2We need to include the proportional constant e−γTdelay since over those Tdelay days, (1 −
e−γTdelay ) of those that were infectious will have gone on to recover.
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Fig. 2. Simulation of (2.4) and (2.5) for a range of values of Tdelay.

A natural first question is, “Are these results in line with the fundamental limita-234

tion discussed at the beginning of this section?”. A simple calculation shows that at235

the start of the outbreak, the doubling time of the disease equals236

Tdoubling =
ln 2

β − γ
≈ 3.5 days.237

Therefore, to achieve ‖S‖∞ ≤ 1.2, it is necessary that Tdelay ≤ 0.9 days. This seems238

to be in good agreement with the simulation, where the case with a one day delay239

is well controlled, with a rapid decline in performance soon after. In fact, given the240

simple nature of the model in (2.4) and (2.5) a more detailed analysis is possible.241

The following theorem characterises the stability of the linearisation of the model242

about the disease free equilibrium in terms of the system parameters. An intuitive243

explanation of this stability criterion is given at the end of the section.244

Theorem 2.1. The linearisation of the model in (2.4) and (2.5) is stable3 about245

the point (I,R,Q) = (0, 0, 0) if and only if246

(2.6) Tdelay <
1

γ
ln

(
αβ

β − γ

)
.247

Proof. See Appendix A.248

Remark 2.2. While any point with I = 0 (no infected people) is an equilibrium249

of (2.4) and (2.5), we focus on the point (I,R,Q) = (0, 0, 0) for two reasons. Firstly,250

this equilibrium corresponds to the initial phase of the pandemic (S = 1) and exhibits251

the largest unstable growth, thus serving as a natural benchmark for stabilization252

purposes. Secondly, it is also the most desirable equilibrium from a public health253

3In the sense that I (t) → 0 in response to a small perturbation about the initial condition
(I (t) , R (t) , Q (t)) = (0, 0, 0) for t ≤ 0.
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perspective and of high practical value. Indeed, many countries have achieved initial254

control of the COVID-19 pandemic through TeTrIs sustaining levels of infections of255

several order of magnitude lower than its population. For example, Uruguay, the256

home country of several authors of this work, sustained levels of active infections in257

at most hundreds for several months, over a population of approximately 3.5 M.258

In order to interpret the meaning of Theorem 2.1, it helps to rearrange the bound259

a little:260

γTdelay < ln

(
αβ

β − γ

)
= ln

(
α

1− 1/R0

)
.261

The specific trade-off between parameters and delay implied by the above is shown262

in Fig. 3. This figure can be used to quickly assess the amount of delay that can be263

tolerated before instability occurs. For example, in the simulations we used a model264

with R0 = 3 and γ = 0.1, with feedback parameter α = 0.8. Therefore, from the265

figure we see that we require266

Tdelayγ < 0.18 =⇒ Tdelay < 1.8 days267

for the policy to be stabilising. This captures precisely the behaviour we saw in the268

simulation, where Tdelay = 2 seemed to be right on the cusp of instability. We also269

see the importance of tracing enough cases. By the time α < 1−R−10 = 2/3, that is,270

we only detect and isolate at most 66% of the cases, the policy isn’t even stabilising271

with Tdelay = 0.272

The stability criterion in Theorem 2.1 also has a nice interpretation through the273

effective reproduction number Re. Suppose that α in (2.5) is the probability that274

an infectious individual is detected and isolated. The amount of time T that each275
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Fig. 4. Feedback interconnection in (2.7).

infectious person is mixing with the susceptible population is then a random variable276

T =

{
Tr w.p. 1− α
min {Tdelay, Tr} w.p. α.

277

In the above Tr ∼ Exp (γ) is the time it takes the given person to recover from the278

disease. Therefore, the expected time that each infectious person is in the mix is given279

by280

E [T ] = (1− α) E [Tr] + αE [min {Tdelay, Tr}] = (1− α)
1

γ
+ α

∫ Tdelay

0

exp (−γs) ds

=
1

γ
(1− α exp (−γTdelay)) .

281

The effective reproduction number is then the expected number of secondary infections282

generated by an individual:283

Re = βE [T ] =
β

γ
(1− α exp (−γTdelay)) = R0 (1− α exp (−γTdelay)) .284

The condition that Re < 1, which would correspond to an outbreak dying out, is thus285

equivalent to286

1 > R0 (1− α exp (−γTdelay)) ⇐⇒ Tdelay <
1

γ
ln

(
α

1−R−10

)
,287

which is precisely the stability condition from Theorem 2.1.288

2.2. Fundamental Limitations. A natural concern with the results from Sub-289

section 2.1.2 is that they are seemingly based on a set of highly contentious modelling290

assumptions. For example, why use the SIR model to capture the effect of disease291

spread in (2.4), rather than the SEIR model or indeed any of the other more com-292

plex compartmental variants? What about other models for TeTrIs? Will the same293

conclusions hold if we use something more realistic than (2.5)? In this section we will294

demonstrate that the limitations we observed through Theorem 2.1 and the simula-295

tions of (2.4) and (2.5) are really a consequence of the interplay between instability296

and delay.297

The main result of this section is to derive the inequality (2.1). For simplicity298

we will stick to the LTI case, though we will show in Appendix B that a natural299

analogue of (2.1) holds in the nonlinear case also. To this end, consider the feedback300

interconnection of n subsystems described by301

(2.7)
êi = Giêi−1 + d̂i, i ∈ {1, . . . , n}
ê0 = −ên.

302
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In the above the variables d̂i and êi denote the Laplace transforms of a set of scalar303

disturbances and error signals, and Gi the transfer function of the i -th subsystem. The304

basic setup is illustrated in Fig. 4. This is a general framework for describing feedback305

systems, and many models for the control of a disease using TeTrIs can be put in this306

framework. For example, after linearisation about the point (I,R,Q) = (0, 0, 0), the307

model in (2.4) and (2.5) can be captured by setting n = 2, and308

(2.8) G1 (s) =
β

s− (β − γ)
, G2 (s) = α exp (−sTdelay) .309

Variants with, for example, more complicated compartmental models of disease spread310

can be similarly handled by substituting in the corresponding transfer function for311

G1.312

The advantage of the abstract formulation in (2.8) is that it allows general prop-313

erties of feedback interconnections to be studied for entire classes of models. When314

studying the properties of this feedback interconnection, the central objects are the315

sensitivity functions. These are the transfer functions from di to ei, which we denote316

as Si. In the scalar LTI case, the sensitivity functions are all equal to each other and317

given by318

(2.9) Si =
1

1 + G1G2 · · ·Gn
=: S, i ∈ {1, . . . , n} .319

These functions determine how the internal signals êi depend on the external320

disturbances d̂i. Hence the size of S determines how disturbances are attenuated.321

Indeed every single closed-loop transfer function in (2.8) contains S (for example the322

transfer function from d̂1 to ê3 is given by G3G2S). Given its central importance to323

the process of feedback, the sensitivity function has been extensively studied both in324

theory and in practice. Indeed the requirement that the size of ‖S‖∞ be less than325

1.2–2 is widely used, and is arguably of more importance than criteria based on the326

gain margin and phase margin4 [3, §7.2].327

The following theorem shows that when the feedback loop contains a system with328

an unstable pole p and a time delay of Tdelay, ‖S‖∞ ≥ exp (pTdelay). This places329

a fundamental limit on the size of the sensitivity function. Surprisingly this result330

doesn’t seem to be known (for example the lower bound ‖S‖∞ ≥ exp (pTdelay)− 1 is331

presented in [3, §14.3, Table 14.1]), though the existence of such a bound is certainly332

implicit in the work on sensitivity optimisation from the 1980s [17, 13]. We give a333

simple proof based on the maximum modulus principle.334

Theorem 2.3. If L =
exp(−sTdelay)

s−p H, where Tdelay > 0, p > 0 and H ∈ R, then335 ∥∥∥∥ 1

1 + L

∥∥∥∥
∞
≥ exp (pTdelay) .336

Proof. Let a > 1, and note that the Möbius transform f (z) = (1− az) / (a− z)337

maps the closed unit disc into the closed unit disc. This implies that given any transfer338

4Indeed it can be shown that [3, §7.2]

gain margin ≥
‖S‖∞
‖S‖∞ − 1

, phase margin ≥ 2 arcsin

(
1

2 ‖S‖∞

)
,

whereas no guarantees in the converse direction hold (positive gain and phase margins only guarantee
that ‖S‖∞ <∞).
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function G, we have the equivalence339

‖G‖∞ ≤ 1 ⇐⇒ ‖f (G)‖∞ ≤ 1.340

Therefore, ‖1/ (1 + L)‖∞ ≤ a if and only if341

1 ≥
∥∥∥∥f (1

a

1

1 + L

)∥∥∥∥
∞

=

∥∥∥∥ aL

a2L + a2 − 1

∥∥∥∥
∞

=

∥∥∥∥ aH exp (−sTdelay)

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞
.

342

Now recall that given any transfer function G, ‖G exp (−sTdelay)‖∞ = ‖G‖∞ (delay-343

ing the input to a transfer function doesn’t affect its norm). Therefore,344 ∥∥∥∥ aH exp (−sTdelay)

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞
=

∥∥∥∥ aH

a2H exp (−sTdelay) + (s− p) (a2 − 1)

∥∥∥∥
∞

≥ 1

a exp (−pTdelay)
,

345

where the inequality follows from the maximum modulus principle applied at the346

point s = p (see e.g. [8, §6.2]). This demonstrates that ‖1/ (1 + L)‖∞ ≤ a only if347

a ≥ exp (pTdelay) as required.348

It is readily verified that this bound is equivalent to the inequality presented349

earlier in (2.1) by substituting in the relationship between p and Tdoubling. That is,350

setting p = ln (2) /Tdoubling shows that351

‖S‖∞ ≥ exp (pTdelay) = 2
Tdelay

Tdoubling .352

Theorem 2.3 shows that if the transfer function G1G2 · · ·Gn (typically referred353

to as the return ratio) can be written in the form354

(2.10) G1G2 · · ·Gn =
exp (−sTdelay)

s− p
H,355

where H is any transfer function in R, then ‖S‖∞ ≥ exp (pTdelay). We therefore356

see from (2.8) that Theorem 2.3 applies to our simple model for disease control with357

TeTrIs (set H = αβ). However, the true power of Theorem 2.3 is that it holds for358

any feedback interconnection of the form of (2.7) that satisfies (2.10). This means359

that the same fundamental limits on performance hold even if we replace our simple360

model of disease spread from (2.4) with a general compartmental model which predicts361

an initial period of exponential spread of the disease (if there is no spread, TeTrIs362

is not really necessary anyway). To see this, suppose that the linearisation of our363

compartmental model of choice can be written in the general form5364

(2.11)
dx

dt
= Ax+BQ, I = Cx.365

5This is the general form of the linearisation of a compartmental model

dx

dt
= f (x,Q) , I = g (x) .

It may seem restrictive that g doesn’t depend on Q. However, if it did, this would mean that the
effect of quarantining someone would instantly affect whether or not they are infectious, which is
rather implausible.
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If the model predicts a period of exponential spread of the disease, then the A matrix366

will have an eigenvalue p > 0. Provided this mode is observable and controllable367

(which would also be necessary for there to be any chance of controlling it through368

TeTrIs), the transfer function associated with (2.11) will have a pole at p. That is,369

Î =
1

s− p
MQ̂.370

Assuming the same model for TeTrIs we can now write the linearisation of the371

feedback interconnection of (2.5) and (2.11) in the framework of (2.7) by setting372

G1 = 1/ (s− p)M, and leaving G2 = α exp (−sTdelay). The transfer functions in this373

interconnection also satisfies (2.10), so the same fundamental limit holds. In fact it374

will continue to hold even if we use more complex models for TeTrIs, provided they375

still include a total time delay of Tdelay. We conclude the section with some final376

remarks on Theorem 2.3.377

Remark 2.4. The bound from Theorem 2.3 also applies to the complementary378

sensitivity function. That is, under the conditions of Theorem 2.3, ‖L/ (1 + L)‖∞ ≥379

exp (pTdelay).380

Remark 2.5. Theorem 2.3 continues to hold in the nonlinear setting under the381

assumption that the feedback interconnection in question has a linearisation. This382

essentially follows from the fact that the induced L2-norm of a nonlinear system383

(the natural generalisation of the H-infinity norm) is always greater than the induced384

L2-norm of its linearisation. This effectively shows that by considering the nonlinear385

effects in more realistic models, performance (as measured using sensitivity functions)386

can only get worse. This makes it all the more important to aim for performance387

requirements on the conservative end (i.e. ‖S‖∞ ≤ 1.2 rather than ‖S‖∞ ≤ 2),388

necessitating a speedier response. This is discussed in Appendix B.389

2.3. Discussion. The purpose of this section has been to expose fundamental390

limits in epidemic control that arise from the combination of two factors: the natural391

open-loop instability of the system, and the existence of delays in the feedback loop.392

Some of our results were stated in general form, but the main motivating example393

is the stabilization and regulation of an epidemic by means of testing, tracing and394

isolation of infections. The bounds derived apply to any control strategy of this kind,395

and can be summarized in “the need for speed”: if the delays involved in identifying,396

testing and isolating cases are not very tight, the success of the entire approach is in397

jeopardy.398

There are other strategies for an epidemic control, which are also subject to399

fundamental limits of this kind. The most commonly deployed one is social distancing400

of the entire population. In the context of the classical SIR models, this means making401

the parameter β itself a control variable, attempting to stabilize the dynamics at a402

nonzero number of infections, compatible with the capacity of the healthcare system.403

Of course, a model of social behavior that would cover the control of β is not easy404

to obtain, and will not be pursued here. We remark, nonetheless, that for instance a405

strategy of ordering a lockdown when infections hit a certain threshold is also subject406

to time delays (due to disease latency times) which will compromise performance.407

Staying within the realm of contact tracing based control, there is another fun-408

damental limit that will be analyzed in the following section.409

3. Track-and-trace: The Need for Scale. The analysis of the preceding410

section sets the focus on the effect of feedback delays in limiting the performance of411
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the TeTrIs strategy for epidemic control. Here we will address a different limitation412

of the control strategy that manifests in the presence of disturbances. That is, TeTrIs413

relies on scarce resources: the availability of technology and trained personnel for414

taking samples and laboratory testing, for the proactive tracking down of potential415

infections, and for ensuring appropriate quarantine.416

These resources are usually orders of magnitude smaller than the full scale of417

the population, and thus often saturate in a widespread epidemic such as COVID-19.418

The question we wish to address is the characterization of these limitations in math-419

ematical models for the epidemic under TeTrIs-based control. To accommodate the420

nonlinear effect of saturation in a tractable way, we simplify the delay-to-quarantine421

model to finite dimensional dynamics instead of a pure delay. This alternative is422

natural in the context of compartmental models: rather than assume that the TeTrIs423

process takes a fixed amount of time to remove infected people, we assume a rate of424

removal is given; this can be seen as the macroscopic aggregate of the random times425

involved in the contract tracing process.426

3.1. A Model for Contact Tracing. We thus introduce a compartmental427

model that incorporates as a state the number of people in quarantine Q, in addition428

to the the standard susceptible (S), infected (I) and removed (R) populations. We429

assume that people in quarantine effectively isolate and thus are no longer producing430

new infections.431

IS R

Q

βSI γI

µI γQ

432

The TeTrIs control strategy is modeled as follows: Infected people are individually433

tracked, tested and isolated at a rate µ, meaning that on average, we need a time 1/µ434

to effectively put these people into quarantine.435

Under these assumptions, the dynamics become436

(3.1)
d

dt


S
I
Q
R

 =


−1
1
0
0

βSI +


0
−1
1
0

µI +


0
−1
0
1

 γI +


0
0
−1
1

 γQ.437

This model was already proposed in [22] and its analysis is simple, since quaran-438

tined people can be considered as “early recoveries”. More formally, if we consider the439

dynamics in S̃ = S, Ĩ = I, R̃ = Q + R, then the model becomes a simple SIR model440

with recovery rate γ + µ and therefore the critical reproduction rate parameter is441

(3.2) Rµ :=
β

γ + µ
.442

In the model without quarantine, the open-loop critical rates is R0 = β/γ (cor-443

responding to the case µ = 0). The net effect of contact tracing is to reduce the444

reproduction rate: Rµ < R0. In particular, if the contact tracing rate µ→ 0 (contact445

tracing is extremely slow), it is as if contact tracing is not operating. If contact tracing446

is extremely fast (µ→∞), it can stabilize any open-loop transmission rate.447
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In fact, the above analysis gives a first rule of thumb to determine the contact448

tracing speed. That is, provided that the open-loop system is unstable (R0 > 1), we449

need450

(3.3)
1

µ
<

1

β − γ
,451

i.e., the average isolation time must be controlled. Eq. (3.3) can be compared with452

(2.6), the main difference stems from the fact that here we are continuously isolating453

people after a random delay, instead of a fixed one. As an example, if we fix the454

average recovery time in 1/γ = 10 days and R0 = 3 (β = 0.3), the average time to455

isolate is bounded by 5 days.456

While this family of quarantining models is well known, we would like to analyze457

the effect of saturating the contact tracing capability. To this end, consider that there458

is a maximum fraction of the population K that can be tested, tracked, and isolated459

simultaneously. This can be due to a limit in the total test processing capability, the460

number of contact tracing agents that are deployed or any combination thereof.461

In such a scenario, if the number of infected people is low, then the quarantining462

rate should be µI, since every infected person is being tracked (equivalently there463

exists idle tracking and testing capacity). However, if the number of infected people464

is high (I > K), then the quarantining rate should be µK because of the saturation465

of the control capabilities.466

Under these assumptions, the dynamics become467

(3.4)
d

dt


S
I
Q
R

 =


−1
1
0
0

βSI +


0
−1
1
0

µmin{K, I}+


0
−1
0
1

 γI +


0
0
−1
1

 γQ.468

Note that if K ≥ 1 in (3.4), we recover the first model.469

3.2. Understanding the Issue. To highlight the issues introduced by this sat-470

uration, we first analyze the dynamics (3.4) under the assumption that S ≈ 1 (i.e.,471

at the beginning of the epidemic). In that case, the important part of the dynamics472

is the evolution of infected people, which becomes autonomous:473

(3.5)
d

dt
I = βI − γI − µmin{K, I}.474

The above differential equation is extremely simple to analyze. However, it yields475

an important insight into the effect of saturation in these kinds of dynamics. Consider476

the case where R0 > 1, i.e., the system is open-loop unstable, but Rµ < 1, meaning477

that the system can be stabilized by an “infinite” contact tracing capability, as in478

(3.1). Then the phase diagram becomes479

I
0 I∗K

saturated region

480

The new unstable equilibrium that emerges in the approximate dynamics can be481

readily computed by imposing dI/dt = 0 in (3.5) to yield482

(3.6) I∗ =
µK

β − γ
.483

This manuscript is for review purposes only.



DELAYS AND SATURATION IN CONTACT TRACING 15

0 20 40 60 80
0

0.001

0.002

0.003

0.004

0.005

0.006

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

I

Q

R

Fig. 5. Simulation of the system in (3.4) with I(0) = 2× 10−3 < I∗ and I(0) = 3× 10−3 > I∗.
Note the different scales in the y-axis.

The appearance of this new equilibrium means that the saturation of contact484

tracing measures leads to a threshold behavior in the number of infected people,485

a phenomenon already observed in several countries that have lost track of disease486

spread [15]. Of course, the value I∗ is not an equilibrium of the full non-linear dy-487

namics (3.4), but it should operate as a threshold value. We revisit this more formally488

below.489

In addition, using that Rµ < 1, we have µ > β− γ and thus I∗ > K. This means490

that the stability region is larger than the saturation point of the contact tracing491

capability. One way to interpret the threshold is to rearrange (3.6) in the following492

manner:493

(3.7) K =

(
β

µ
− γ

µ

)
I∗.494

Here the factor β
µ −

γ
µ acts as a reproduction number: it can be interpreted as the495

number of “children” a single infected individual generates until it is traced, minus the496

ones that recover in that same period. If the total number of new infections generated497

by a pool I of infected people is larger than the tracing capacity, then the disease will498

spread in the long run.499

Example. To demonstrate the validity of the approximation S ≈ 1 at the begin-500

ning of the epidemic, consider the following scenario: let γ = 1/10, i.e., recovery time501

around 10 days and R0 = 3 (β = 0.3), so the system is open-loop unstable. Assume502

that we need two days on average to test, trace and isolate people, which amounts to503

a choice of µ = 1/2. In that case, I∗ = µ
β−γK = 2.5K, that is, every unit of tracing504

capability can deal with up to 2.5 simultaneous infections without crossing the thresh-505

old. Let us simulate the system for an initial condition with S ≈ 1. In particular506

we choose K = 10−3, meaning that 1 in 1000 people can be tracked simultaneously.507

With this choice of K, I∗ = 2.5 × 10−3 and we choose I(0) slightly below or above508

I∗. Results are shown in Fig. 5. We can see that the simulated (nonlinear) system509

indeed enters the exponential phase immediately after reaching the threshold.510

The above analysis, albeit simplistic, illustrates the effects of local non-linearities511

in the stability behavior of epidemics. Namely, a stable region appears around the512

extinction equilibrium, but instability can be reinstated if the number of infected513

people grows large, overwhelming the control capabilities. We now analyze this further514
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in the complete dynamics (3.4), and then extend the framework to consider the case515

where the tracing effort is in part spent on contacts that do not become infected.516

3.3. Nonlinear Analysis. To understand the effect of the saturation without517

approximating S ≈ 1, it is of use to first understand the behavior of S(t). Since, by518

(3.4), d
dtS ≤ 0, S(t) is a decreasing function of time. This allows us to derive the519

following monotonicity property for I(t).520

Proposition 3.1 (Monotonicity of I(t) under (3.4)). Consider the dynamics521

(3.4). Then the following property holds:522

(3.8)
d

dt
I(t0) < 0 =⇒ d

dt
I(t) < 0, ∀t ≥ t0.523

Proof. Without loss of generality we assume I(t0) > 0. We first consider the524

case I(t0) ≤ K. In this case, it follows from (3.4) that S(t0) < 1/Rµ. This is the525

standard scenario where the number of susceptible people is not enough to sustain526

the epidemic, thus we expect d
dtI(t) < 0 for all t > t0.527

Indeed, if we assume by contradiction that there is a time t1 such that d
dtI(t1) = 0528

then we get529

0 =
d

dt
I(t1) = (βS(t1)− γ − µ)I(t1) =⇒ S(t1) =

1

Rµ
> S(t0),530

which contradicts the fact that S(t) is decreasing in time.531

The analysis for the case I(t0) ≥ K follows a similar reasoning. Indeed, by532

considering the saturated version of (3.4), i.e.,533

(3.9)
d

dt
I = βSI − γI − µK,534

we get that d
dtI(t0) < 0 implies535

(βS(t0)− γ)I(t0) < µK.(3.10)536537

Thus, assuming again by contradiction the existence of t1, being the first time d
dtI(t) =538

0 for t > t0, we obtain539

(βS(t0)− γ)I(t0) < µK = (βS(t1)− γ)I(t1) ≤ (βS(t0)− γ)I(t1),(3.11)540541

where the first inequality follows from d
dtI(t0) < 0 and the second from the mono-542

tonicity of S(t). It follows then that I(t1) > I(t0), and therefore543

0 < I(t1)− I(t0) =

∫ t1

t0

d

dt
I(t)dt < 0,544

where the last inequality holds by the definition of t1. Thus, such a time t1 cannot545

exist.546

The preceding proposition illustrates the critical role of the nullcline d
dtI = 0547

in (3.4) in understanding the threshold behavior in the nonlinear case. To simplify548

exposition and further understand the role of the nullcline, we consider only the most549

relevant case when Rµ < 1 and R0 > 1, as before.550

This manuscript is for review purposes only.



DELAYS AND SATURATION IN CONTACT TRACING 17

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

Fig. 6. S-I region of the phase plane. Trajectories for uncontrolled evolution (green), unsatu-
rated TeTrIs (purple), and TeTrIs with K = 0.01 (red) are presented for two initial conditions. On
the left, I(0) is above the nullcline and the pandemic spreads. On the right, I∗ < I(0) < Ĩ(S(0))
and the pandemic is contained successfully. The Ĩ(S) nullcline (solid black) thus acts as a threshold
between successful and unsuccessful TeTrIs.

In this case, the nullcline is fully within the saturated region, and Proposition 3.1551

leads to the simple condition552

(3.12) I ≤ Ĩ(S) :=
µK

βS − γ
=

µK

β(S − 1
R0

)
553

for the disease to dissipate without a major outbreak. Indeed, for the number of554

infectious people to increase, d
dtI(t) must be positive, thus violating (3.12).555

A few remarks are in order. First, the threshold is only valid for the range556

0 ≤ Ĩ(S) ≤ 1. Outside such range, the disease dies out. In particular, Ĩ(S) ≥ 0 leads557

to the already known S ≤ 1/R0 condition, and Ĩ(S) ≥ 1 ≥ I guarantees d
dtI < 0 for558

all I. Second, the nonlinear threshold Ĩ(S) is a decreasing function of S (see Fig. 6),559

which implies that the most conservative bound is obtained at S = 1, which leads to560

Ĩ(S) =
µK

βS − γ
≥ µK

β − γ
= I∗ > K,561

where the last inequality follows from our assumption Rµ < 1. Thus, the analysis562

of the previous section leads to a lower bound on the critical threshold, which, as563

expected, is quite accurate when S ≈ 1.564

Example. Consider again the set of parameters β = 0.3, γ = 1/10 and µ = 1/2.565

As mentioned before, since in this case Rµ < 1 < R0, Ĩ(S) ≥ I∗ > K holds for all S.566

Fig. 6 considers the case of K = 0.01 (red) and compares its trajectory on the (S, I)567

plane with two additional cases, the unsaturated dynamics (UnSatTeTrIs, purple)568

and the regular dynamics with no track-and-trace (No TeTrIs, red). On the left,569

an initial condition I(0) = 0.65, S(0) = 1− I(0), with I(0) above the threshold Ĩ(S)570

(solid black), is considered. On the right, a similar setting but with I(0) = 0.0255571

between Ĩ(S(0)) = Ĩ(0.974) = 0.026 and I∗ = 0.025 is considered. This therefore572

validates the very slight conservativeness in the I∗ threshold.573

3.4. Modeling the Tracing of Uninfected Contacts. One thing the pre-574

ceding models do not capture is that the resources of a contact tracing system are575

also invariably used to test and trace people that have been in contact with infected576
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individuals, but have not developed the infection. As we analyze in this section,577

the stability region obtained by TeTrIs control policy will be reduced because of this578

phenomenon.579

Consider the following compartmental model for the epidemic spread. As usual,580

I denotes the infected population at a given time. These infected individuals have581

multiple contacts which generate secondary infections at rate β, but also have other582

contacts, say at rate β1, which do not generate infection. Since this classification can583

only be ascertained by testing, the TeTrIs capability is in part spent on these non-584

infected contacts. We will denote the population of potential infections by P , and585

separate it from the rest of the susceptible population for which we use the variable586

S.587

For our model, we choose β1 = νβ. Here ν can be thought as the “odds ratio” that588

a contacted individual does not develop the infection. If ν = 0, all potential contacts589

are infected and the model operates as before, but typically ν > 0, meaning that590

not all contacts are infected. In particular, in Uruguay where we have access to fine591

grained data, its value is around ν = 10, meaning that for each infected individual,592

10 more people should be tracked.593

The open-loop model given below carries out the classification of susceptible in-594

dividuals into the P and S categories, before incorporating contact tracing:595

(3.13)
d

dt


S
P
I
R

 =


−1− ν
ν
1
0

βIS +


0
−1
1
0

βIP +


0
0
−1
1

 γI.596

Of course, if we combine both categories of susceptibles into one class S̃ = S+P ,597

the model reduces to a classical SIR model with infection rate β and recovery rate598

γ. Thus the reproduction number for the model in (3.13) is given as before by599

R0 =
β

γ
.600

Consider now that the contact tracing effort u is split between uP and uI , mean-601

ing that the tracking is performed over the whole potentially infected population.602

Those that are tracked and are infected are isolated, the others are simply “cleared”603

and return to the normal susceptible class. Adding as before a state variable for604

quarantined population we obtain the model:605

(3.14)

d

dt


S
P
I
Q
R

 =


−1− ν
ν
1
0
0

βIS+


0
−1
1
0
0

βIP +


1
−1
0
0
0

uP +


0
0
−1
1
0

uI +


0
0
−1
0
1

 γI+


0
0
0
−1
1

 γQ.606

Following the analysis in the previous sections, in the case where there is no limit607

to the tracing capabilities, we can assume608

(3.15) uP = µP, uI = µI,609

where 1/µ is the average time to trace and test one individual, either potential or610

infected.611
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I

S

R

Q

P

βSI γI

µI γQ

νβSI

βPIµP

612

Substituting this control law in (3.14), we can easily observe that, since there613

is no coupling between uP and uI , the model reduces to the contact tracing and614

quarantining model of Section 3.1. Namely, the state S̃ = S + P, Ĩ = I, Q̃ = Q and615

R̃ = R follows exactly the dynamics in (3.1). In particular, the reproduction rate for616

a given value of µ is the same as in (3.2):617

(3.16) Rµ =
β

µ+ γ
.618

Again with sufficiently fast contact tracing, one can cope with any transmission rate.619

The interesting case, however, is when contact tracing is limited by the total620

number of trackers or simultaneous tests that can be performed. Since these tests are621

performed before knowing if a person is a potential infection or an infected individual,622

the coupling between uP and uI becomes623

(3.17) uP + uI 6 µK.624

In particular, if we assume that the effort is equally split between all P + I625

potentially infected individuals, then:626

uP (P, I) = µ
P

P + I
min{P + I,K} = µP min

{
1,

K

P + I

}
,(3.18)627

uI(P, I) = µ
I

P + I
min{P + I,K} = µI min

{
1,

K

P + I

}
.(3.19)628

629

Note that uP + uI = µmin{K,P + I} and thus satisfies (3.17). Also when I and P630

are near zero, the feedback law reduces to (3.15).631

3.5. Threshold Analysis. In comparison with (3.4), a full nonlinear analysis632

in this case is more involved. Therefore, we resort to the strategy of analyzing the633

behavior of the saturated policy around the disease free equilibrium where S ≈ 1.634

In this setting, P � 1 and I � 1 so the product term IP can be disregarded.6635

Substituting this condition and the control law (3.18) in (3.14), the dynamics become636

autonomous in P and I with637

(3.20)
d

dt

[
P
I

]
=

[
0 νβ
0 β − γ

] [
P
I

]
− µmin

{
1,

K

P + I

}[
P
I

]
.638

We have the following:639

6This is equivalent to considering that every potential contact only arises from a single infected
interaction.
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Proposition 3.2. Under the condition R0 > 1 (uncontrolled open loop) and640

Rµ < 1, the dynamics in (3.20) have a locally asymptotically stable disease free equi-641

librium P = I = 0, and a further unstable equilibrium emerges at642

(3.21) P ∗ =
νβ

((1 + ν)β − γ)(β − γ)
µK, I∗ =

1

(1 + ν)β − γ
µK.643

Proof. We begin by analyzing the disease free case, which is readily verified to be644

an equilibrium after substitution in (3.20). The Jacobian matrix in this case retains645

a diagonal term −µ since the saturation is not in effect near the origin. Thus the646

Jacobian is647

J1 =

[
−µ νβ
0 β − γ − µ

]
.648

The Jacobian has two eigenvalues, −µ < 0 and β−γ−µ that is also negative because649

of the assumption that Rµ < 1, hence the equilibrium is locally stable.650

To find the second equilibrium, we assume that the saturation is active and im-651

poses equilibrium in (3.20):652 [
0 νβ
0 β − γ

] [
P ∗

I∗

]
− µ K

P ∗ + I∗

[
P ∗

I∗

]
=

[
0
0

]
.653

After some algebra one arrives at the expressions in (3.21) for P ∗ and I∗.654

Furthermore,655

(3.22) P ∗ + I∗ =
µ

β − γ
K > K,656

under the hypothesis that µ > νβ − γ ⇔ Rµ < 1. Hence, for any testing rate that657

stabilizes under infinite contact tracing assumptions, one gets an unstable equilibrium658

when the saturation comes into play. Moreover, note that the total number being659

tracked at this new equilibrium coincides with the threshold (3.6).660

That this equilibrium is indeed unstable can be seen by analyzing its Jacobian661

matrix662

J2 =

[
0 νβ
0 β − γ

]
,663

which corresponds to the open-loop model that has a positive eigenvalue β − γ > 0664

under the assumption R0 > 1.665

As a final remark, note that the equilibrium (3.21) verifies666

(3.23)
P ∗

I∗
=

νβ

β − γ
=

R0

R0 − 1
ν.667

This supports the intuitive observation that, when ν is large, most of the contact668

tracing effort is spent only on the potential contacts, reducing the stability margin.669

Below we analyze this in a numerical example.670

Example. To depict the behavior of the dynamics (3.20), we choose as before671

γ = 1/10 (10 days average recovery time) and β = 3γ, yielding R0 = 3. The ratio ν672

is taken as ν = 10 as observed in some cases, consistent with current measurements673
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Fig. 7. Phase diagram of (3.20) and unstable equilibrium point of the approximate dynamics.
We superimpose the solution of the nonlinear version depicted in Fig. 8.

in the real epidemiological scenario in Uruguay, where approximately 10 contacts are674

traced per infected individual, generating only one new infection.675

If we assume that K = 10−3, meaning that 1 in 1000 people can be tracked and676

tested simultaneously, then the unstable equilibrium occurs at677

P ∗ + I∗ = 2.5× 10−3,678

but with a lower number of infections, namely,679

P ∗ = 2.34× 10−3, I∗ = 0.16× 10−3.680

Observe that these parameters are also consistent with the numerical example681

in Section 3.1, where the stability threshold was at I = 2.5 × 10−3. Now that the682

contact tracing is burdened with potential contacts, and the stability region diminishes683

in consequence.684

The phase plot is depicted in Fig. 7. In particular, starting from an initial con-685

dition I(0) = 0.5 × 10−3 (which would be clearly stable in (3.4)) and P (0) = 0, the686

system enters the exponential phase due to the secondary contacts that burden the687

contact tracing capabilities. In particular, in Fig. 8 we can observe that at the peak688

70% of the population becomes a potential contact simultaneously, and the susceptible689

people go quickly to 0, meaning that the whole population has been in contact with690

an infected individual, clearly overwhelming the tracking and testing capabilities.691

3.6. Discussion. To conclude this section, let us recap the main results derived.692

The first result is that, whenever there is a cap on the contact tracing capability, a693

threshold behavior develops in the dynamics. This emphasizes the need for scale,694

summarized succinctly in (3.6) and its nonlinear counterpart (3.12). Whenever the695

infected number grows, the testing and tracing capacity should grow linearly with the696

number of infections in order to avoid saturation. On the other hand, the system can697

work in the saturated regime without becoming overwhelmed, but once the threshold698

is crossed the epidemic will spread.699

The second result is that this stability margin is greatly compromised by the fact700

that testing and tracing capacity is burdened with the need of following contacts that701

do not become infected. This is summarized in (3.22) and (3.23), that evidence how702
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Fig. 8. Unstable trajectories of the saturated system with limited contact tracing.

saturation comes into play due to the total number of contacts, and that this total703

number is dominated by potential contacts.704

4. Conclusions. This work presents a cautionary message of the fundamental705

limits involved in preventing disease propagation during an epidemic. Our results706

highlight the particularly dangerous combination of instability and non-linearity, in-707

trinsic of the disease spread process (our plant), together with delays and capacity708

constraints, intrinsic of the TeTrIs process (our actuator), that makes the disease709

control problem fundamentally challenging. It is important to notice that some of710

our quantitative predictions are, to a certain extent, pessimistic, as we only consider711

one method for disease spread prevention, i.e., TeTrIs. Clearly, complementing such712

a process with other control mechanisms, such as social distancing, using masks, etc.,713

can improve the effectiveness and robustness of the disease spread mitigation efforts.714

Nevertheless, irrespective of the methods used, we believe that the needs for speed715

and scale are, at its core, necessary for effective disease prevention.716
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Appendix A. Proof of Theorem 2.1.773

We begin by linearising the model in (2.4) and (2.5). Eliminating S using the774

algebraic equation in (2.4) and then linearising about the point (I,R,Q) = (0, 0, 0)775

shows that for small deviations,776

(A.1)
dI

dt
= (β − γ) I − βQ.777

Equation (2.5) is already linear. We are therefore required to show that the intercon-778

nection of (A.1) and (2.5) is stable. Eliminating Q from the I equation in (A.1) with779

(2.5) gives780

dI

dt
+ γI + αβ exp (−γTdelay) I (t− Tdelay)− βI = 0.781

Stability is then equivalent to all the roots of the characteristic equation lying in the782

open left-half-plane. That is,783

s+ γ + αβ exp (−γTdelay) exp (−sTdelay)− β 6= 0, ∀s ∈ C+.784

Putting s̃ = s/β and rearranging shows that this is equivalent to785

(A.2) s̃+R−10 + α exp
(
−βTdelay

(
s̃+R−10

))
6= 1, ∀s̃ ∈ C+.786

A standard Nyquist argument then shows that this holds if and only if the curve given787

by788

f (s̃) := s̃+R−10 + α exp
(
−βTdelay

(
s̃+R−10

))
789
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when evaluated along the usual Nyquist D-contour does not encircle 1. A simple790

sufficient condition for this is that791

(i) f (0) > 1;792

(ii) d
dω (Im (f (jω))) > 0;793

since together (i)–(ii) ensure that the curve only crosses the real axis to the right of794

1 (technically we also need to consider the real axis crossing on the return arc along795

the D-contour, but since for large s, f (s) ≈ s, these will be to the right of 1). It is796

readily checked that (i) is equivalent to the condition from the theorem statement.797

That is,798

(i) ⇐⇒ Tdelay <
1

γ
ln

(
α

1−R−10

)
=: T ∗.799

For (ii), observe that800

d

dω
(Im (f (jω))) = 1− αβTdelay exp

(
−βTdelayR−10

)
cos (βTdelayω) .801

Therefore, it is sufficient that αβTdelay exp
(
−βTdelayR−10

)
< 1. We will demonstrate802

this in two stages. First observe that αβTdelay exp
(
−βTdelayR−10

)
≤ αR0 exp (−1).803

Therefore, if R0 < exp (1), (ii) holds (recall that 0 ≤ α ≤ 1). Now assume that804

R0 ≥ exp (1). We then see that if this is the case,805

ln

(
α

1−R−10

)
≤ ln

(
1

1− exp (−1)

)
≈ 0.5 < 1,806

so (i) implies that807

βTdelay < βT ∗ < R0.808

Next observe that for x < R0, the function x exp (−x/R0) is monotonically increasing809

in x. Therefore,810

αβTdelay exp
(
−βTdelayR−10

)
< αβT ∗ exp

(
−βT ∗R−10

)
= R0

(
1−R−10

)
ln

(
α

1−R−10

)
≤ 1.

811

Therefore, (i) =⇒ (ii), and by consequence the conditions of the theorem are sufficient812

for stability. Necessity follows since if Tdelay ≥ T ∗, then f (0) ≤ 1. Since for x � 0,813

f (x) > 1, by the intermediate value theorem there must be some x ≥ 0 for which814

f (x) = 1. Therefore, Equation (A.2) does not hold, and the system will be unstable.815

Appendix B. Extending Theorem 2.3 to the Nonlinear Setting.816

In this section we will demonstrate that under appropriate assumptions, a natural817

analogue of Theorem 2.3 holds in the nonlinear setting. To do this we will prove that818

the induced L2-norm of a system is always lower-bounded by the induced L2-norm819

of its linearisation. Since the induced L2-norm of an LTI system is equal to its H-820

infinity norm, this shows that if the linearisation of a nonlinear system is LTI, then821

the induced L2-norm of the sensitivity function of the nonlinear system must satisfy822

the same bound from Theorem 2.3.823

The result we are trying to prove is in fact rather elementary. However, it requires824

a bit of setup to lay out the appropriate definitions and concepts. The difficulties stem825

from the fact that we would like to combine nonlinear state-space models (to describe826

general compartmental models for disease spread) and delays. Accordingly we adopt827

This manuscript is for review purposes only.



DELAYS AND SATURATION IN CONTACT TRACING 25

the standard operator theoretic setup on L2 which covers both these types of model.828

More specifically, L2 is the space of functions f : [0,∞)→ R with finite norm829

‖f‖ :=

√∫ ∞
0

|f (t)|2 dt.830

This is a subspace of L2e, whose members need only be square integrable on finite831

intervals. An operator is a function G : L2e → L2e, and the induced L2-norm of an832

operator is defined as833

‖G‖L2
:= sup

{
‖G (u)‖
‖u‖

: u ∈ L2e, u 6= 0

}
.834

In the case where the operator G is describing the dynamics of a LTI system with835

transfer function G, ‖G‖L2
= ‖G‖∞ .836

The natural generalisation of a linearisation in this setting is given by the Fréchet837

derivative. An operator G is Fréchet differentiable at a point x ∈ L2 if there exists a838

linear operator A such that839

lim
h→0

‖G (x+ h)− G (x)−A (h)‖
‖h‖

= 0.840

If such a linear operator exists, it is unique, and we denote the Fréchet derivative of841

G at x as DG (x) = A.842

With these definitions in place, we are ready to state the main result of this sec-843

tion. The following lemma shows that provided the linearisation exists, the induced844

L2-norm of the linearisation of an operator about a fixed point (an equilibrium point)845

is always smaller than the L2-norm of the operator itself. This means that if we have846

a nonlinear system G with linearisation described by an LTI system with transfer847

function G, then ‖G‖L2
≥ ‖G‖∞. This immediately gives us a nonlinear gener-848

alisation of Theorem 2.3. In particular, if we instead study the nonlinear feedback849

interconnection850

(B.1)
ei = Gi (ei−1) + di, i ∈ {1, . . . , n}
e0 = −en,

851

and define the sensitivity functions to be the operators Si : di → ei, then provided852

the linearisations of Si are LTI, ‖Si‖L2
must satisfy exactly the same lower bound853

from Theorem 2.3.854

Lemma B.1. Given an operator G, if G (0) = 0 and G is Fréchet differentiable at855

0, then856

‖G‖L2
≥ ‖DG (0)‖L2

.857

Proof. Let A = DG (0). Using the reverse triangle inequality shows that for any858

non-zero x ∈ L2e and non-zero ε ∈ R,859

‖G‖L2
≥ ‖G (εx)‖ / ‖εx‖ = ‖G (εx)−A (εx) +A (εx)‖ / ‖εx‖

≥ ‖A (x)‖ / ‖x‖ − ‖G (εx)−A (εx)‖ / ‖εx‖ .
860

Taking the limit ε→ 0, we see from the definition of the Fréchet derivative that this861

implies ‖G‖L2
≥ ‖A (x)‖ / ‖x‖. Taking the sup over x ∈ L2e gives the result.862
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