Queueing analysis of imbalance between server pools

with applications to 3-phase EV charging

Andres Ferragut and Fernando Paganini

Universidad ORT Uruguay

IFIP Performance 2023 – Northwestern University – November 2023

Problem formulation

Large scale system

Finite size system

Join the least-loaded pool

Application and simulations

Conclusions

Introduction Classical load balancing setup

- Parallel system with single server queues.
- Balancer attempts to lower queue occupation (delay).
- Main goal: stability, fluid and diffusion level optimality.
- Well studied problem: join the shortest queue, power of d, join the idle queue...
- See [Van der Boor et al. 2022].

Server pool load balancing

Consider a slightly different problem: Balancing between parallel server pools.

- Each pool has many servers.
- Tasks are served in parallel in a dedicated server for each one.
- Main goal: keep occupations balanced between pools.

Motivation

- Cloud micro-services architectures (e.g. Kubernetes):
 - Tasks are served in containers or pods.
 - Each container is ran in a physical node (the server pool) up to capacity.
 - Example 2 Keeping a balanced number of active pods lowers server utilization.

Motivation

- Cloud micro-services architectures (e.g. Kubernetes):
 - Tasks are served in containers or pods.
 - Each container is ran in a physical node (the server pool) up to capacity.
 - Keeping a balanced number of active pods lowers server utilization.
- **EV** charging in the grid:
 - Grid connection is 3-phase AC.
 - Each charger is monophasic: thus we have 3 server pools.
 - **Keeping total current draw balanced minimizes impact on infrastructure.**

Our contributions

Our contributions

• We define a suitable imbalance metric for the system, with practical interest.

Then we characterize the baseline imbalance in a large scale system.

- Then we characterize the baseline imbalance in a large scale system.
- We show that finite-size systems with random routing show less imbalance, and provide suitable bounds valid for any system size and load.

- Then we characterize the baseline imbalance in a large scale system.
- We show that finite-size systems with random routing show less imbalance, and provide suitable bounds valid for any system size and load.
- We analyze the route to the least loaded pool policy and provide hard bounds on the average imbalance, improving over the random routing scenario.

- Then we characterize the baseline imbalance in a large scale system.
- We show that finite-size systems with random routing show less imbalance, and provide suitable bounds valid for any system size and load.
- We analyze the route to the least loaded pool policy and provide hard bounds on the average imbalance, improving over the random routing scenario.
- As application, we show that active routing in an EV parking lot can improve current balance.

System model

- **Tasks arrive as a Poisson process of intensity** λ .
- **Each task has** $exp(\mu)$ service time.
- $A := \frac{\lambda}{\mu}$ is the total traffic intensity.
- There are d pools, each pool with C_i servers (possibly infinite).
- Let x_i the number of tasks at pool $i = 1, \ldots, d$.

Imbalance metric

• The state of the system is $x = (x_1, \ldots, x_d)$.

• A perfectly balanced occupation state is such that $x = \bar{x}\mathbf{1}$ where $\bar{x} = (1/d) \sum_{i} x_{i}$.

Define:

$$Px := x - \bar{x}\mathbf{1} = \left(I - \frac{1}{d}\mathbf{1}\mathbf{1}^T\right)x$$

Imbalance metrics:

$$J_1^{imb} := E[||Px||], \qquad J_2^{imb} := E[||Px||^2]$$

in steady state.

Andres Ferragut, Univ. ORT Uruguay

IFIP Performance 2023

Infinite server with random routing

Baseline case

- **Just** $d M/G/\infty$ server queues in parallel
- Product form steady state:

$$\pi(x) = e^{-A} \prod_{i=1}^{D} \frac{(A/d)^{x_i}}{x_i!}$$

Simple calculations:

$$J_2^{imb} = E[||Px||^2] = \frac{d-1}{d}A.$$

Insensitive to sojourn times.

Infinite server with random routing

Large scale imbalance

Let now $A \to \infty$ (large scale system).

Poisson distribution converges to a Gaussian.

 \blacksquare $||Px||^2$ is the norm of a Gaussian projection.

Proposition (Infinite server, large scale imbalance)

In the infinite server case, as $A \to \infty$:

$$\frac{d}{A}||PX||^2 \Longrightarrow^w \chi^2_{d-1},$$

Consider now the case with finite capacity in each pool.

Free spaces routing:

$$p_i(x) = \frac{C_i - x_i}{C - \sum_i x_i}$$

Routing at random, proportional to free spaces.
 Important application: EV parking, pools are phases.

Free spaces routing

Markov chain model:

$$\begin{cases} x \mapsto x + e_i : & \lambda_i(x) := \lambda \left[\frac{C_i - x_i}{C - n} \right] \\ x \mapsto x - e_i : & \mu_i(x) := \mu x_i \end{cases}$$

with $n := \sum_{i=1}^d x_i$.

Free spaces routing

Markov chain model:

$$\begin{cases} x \mapsto x + e_i : & \lambda_i(x) := \lambda \left[\frac{C_i - x_i}{C - n} \right] \\ x \mapsto x - e_i : & \mu_i(x) := \mu x_i \end{cases}$$

with $n := \sum_{i=1}^d x_i$.

Key point: the above chain admits a product form $\pi(x) = \pi(0)\Lambda(x)\Phi(x)$ since it is a balanced allocation [Bonald et al. 04], with:

$$\Lambda(x) := \lambda^n \frac{(C-n)!}{C!} \prod_{i=1}^d \frac{C_i!}{(C_i - x_i)!}, \quad \Phi(x) := \frac{1}{\mu^n \prod_{i=1}^d x_i!}$$

Theorem

The equilibrium occupancy distribution for the free spaces routing policy is given by:

$$\pi(x) = \pi(0) \frac{A^n}{n!} \frac{\prod_{i=1}^d \binom{C_i}{x_i}}{\binom{C}{n}},$$

for
$$0 \le x_i \le C_i$$
, $i = 1, ..., d$ and $\pi(0) = \frac{1}{\sum_{j=0}^C A^j/j!}$.

- **Total number of tasks as an** M/M/C/C (Erlang) queue.
- Given N = n, all possible subsets of size n become equiprobable (multivariate hypergeometric distribution).

Consider now the case $C_i = C/d$ for all i (homogeneous pools).

Proposition

For the free spaces routing policy with homogeneous pools capacity $C_i = C/d$, in steady state:

$$J_{imb}^2 = E\left[||Px||^2\right] \leqslant \frac{d-1}{4d} \frac{C^2}{C-1}.$$

Proof idea: condition on N = n and use the variance of the hypergeometric distribution.
 Remark: since the system admits a product form, the result holds for general sojourn times.

Free spaces routing Example

IFIP Performance 2023

Free spaces routing An explanation

Why imbalance is lower that the infinite server approximation?

Free spaces routing An explanation

Why imbalance is lower that the infinite server approximation? \rightarrow Because the routing choice naturally tends to balance the system by giving higher probability to the least loaded pool.

Free spaces routing An explanation

Why imbalance is lower that the infinite server approximation? \rightarrow Because the routing choice naturally tends to balance the system by giving higher probability to the least loaded pool.

Infinite server case, A = 40.

Free spaces routing, A = 40, C = 60.

Consider an EV charging parking lot fed by three-phase AC power.

- Each charger is connected to two of the three phases $\rightarrow d = 3$ pools.
- Installation is balanced, $C_i = C/3$ by design.
- If phase occupation is unbalanced \rightarrow electrical inefficiencies (overcurrents) appear.
- Arriving cars choose a spot at random oblivious to its phase connection.

Consider an EV charging parking lot fed by three-phase AC power.

- Each charger is connected to two of the three phases $\rightarrow d = 3$ pools.
- Installation is balanced, $C_i = C/3$ by design.
- If phase occupation is unbalanced \rightarrow electrical inefficiencies (overcurrents) appear.
- Arriving cars choose a spot at random oblivious to its phase connection.

Remark

Corresponds to a free spaces routing system! The bounds enables us to compute a relevant measure of imbalance, valid for any sojourn time distribution and any traffic load!

Actively routing to the least-loaded-pool

To further reduce imbalance, a more proactive policy is needed \rightarrow join the least loaded pool.

Let
$$k(x) := \#\{\arg\min(x_i)\}$$
, and take

$$p_i(x) = \begin{cases} \frac{1}{k(x)} : & \text{if } i \in \arg\min(x_i) \\ 0 & \text{otherwise.} \end{cases}$$

- Idea: Split arrivals equally among the pools with minimum occupation.
- Blocking occurs only at $x = \frac{C}{d}$ 1, i.e. when the entire system is full.

Assuming exponential sojourn times, we can go back to the Markov chain:

$$\begin{array}{l} \blacksquare \mbox{ Recall } k(x) := \#\{\arg\min(x_i)\}: \\ \begin{cases} x \mapsto x + e_i : & \lambda \frac{1}{k(x)} \mathbf{1}_{\{i \in \arg\min x_i\}}, \\ x \mapsto x - e_i : & \mu x_i. \end{cases} \end{array}$$

- Idea: trend is to the diagonal, which is what we want.
- Problem: no explicit form.

Invariant distribution (numerical) A = 40, C = 60.

Imbalance in least loaded pool

Lyapunov approach

Take the Lyapunov function:

$$V(x) = (d-1)V_1(x) + V_2(x) = (d-1)\underbrace{\left[\frac{1}{d}\sum_{i=1}^d x_i\right]}_{\bar{x}} + \left[||Px||^2\right]$$

Then we can compute the drifts:

$$QV_1(x) = \lambda/d - \mu\bar{x}$$
$$QV_2(x) = 2\lambda \left[\min_i x_i - \bar{x}\right] - 2\mu \left[\sum_i x_i^2 - d\bar{x}^2\right] + \frac{d-1}{d}\lambda + (d-1)\mu\bar{x}.$$

and using Cauchy-Schwarz and the LLP property we get the following bound:

$$QV(x) \leq 2\lambda \left(\min_{i} x_{i} - \bar{x}\right) + 2\lambda \frac{d-1}{d}.$$

Least loaded pool Main result

Taking expectations in steady state we get:

$$E\left[\bar{X} - \min_{i} X_{i}\right] \leqslant \frac{d-1}{d}.$$

Useful lemma: For $x \in \mathbb{R}^d$, $||Px|| \leq \sqrt{d^2 - d} (\bar{x} - \min_i x_i)$.

Least loaded pool Main result

Taking expectations in steady state we get:

$$E\left[\bar{X} - \min_{i} X_{i}\right] \leqslant \frac{d-1}{d}.$$

Useful lemma: For $x \in \mathbb{R}^d$, $||Px|| \leq \sqrt{d^2 - d} (\bar{x} - \min_i x_i)$.

Theorem

Under LLP with d server pools, for any value of λ, μ , in steady state:

$$J_{imb}^1 = E[||PX||] \le (d-1)\sqrt{1-\frac{1}{d}}.$$

Least loaded pool Remarks

- The bound only depends on *d*!
- J¹_{imb} remains uniformly bounded for any system load and any system size (state space collapse).
- In relative terms, imbalance decays as O(1/A) with system size,
- For random/free spaces routing, we only get $O(1/\sqrt{A})$.

Least loaded pool Remarks

The bound only depends on d!

- J¹_{imb} remains uniformly bounded for any system load and any system size (state space collapse).
- In relative terms, imbalance decays as O(1/A) with system size,
- For random/free spaces routing, we only get $O(1/\sqrt{A})$.

Example: d = 3, A = 40, C = 60.

Application: imbalance in power systems

- \blacksquare Power is delivered by $3-{\rm phase}$ AC. Loads are connected in between phases.
- If current draw differs in each phase, we have electrical imbalance.

Balanced:

Phasor representation:

Unbalanced:

Imbalance in EV charging facilities

■ In EV charging, imbalance occurs in amplitude, not in phase.

Due to different current draws because of imbalanced occupation of phases...

If $x = (x_1, x_2, x_3)$ is the phase occupation vector, and each charging vehicle draws a current I_0 , the IEEE imbalance metric is just:

$$E[|I^{-}|] = \frac{I_0}{\sqrt{2}}E[||PX||] = \frac{I_0}{\sqrt{2}}J_{imb}^1.$$

Therefore, we can use our previous models to evaluate system imbalance!

Free spaces routing

If users choose the parking space at random, then the probability of choosing a free spot from phase i is exactly $(C_i - X_i)/(C - N)$, i.e. the free spaces routing policy. Therefore:

Proposition

For a parking lot with the random free spaces routing policy, in steady state we have:

$$E\left[|I^-|\right] = \frac{I_0}{\sqrt{2}} J_{imb}^1 \leqslant \frac{I_0}{\sqrt{2}} \sqrt{J_{imb}^2} \leqslant \frac{I_0}{2\sqrt{3}} \frac{C}{\sqrt{C-1}}$$

for any traffic load A.

The relative amount of imbalance satisfies:

$$\frac{1}{I_0 C} E[|I^-|] \leqslant \frac{1}{2\sqrt{3}} \frac{1}{\sqrt{C-1}} \mathop{\sim}\limits_{C \to \infty} O\left(\frac{1}{\sqrt{C}}\right).$$

Active routing Least-loaded-phase policy

A better result can be obtained if we can direct users to the least-loaded.phase!

Proposition

For a parking lot actively routing vehicles to the least loaded phase, in steady state we have:

$$E\left[|I^-|\right] = \frac{I_0}{\sqrt{2}} J_{imb}^1 \leqslant \frac{2}{\sqrt{3}} I_0$$

for any traffic load A and system size C.

In this case, the relative imbalance decays much faster:

$$\frac{1}{I_0 C} E[|I^-|] \leqslant \frac{2}{\sqrt{3}C},$$

and thus further reducing the strain on the installation.

Andres Ferragut, Univ. ORT Uruguay

Numerical experiments on a real parking lot

- The queueing analysis is steady state, but parking occupation goes through daily cycles.
- Our estimates are independent of the offered traffic *A*, they should be useful for system design!

Take home messages...

- We analyzed the problem of load balancing between parallel server systems, and defined a suitable metric of imbalance with practical applications.
- Discussed natural random and active policies for load balancing, and obtained estimates of imbalance in several cases.
- The estimates are agnostic to offered load, so they help with system design.

Take home messages...

- We analyzed the problem of load balancing between parallel server systems, and defined a suitable metric of imbalance with practical applications.
- Discussed natural random and active policies for load balancing, and obtained estimates of imbalance in several cases.
- The estimates are agnostic to offered load, so they help with system design.

Future work:

- Analyze policies with less communication overhead, such as Power of d. Helpful in data-center scenarios.
- Refine the bounds in the LLP case.

Thank you!

Andres Ferragut ferragut@ort.edu.uy http://aferragu.github.io