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The caching problem

Consider a cache system with a catalog of M objects.

Requests for objects arrive at random.

The cache can locally store C < M of them.

If item is in cache, we have a hit. Otherwise, it is a miss.

λ Cache

File 1

File 2

File 3
...

File M

Objective: for a given arrival stream, maximize the steady-state hit rate.
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A sequential approach

Consider a sequence of random variables Z1, Z2, . . . with values in {1, . . . ,M}.

Consider also the set:

C = {{i1, . . . , ik} ⊂ {1, . . . ,M}, k ⩽ C}

A (causal) caching policy would be a sequence of maps πn deciding which contents to store:

πn(Z1, . . . , Zn−1) → C

In probabilistic terms, let Fn = σ(Z1, . . . , Zn), then πn is any C−valued Fn−predictable
process (Fn−1-measurable).

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 5/46



A simple case
The Independent Reference Model (IRM)

Assume now that Zn are iid with distribution pi = P (Zn = i), where pi is the popularity of
content i. Wlog, we take p1 ⩾ p2 ⩾ . . ..

In this case, Zn | Fn−1 ∼ p, thus the hit probability at time n is:

P (Zn ∈ πn) = E [1Zn∈πn ] = E [E [1Zn∈πn | Fn−1]] = E

[∑
i∈πn

pi

]
⩽

C∑
i=1

pi

Taking πn ≡ {1, . . . , C} achieves the bound.

Conclusion: under iid requests, the static “keep the most popular” policy is optimal.
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Practical policies: LFU and LRU

In practice, popularities are not known. This leads to the least-frequently-used (LFU) eviction policy:
Take πn as the most requested objects so far (remove the least frequently used).
In the long range, converges to the static policy.

Another popular eviction policy is least-recently-used (LRU), which treats πn as a list defined
recursively:

If Zn ∈ πn, serve the content, move Zn to the front of the list.
If Zn /∈ πn, fetch the content, put Zn in the front of the list, remove the last object in the list
(which is the least recently requested).

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 7/46



Beyond the IRM

Typically, requests are correlated, and popularities evolve over time.

For instance, requests for a file may arrive in bursts.

LRU adapts to changes in popularity. Is good for bursts of requests. Tons of literature on this
policy (also called move-to-front).

However, performance metrics and optimality results are hard to establish.
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The caching problem, take 2

Sequential models lack time information, which may be useful!

Point process approach [Fofack et al. 2014]:
Assume requests for item i come from a point process of intensity λi := λpi.

t

At each point in time we must decide which items must be stored locally.

If inter-request times are heavy tailed, this can model burstiness.
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Example: Pareto arrivals
Consider two items, with equal popularity...

Poisson arrivals:

t
Homogeneous

Heavy tailed arrivals (Pareto α = 2):

t
Bursty!
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Some open questions...

What is the optimal causal policy in this framework?

Can we compute the optimal hit rate/hit probability?

What is its large scale behavior?

How typical policies compare to the optimal one?
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A bit of point process theory...

Let N = {Tk : k ∈ Z} be a stationary point process representing request times:

tT−1 T0 T1 T20

i.e. N(B) =
∑

n 1{Tn∈B} is a random counting measure.

Counting process:

N(t) =

{
N([0, t]) t ⩾ 0

−N((t, 0)) t < 0
0

N(t)

t

Let Ft = σ(N(s), s ⩽ t) be its internal history.
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Two important distributions:

tT−1 T0 T1 T20

X ∼ F

Inter-arrival distribution: F (t) := P 0
N (T1 − T0 ⩽ t), E0

N [T1] = 1/λ.

Age distribution: F̂ (t) := P (−T0 ⩽ t) = λ

∫ t

0
1−F (s)ds,

Note: here P 0
N is the Palm probability of the point process (conditioning on T0 = 0).

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 14/46



Two important distributions:

tT−1 T0 T1 T20

X ∼ FX̂ ∼ F̂

Inter-arrival distribution: F (t) := P 0
N (T1 − T0 ⩽ t), E0

N [T1] = 1/λ.

Age distribution: F̂ (t) := P (−T0 ⩽ t) = λ

∫ t

0
1−F (s)ds,

Note: here P 0
N is the Palm probability of the point process (conditioning on T0 = 0).

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 14/46



Stochastic intensity

Consider a simple stationary point process N with intensity λ, defined in some probability space
(Ω,F , P ). Let some filtration {Ft}t∈R be a history of the process.

Definition:
The random process λ(t) ⩾ 0 is a stochastic intensity for the history Ft iff it is a.s. locally
integrable, Ft−adapted and:

E [N((a, b]) | Fa] = E

[∫ b

a
λ(t)dt

∣∣∣∣Fa

]
for all a, b ∈ R.

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 15/46



Stochastic intensity
Properties

Local interpretation:

E[N((t, t+ h]) | Ft] = λ(t)h+ o(h) P − a.s.,

So λ(t) acts as a local notion of intensity based on previous history.

Martingale interpretation:

Ma(t) = N(t)−N(a)−
∫ t

a
λ(s)ds

is a local (P,Ft) martingale for any a ∈ R.

Namely, A(t) = N(a) +
∫ t
a λ(s)ds is the compensator of the counting process.
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Stochastic intensity of a Poisson process

If N(t) is a Poisson process, then we know that

M(t) = N(t)− λt = N(t)−
∫ t

0
λdt

is a martingale, so the stochastic intensity of a Poisson process is just λ(t) ≡ λ.

In fact, this characterizes the Poisson process. The stochastic intensity λ(t) is deterministic if
and only if N is a Poisson process of (possible time-varying) intensity λ(t).
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Stochastic intensity
A local notion of intensity...

However, if traffic is bursty, the stochastic intensity rises after arrivals:

λ(t)

λ

t

Note: for stationary processes, E[λ(t)] = E[λ(0)] = λ, the average intensity.

Andres Ferragut, Universidad ORT Uruguay Seminario PYE 2024 18/46



Renewal processes
Let now N be a stationary renewal process, i.e. inter request times Tn+1 − Tn are iid ∼ F .
Assume that F has a density, and define the hazard rate of F as:

η(t) =
f(t)

1− F (t)

Theorem (Daley-Vere Jones, Chapter 7)
For a renewal process and its natural history, the stochastic intensity is:

λ(t) = η(t− T ∗(t)),

where
T ∗(t) = sup{Tn : Tn < t}

is the last point before t.
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Some examples...

λ(t) ≡ λ

t

Constant hazard rate → Poisson process.

λ(t)
λ

t

Increasing hazard rate → more periodic!

λ(t)
λ

t

Decreasing hazard rate → more bursty!
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The predictable σ−algebra

Let (Ω,F , {Ft : t ∈ R}, P ) be a filtered probability space.

Definition
The predictable σ−algebra P(F .) is the σ−álgebra in R× Ω generated by the sets:

(a, b]×A, a < b, A ∈ Fa,
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Predictable processes

Definition (Predictable process)
A stochastic process X(t, ω) taking values on a measurable space (E, E) is Ft−predictable if the
mapping (t, ω) 7→ X(t, ω) is P(F .)−measurable.

Key idea: a process is Ft−predictable if its value at t is completely determined by the
information prior to t.

In particular Ft−adapted + left continuous =⇒Ft-predictable.

Since the stochastic intensity of a point process can be chosen left-continuous, it is
Ft-predictable.
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Causal caching policies

Consider again a cache system fed by M independent request processes Ni(t) with stochastic
intensities λi(t).

Let Ft = σ({F (i)
t : i = 1, . . . ,M}) their aggregate history.

Definition
A causal caching policy is an Ft predictable stochastic process

π(t) : Ω× R → C

i.e. π(t) = {i1, . . . , ik} (with k ⩽ C) is the subset kept at time t, and only depends on the past
history of item requests.
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The hit process
Stochastic intensity

Focus now on a particular content i, its hit process is the point process given by:

Hi(B) =
∑
n∈Z

1{T i
n∈B}1{i∈π(T i

n)}

t

miss
hit

Now 1{i∈π(t)} is Ft-predictable, so the stochastic intensity of Hi is:

hi(t) = λi(t)1{i∈π(t)}

i.e., hi(t) = λi(t) while i is cached and otherwise 0.
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The hit process
The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

H =

M∑
i=1

Hi

And its stochastic intensity is just:

h(t) =

M∑
i=1

hi(t) =

M∑
i=1

λi(t)1{i∈π(t)}

The steady state hit rate of the policy is:

hit rate = λhit := E[h(t)]
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Maximizing the hit rate

In order to maximize λhit, consider the causal policy:

π∗(t) = {i1, . . . , iC} such that
∑

i∈{i1,...,iC}

λi(t) is maximized.

Then, for any causal policy π and for each realization:

h(t) =
∑
i∈π(t)

λi(t) ⩽
∑

i∈π∗(t)

λi(t) = h∗(t).

Theorem
The optimal causal policy is to keep in the cache the C objects with the highest stochastic intensity
at any time.
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Back to the Poisson case

Assume the Ni are Poisson processes of intensities λi.

We take λ1 > λ2 > . . . as the popularities.

The total request process is also Poisson of intensity ∑i λi.

In that case, the optimal policy is:

π∗(t) ≡ {1, . . . , C}

since λi(t) ≡ λi and these are is decreasing.

Conclusion: under Poisson arrivals, statically keeping the most popular objects is optimal (compare
to the IRM before).
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The renewal case

If now the Ni are renewal processes of (decreasing) intensities λi.

The total request process is no longer renewal, but its intensity is again ∑i λi.

Since λi(t) = ηi(t− T ∗
i (t)), the optimal policy is:

Keep track of the current hazard rate of each content i.
Choose to keep in π∗(t) the C highest.

Conclusion: under renewal arrivals, the optimal policy only depends on the current hazard rates since
the last request.
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An interesting observation

Decreasing hazard rates
If hazard rates are decreasing, caching makes sense! After an arrival it becomes more likely to
get another request.

After some time, we will evict the content to make room for more recent ones (as in LRU).

Increasing hazard rates
If instead hazard rates are increasing, then when a request arrives, the item becomes less
likely to be requested again!

It may be better to remove it and make room for other ones (i.e. LRU makes no sense!).

If we haven’t seen it for a while, then we may have to fetch it anticipating the upcoming
request.
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Understanding the optimal policy
The threshold process

We can rewrite this optimal policy as a threshold policy:

i ∈ π∗(t) ⇔ λi(t) ⩾ θ(t) := the C largest stochastic intensity

Example: Pareto requests, Zipf popularities, N = 20, C = 4.

θ(t)

t

¿What is the large scale behavior of θ(t) in steady state?.
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The threshold value in steady state

Now we have M independent renewal processes with intensities λi(t).

At time t = 0, we have a sample {X1, . . . , XM} of independent, but not identically
distributed random variables, with distribution:

Xi ∼ ηi(−T i
0), −T0 ∼ F̂i(t)

The threshold θ(0) is the C−th order statistic (in decreasing order) of the sample.

Problem: for non iid random variables, no closed form → Can we say something about the large
scale limit?
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A useful Theorem
Let {Xi} be a sequence of independent random variables with distributions Gi. Define:

ĜM (x) =
1

M

M∑
i=1

1{Xi⩽x}

the empirical distribution, and let:

ḠM (x) =
1

M

M∑
i=1

Gi(x)

Theorem (Shorack)
If the family {Gi} is tight, then:

||ĜM − ḠM ||∞ → 0 almost surely as M → ∞.
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Back to caching...
A little more structure

Assume now that the request processes come from a common scale family, i.e. their inter-arrival
distributions satisfy:

Fi(t) = F0(λit)

where F0 has mean 1, so Fi has mean 1/λi.

In this case:
The distribution of −T i

0 is F̂i(t) = F̂0(λit).

The hazard-rate of Fi is ηi(t) = λiη0(t/λi).

The random variable Xi ∼ Gi(x) := G0(x/λi)

where G0(x) = P (η0(−T0) ⩽ x) is the observed hazard rate distribution for the base process.
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The distribution of popularities

Consider now the popularities λ1 > . . . > λM and define:

ϕM (λ) =
1

M

M∑
i=1

1{λi⩽λ}

their empirical (deterministic) distribution.

Assumption:
ϕM (λ) → ϕ(λ) as M → ∞

where ϕ(λ) is a probability distribution.
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Example: Zipf popularities

A common model for popularities is the Zipf distribution, where λi ∝ 1
iβ

.

In our framework, take:
λi =

(
M

i

)β

Then we can show that:

ϕM (λ) → ϕ(λ) =
[
1− λ−1/β

]
1{λ⩾1}

Remark: note that ∑i λi diverges, so the system is scaling up...
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Main result

Theorem (Carrasco,F’,Paganini)
Consider a caching system fed by M independent and stationary renewal processes, with intensities
{λi}, and inter-arrival distributions Fi(t) = F0(λit). Let X1, . . . , XM denote the observed
hazard-rates at time 0. Then, under the preceding assumption, the empirical distribution:

ĜM (x) =
1

M

M∑
i=1

1{Xi⩽x} →M G∞(x) =

∫ ∞

0
G0

(x
λ

)
ϕ(dλ)
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Proof sketch
By Shorack’s result:

ĜM (x) =
1

M

M∑
i=1

1{Xi⩽x} ≈ ḠM :=
1

M

M∑
i=1

Gi(x)

Note that:

1

M

M∑
i=1

Gi(x) =

M∑
i=1

G0

(
x

λi

)
1

M
=

∫ ∞

0
G0

(x
λ

)
ϕM (dλ)

Use the assumption to show that:∫ ∞

0
G0

(x
λ

)
ϕM (dλ) →M

∫ ∞

0
G0

(x
λ

)
ϕ(dλ) = G∞(x).
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A law of large numbers for the threshold
Assume further that the cache has capacity C = cM with 0 < c < 1 is the fraction of the catalog
that can be stored.

Then, the optimal policy threshold θ∗M (0) is the random variable:

θ∗M :
M∑
i=1

1{Xi⩽θ∗M} = (1− c)M

or equivalently θ∗M is such that ĜM (θ∗M ) = 1− c.

Corollary
If the cache size scales linearly with the catalog as CM = cM , then:

θ∗M → θ∗ : G∞(θ∗) = 1− c

So the optimal policy becomes a fixed threshold policy.
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or equivalently θ∗M is such that ĜM (θ∗M ) = 1− c.

Corollary
If the cache size scales linearly with the catalog as CM = cM , then:

θ∗M → θ∗ : G∞(θ∗) = 1− c

So the optimal policy becomes a fixed threshold policy.
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Simulation example

M = 1000, C = 100. Pareto α = 2 requests, Zipf β = 0.5 popularities.
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Asymptotic miss probability

Moreover, we can calculate the asymptotic performance:

Theorem
Under all the above assumptions, the asymptotic miss rate verifies:

λmiss,M →M

∫ ∞

0
λG̃0

(
θ∗

λ

)
ϕ(dλ) = E

[
ΛG̃0

(
θ∗

Λ

)]
where Λ ∼ ϕ, and G̃0 is the distribution of the hazard-rate prior to an arrival:

G̃0(x) =

∫ ∞

0
1{η0(t)⩽x}F0(dt).
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Final remarks

The above result characterizes the optimal policy completely in the large-scale scenario.

For particular distributions of interest (e.g. Pareto requests, Zipf popularities) the threshold
can be computed explicitly.

Once the threshold is computed, we can compute the asymptotic hit probability.

Therefore, we have a computable absolute performance bound in the limit.
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Final remarks

There is much more to do (students welcome!).

In particular, in a previous paper we explored timer-based policies.

Using this result, we can show that the optimal timer-based policy matches the optimal causal
policy in the limit, for decreasing hazard-rates.

For increasing hazard-rates, we have to think about pre-fetching content anticipating future
arrivals.
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Gracias!

Andres Ferragut
ferragut@ort.edu.uy
aferragu.github.io
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