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ABSTRACT

We consider systems where multiple servers operate in par-
allel, with a particular feature: servers are classified into d
classes, and we wish to keep approximate balance between
the load allocated to each class. We introduce a relevant im-
balance metric, and study its behavior under stochastic de-
mands with different task routing policies. For random rout-
ing, we analyze two cases of interest, depending on whether
capacity constraints are operative: we obtain expressions for
the stationary distribution and analyze the scaling behavior
of our metric as a function of system size. Subsequently, we
analyze active routing to the least loaded class, obtaining
sharp bounds for the imbalance metric. As a practical ap-
plication, we study the problem of imbalance between d = 3
phases, for the service of electrical vehicle charging. We
show the engineering relevance of our imbalance metric in
this context, and validate the theoretical results with simu-
lations and real traces from EV charging data.
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1. INTRODUCTION
The balancing of load between servers has been a long

concern of queueing systems, present in classical references
[24, 2], and also with substantial recent activity in the con-
text of cloud computing infrastructures [19]. In this setting,
the usual object of study is a process of arriving computing
tasks which must be processed by the overall system; indi-
vidual servers maintain queues of tasks awaiting service, and
the job of the load balancer is to route incoming jobs in a
way that ensures stability and reduces the resulting latency.
The baseline load-balancing strategy in this context is Join
the Shortest Queue [9]. However, due to the scale of the
problem, simpler variants have been studied to reduce the
information burden while maintaining performance, such as
Power-of-d choices [20, 25] or Join-the-Idle-Queue [19]. This
has sparked a lot of recent advances on load balancing, par-
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ticularly through fluid and mean field limits. An excellent
summary on this line of work is [8].

Far less attention has been given to load balancing ques-
tions in queueing models for parallel server systems, typical
of circuit-switched networks. In these models that go back to
the Erlang studies for telephony, resources are reserved and
queues model their occupation state; of this nature are the
M/G/∞ queue and the M/G/C/C for finite capacity with
blocking. A notable exception is [21], where the authors
analyze a system with parallel server pools and blocking,
related to the one described below. In their paper, however,
they resort to scaling limits and fluid approximation, with
the main objective being to minimize the overall blocking
probability of the system. Another relevant reference in this
regard is [11], where the authors analyze balancing between
processor-sharing systems using join the shortest queue pol-
icy, and provide optimality and near-insensitivity results. In
such a system, each server works on their allocated tasks in
parallel with no queueing, but within each server its full ca-
pacity can be pooled and used to serve a single task, and
therefore each server behaves essentially as a single server
queue.

In this paper, we would like to address a different ques-
tion: are there any other roles for balancing in these kinds
of systems? We describe two application areas in which this
kind of questions are natural. A first, also related to cloud
computing, is when one looks at the problem at the higher
layer of server reservations. Consider for instance the case
of a distributed or cloud based microservices architecture
(e.g. Kubernetes [22]) that opens container replicas in dif-
ferent pods. Each pod may run in a different physical node
(the server pool), up to a maximum capacity. Besides re-
ducing blocking, keeping a balanced number of active pods
across nodes prevents individual node utilization becoming
too high, which has a performance impact due to other jobs
concurrently running at the node. It also minimizes the
number of running tasks that are brought down when a ran-
dom node fails.

Another example, which we will analyze in detail in Sec-
tion 6, is the case of electrical vehicle charging in a parking
facility. These installations are increasingly being deployed
in response to the growing EV adoption, and cause strain
in the electrical distribution network due to their relatively
large power demand. In this regard, a crucial concern of
network operators is three-phase balance: large installations
are fed by three-phase AC lines, but individual chargers have
a single-phase AC connection. An asymmetric consumption
of current between the three phases leads to a number of



undesirable effects for the grid [3], [29], and for this reason
imbalance must be measured and controlled [14]. In many
proposals for load management via online optimization [7,
4, 13, 27, 17], imbalance is included as a relevant constraint.

In this paper we then propose to analyze the imbalance
that appears between multiple classes of servers, when sub-
ject to stochastic load and different models of routing. Each
class or pool operates as a parallel server queue with no
waiting, i.e. servers are reserved up to a maximum capacity.
The general model Markov chain model is introduced in Sec-
tion 2, together with an imbalance metric which measures
the expected departure from the perfectly balanced state in
a stationary regime.

In Section 3 we analyze the resulting Markov chain for the
case of unconstrained capacities and uniform random rout-
ing, quantifying the baseline value of our imbalance metric;
we also provide approximations in distribution for the large
load case. In Section 4, finite capacities per pool are in-
cluded, and we study free spaces routing, the natural model
of random assignment for the case of asymmetric occupa-
tions. The resulting queue admits a reversible closed form
solution: building upon this, we derive a bound for the rel-
evant imbalance metric valid for general job size distribu-
tions, and over all traffic conditions and system sizes. This
fact is particularly important in the EV charging applica-
tion, where system size is not large and job sizes are rarely
exponential.

In Section 5 we consider finally the policy where arriving
jobs are assigned to the least loaded pool (i.e. the equiva-
lent of JSQ in this context). In this case, we resort to the
Foster-Lyapunov methods developed by [10, 26, 28]. For
this routing policy, we derive a bound on imbalance that is
valid for any system size and traffic load. Again this is of
utmost importance when designing robust practical systems
with a finite capacity.

Section 6 covers the application to EV charging: we briefly
describe the problem of 3-phase imbalance in electrical net-
works, and how it is usually quantified in the industry. Un-
der natural assumptions for the EV charging case, we show
it maps directly to our measure of imbalance. Illustrative
numerical experiments are given with real-world data for EV
charging from [16]. Conclusions are given in Section 7.

2. SYSTEM MODEL
We begin by laying out precisely the model under con-

sideration. Our system is in charge of serving tasks of a
homogeneous type, which arrive as a Poisson process of rate
λ. Tasks have a random duration T , which initially we as-
sume exponential of rate µ, but some of our conclusions are
more general. The total traffic demand on the system is thus
A := λE[T ] = λ/µ, which would correspond to the average
number of active tasks in an M/G/∞ queue.

Each task requires a dedicated server, and there is no
queueing: if no servers are available tasks are rejected or
fail to start. Although individual servers have homogeneous
characteristics, they are divided into d classes or pools: for
reasons explained in the introduction, we strive for balance
between the level of activity of such pools at any given time.
In particular, we will analyze the level of imbalance present
under different models of assignment of tasks to pools, ei-
ther spontaneous random assignment or active routing by a
balancer. The system is depicted in Figure 1.

Let Xi, i = 1, . . . , d denote the number of tasks/active
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Figure 1: Balancing tasks across parallel server pools

servers on pool i. Under the above assumptions, the state
X = (Xi) follows the continuous time Markov chain with
x ∈ Nd and transition rates:{

x 7→ x+ ei : λpi(x),

x 7→ x− ei : µxi.
(1)

Here pi(x) is the probability that an incoming task is routed
to pool i and ei is the canonical vector. If there is a finite
capacity Ci in pool i, we assume that pi(x) = 0 whenever
xi = Ci.

For a given random state X, we will use N :=
∑d

i=1 Xi to
denote the total task population across pools, and X̄ := N/d
the average occupation. Let us now define our imbalance
measure. Perfectly balanced states are those with equal xi,
i.e. with x in the span of 1 = (1, . . . , 1)T . Consider the
transformation:

Px := x− x̄1 =

(
I − 1

d
11T

)
x, (2)

projection of x onto the orthogonal complement of 1. The
Euclidean norm ||Px|| is then a suitable measure of the
amount of system imbalance at state x, being null in the
span of 1 as desired.

Considering the random process X(t) in steady-state, we
may use the expectations

J1
imb := E[||PX||] or J2

imb := E[||PX||2] (3)

as performance metrics for the process imbalance.

Remark 2.1. While we are concerned with balance be-
tween server pools and not fairness in the allocation, we
would like to remark that our imbalance metric ||Px|| is
closely related to the classical Jain fairness index, by the
following relationship:

J(x) :=
< x,1 >2

d||x||2 = 1− ||Px||2

||x||2 ,

which can be deduced directly from (2). Thus, a system
with low ||Px|| will have a higher fairness measure in Jain’s
sense.

We can now formulate the main objective of the paper: to
estimate the above imbalance metrics under different routing
decisions and capacity constraints.



3. UNCONSTRAINED SERVER POOLS
As a baseline, we begin by analyzing the situation where

pools are large enough so that they never fill up, which can
serve as a model for cases when total utilization is well below
capacity. Moreover, we assume here that tasks are routed
uniformly at random between the d server pools (pi(x) ≡
1/d).

In this case, each pool behaves as an infinite server queue
with total arrival rate λ/d, and the steady state distribution
of the Markov chain (1) has the following product form:

π(x) = e−A
d∏

i=1

(A/d)xi

xi!
, xi ∈ N, i = 1, . . . , d, (4)

i.e. d independent Poisson random variables with mean A/d.

Remark 3.1. Since the M/G/∞ queue is insensitive [6],
the above steady-state occupation formula holds beyond the
exponential assumption on the service time distribution.

We compute the imbalance metric for this baseline case.

Proposition 3.2. For the system with d unconstrained
server pools and uniform random routing, we have:

J2
imb =

d− 1

d
A. (5)

Proof. We first recall the following property of the Pois-
son distribution. If a random vector X is distributed as (4),
then conditioned on the total number of tasks N = n, X
has a multinomial distribution with total sample size n and
probability 1/d on each of the d classes. In particular:

E[Xi | N = n] =
n

d
,

E[(Xi − X̄)2 | N = k] = k(1/d)(1− 1/d) = k
d− 1

d2
.

Computing the imbalance conditioned on the total number
of tasks we get:

E
[
||PX||2 | N = n

]
= E

[
||X − X̄1||2 | N = n

]
= E

[
d∑

i=1

(Xi − n/d)2
∣∣∣N = n

]

=
d∑

i=1

n
d− 1

d2
= n

d− 1

d
.

Using now that the total number of tasks N has a Poisson
distribution with mean A, we get:

E
[
||PX||2

]
= E

[
E
[
||PX||2 | N

]]
=

d− 1

d
E[N ] =

d− 1

d
A.

While the above result concerns only the mean, an interest-
ing approximation for the distribution arises in the case of
A→∞.

Proposition 3.3. For the system with d unconstrained
server pools and random routing, as A→∞:

d

A
||PX||2 =⇒w ||(Z1, . . . , Zd−1)||2 ∼ χ2

d−1,

where Zj are independent standard Gaussian random vari-
ables and χ2

d−1 is the Chi-square distribution with d− 1 de-
grees of freedom. Here, =⇒w denotes convergence in law.
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Figure 2: Cumulative distribution function of ||PX||2 for
d = 3, A = 40 and the χ2

2 approximation of Proposition 3.3.

Proof. The result stems from the Gaussian approxima-
tion to the Poisson distribution. If Xi ∼ Poisson(A/d)
then:

Xi −A/d√
A/d

=⇒w N (0, 1).

If X = (X1, . . . , Xd) are independent Poisson distributed
random variables with parameter A/d, then:

PX =
√

A/d · P

[
X − (A/d)1√

A/d

]
,

since P1 = 0. The term in brackets converges in distribution
to a standard d-dimensional Gaussian random vector, of co-
variance the identity matrix. Multiplying by the orthogonal
projection matrix P , satisfying P = PT = P 2, yields:

1√
A/d

PX =⇒w N (0, P ).

This is a multivariate Gaussian supported in the d − 1-
dimensional span of P , so its norm-squared gives rise to
a Chi-squared distribution with d − 1 degrees of freedom.
More explicitly: diagonalize the projection P by an or-
thogonal transformation U , i.e. P = UTDU with D =
diag(1, . . . , 1, 0). Then

1√
A/d

UPX =⇒w Z ∼ N (0,Σ)

with Σ = UPUT = D and thus Z = (Z1, . . . , Zd−1, 0), where
Z1, . . . , Zd−1 are independent standard Gaussians. There-
fore

d

A
||UPX||2 =⇒w ||(Z1, . . . , Zd−1)||2 ∼ χ2

d−1;

note finally that ||UPX|| = ||PX|| since U is orthogonal.

While the result is for A→∞, the approximation is valid
for moderate values of A. As an example, we plot in Fig. 2
the case where A = 30 and d = 3, showing good fit.

Remark 3.4. If we are interested instead in the first-

moment imbalance criterion, observe that
√

d
A
||PX|| fol-

lows (for large A) a chi-distribution χd−1 (square root of



chi-squared). From its known moments we obtain the ap-
proximation:

J1
imb := E [||PX||] ≈

√
2A

d

Γ
(
d
2

)
Γ
(
d−1
2

) .
Here Γ(·) is the Gamma function. In particular for d = 3,
case of interest for the EV application, the right-hand side

evaluates to
√

πA
6
.

4. CONSTRAINED SERVER POOLS
We now turn our attention to the more realistic case where

the server pools have finite capacity. Let Ci be the capacity
of pool i, and C =

∑
i Ci the total system capacity, i.e. the

maximum number of simultaneous tasks that the system can
handle. Consistently with our objective of balance, we will
mostly focus on the case of homogeneous pool capacities,
Ci = C/d. Nevertheless, our first result will be stated for
general Ci.

When capacities are limited, routing uniformly at random
is undesirable, since the balancer may choose a pool that is
already working at full capacity. A more reasonable version
of random routing is for the balancer to keep a list of avail-
able spaces at each of the server pools (i.e. inactive server
instances), and then choose one at random out of this list for
an arriving task. Appropriately, we call this the free spaces
routing policy.

Under this assumption, the Markov chain (1) for the sys-
tem occupation becomes:x 7→ x+ ei : λ

[
Ci − xi

C − n

]
=: λi(x),

x 7→ x− ei : µxi =: µi(x),
(6)

with n :=
∑d

i=1 xi. The arrival rates take into account
that the probability pi(x) of choosing pool i is equal to the
fraction of free spaces available that belong to that pool.
Note that blocking will only occur if all pools are full.

The Markov chain in (6) is irreducible and has a finite
state space, and thus it always has a steady-state distribu-
tion. Interestingly, this chain belongs to the class of balanced
routing and allocations studied in [6]. The arrival and de-
parture rates are said to be balanced (unfortunately, this is a
different meaning to our use elsewhere in the paper) if there
exists functions defined in the state space Λ(x) and Φ(x)
such that:

Λ(x+ ei) = λi(x)Λ(x), (7a)

Φ(x− ei) = µi(x)Φ(x). (7b)

By [6, Eq. (10)] the steady-state distribution of a Markov
chain in this class admits a product form given by:

π(x) = π(0)Λ(x)Φ(x). (8)

We can now state the main result of this Section:

Theorem 4.1. The equilibrium occupancy distribution of
the Markov chain (6) for the free spaces routing policy is
given by:

π(x) = π(0)
An

n!

∏d
i=1

(
Ci
xi

)(
C
n

) , (9)

for 0 ≤ xi ≤ Ci, i = 1, . . . , d and with

π(0) =
1∑C

j=0 A
j/j!

. (10)

The result can be interpreted as follows: the total num-
ber of tasks N follows the steady-state distribution of an
M/M/C/C (Erlang) queue, with C =

∑d
i=1 Ci. This is

expected since all arrivals are admitted until the system is
completely full. Given a value N = n for the total occu-
pation, in steady-state all possible subsets of size n become
equiprobable; the binomial coefficients compute how many
ways there are of assigning xi tasks (balls) to Ci servers
(bins) available in each pool; this amounts to a multivariate
Hypergeometric distribution for fixed n.

Proof. It is trivial to show that the departure rates in
(6) satisfy (7b) with

Φ(x) :=
1

µn
∏d

i=1 xi!
.

Also, defining:

Λ(x) := λn (C − n)!

C!

d∏
i=1

Ci!

(Ci − xi)!
,

we can verify (7a) from the arrival transitions in (6). In fact,
this same routing was applied in [15] to analyze a many-
server cloud load balancing system with queueing.

We combine the above with (8) to yield:

Λ(x)Φ(x) = λn (C − n)!

C!

[
d∏

i=1

Ci!

(Ci − xi)!

]
1

µn
∏d

i=1 xi!

= An (C − n)!

C!

d∏
i=1

(
Ci

xi

)

=
An

n!

∏d
i=1

(
Ci
xi

)(
C
n

) .

To obtain the normalization factor, we rely on the follow-
ing identity, which stems from the multivariate Hypergeo-
metric distribution: ∑

x1+...+xd=n

∏d
i=1

(
Ci
xi

)(
C
n

) = 1.

Summing now over n = 0, . . . , C we conclude the proof.

An important property of balanced allocations is that the
underlying Markov chain process is reversible [6]. This in
turn implies that the system is insensitive to the exact so-
journ time distribution, provided that arrivals are Poisson.
Therefore, we have the following:

Remark 4.2. The exponential hypothesis on the sojourn
times in Theorem 4.1 can be relaxed and the steady state
distribution (9) holds for general sojourn times.

We now return to the case when pools are homogeneous,
i.e. Ci = C/d, on which we focus on the sequel. First
note that if we let C → ∞ while keeping Ci/C = 1/d,
the multivariate Hypergeometric distribution converges to a
Multinomial distribution. Specifically, for fixed xi ≤ Ci and
n =

∑
i xi we have the limit∏d

i=1

(
Ci
xi

)(
C
n

) −→
C→∞

(
n

x1 . . . , xd

)
1

dn
.
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Figure 3: Free-spaces routing in steady-state for d = 3.

Also, from (10) we have π(0) → e−A as C → ∞. Substitu-
tion into (9) implies the limit:

π(x) −→
C→∞

e−AAn

n!

n!∏d
i=1 xi!

1

dn
= e−A

d∏
i=1

(A/d)xi

xi!
,

pointwise for fixed x. Now, as C → ∞ with Ci = C/d,
the region of validity of this limit covers the entire posi-
tive orthant Nd, and we have recovered the distribution in
(4). Namely, if capacity is large and evenly distributed, the
free spaces routing policy will behave exactly as the uniform
random policy, as expected.

However, when capacity is not large, an interesting feed-
back effect occurs. As an example, in Figure 3a we plot
the exact CDF of the imbalance measure ||PX||2 computed
numerically averaging over the distribution in eq. (9), and
compare it with the unconstrained server case of eq. (4).
We can observe a smaller value of imbalance in the con-
strained case: this is because although routing is random,
the fact that a pool is already loaded reduces the probability
of a new arrival being routed to it, and thus the distribution
naturally concentrates more along the diagonal. We refer to
Figure 4a for a scatter plot of this distribution.

In practice, imbalance will depend on total capacity C and
offered traffic A. For A≪ C it will behave as in the random
policy with infinite capacity. For A ≫ C, the system will
operate completely full, and thus naturally balanced albeit
with a very high blocking probability. The more interesting
cases are the intermediate values of A. We now obtain an ex-
plicit bound on the worst-case imbalance one may encounter
across all regimes.

Proposition 4.3. For the free spaces routing policy (6)
with homogeneous pool capacity Ci = C/d, in steady state
we have:

J2
imb ⩽

d− 1

4d

C2

C − 1
. (11)

Proof. The key point is again to observe that, given the
total occupation N , X follows a multivariate Hypergeomet-
ric distribution, whose moments are known. In particular,

from (2) we have:

E[∥PX∥2|N ] =

d∑
i=1

E

[(
Xi −

N

d

)2
∣∣∣∣∣N
]
.

Conditioned on N , the vector X follows a multivariate Hy-
pergeometric with parameters Ci = C/d and N . This im-
plies E[Xi | N ] = N/d and thus the terms inside the last
sum are just the variances of the Hypergeometric compo-
nents. Substituting the corresponding formulas for the vari-
ances we have:

E[∥PX∥2|N ] =

d∑
i=1

N
Ci

C

(
1− Ci

C

)
C −N

C − 1

=

d∑
i=1

1

d

d− 1

d

N(C −N)

C − 1

=
d− 1

d

N(C −N)

C − 1
.

Using that N ⩽ C, and thus N(C −N) ⩽ C2/4 we obtain:

E[∥PX∥2] = E
[
E[||PX||2 | N ]

]
= E

[
d− 1

d

N(C −N)

C − 1

]
⩽

d− 1

d

1

C − 1

C2

4
=

d− 1

4d

C2

C − 1
.

In fact, by computing the exact expressions for the mo-
ments of N involved using the equilibrium distribution, it
can be shown that the above bound is tight for large C,
and that the worst case is attained when the offered traffic
A = λ/µ ≈ C/2. We omit the computations.
Instead, we illustrate the behavior through an example

in Figure 3b, for d = 3. The x-axis is the offered traffic
A, normalized by C; the y-axis is our imbalance metric,
normalized also by C. Different system sizes are explored.
For small A relative to C, the imbalance metric J2

imb follows
the linear increase in A consistent with the formula (5) for
the unconstrained case. Imbalance peaks around C/2 as
mentioned above, and it is very close to the bound provided



in the previous proposition. Then it decreases, approaching
zero in the limit of large A/C, in which the pools saturate
and therefore tend to operate in balance.

As a conclusion of this Section, the free spaces random
routing policy will have less imbalance than random uni-
form routing in the unconstrained case, however it will still
increase with system size.

5. ROUTE TO THE LEAST LOADED POOL
To further reduce the imbalance of load among pools, a

more proactive routing policy is required. A natural choice
would be an analog of the classical Join the Shortest Queue
(JSQ) policy from traditional load balancing. In particular,
the balancer may route each incoming task to the pool that
has fewer tasks running on it, i.e. the least loaded one,
with ties broken at random. Accordingly, we call our policy
Least-Loaded-Pool (LLP).

For a precise description we return to (1), where arrival
transitions x 7→ x + ei had intensity λpi(x), and specify
the routing as follows: for a vector x ∈ Nd, let k(x) denote
the number of components that achieve its minimum, i.e.
k(x) := #{argmin(xi)}, and take

pi(x) =

{
1

k(x)
: if i ∈ argmin(xi), min(xi) < C/d;

0 otherwise.

(12)

In other words, the arrival rate λ is split equally among
the pools which have a minimum occupation. Blocking is
included in the above model, for the case of finite capacity;
it occurs only at the state x = C

d
1, i.e. when the entire

system is full.
The following properties of p(x) hold in any non-blocking

state: ∑
i

pi(x) = 1,
∑
i

xipi(x) = min(xi). (13)

Departures x 7→ x − ei have rate µxi as before. The
Markov chain in (1) with the routing in (12) cannot, unfor-
tunately, be solved explicitly as in previous sections. Note
that the total occupation N still behaves as an M/M/∞
queue for the unconstrained case, or as an Erlang queue for
C < ∞, but the full distribution does not admit a closed
form solution. Nevertheless, we can bound the amount of
imbalance in the routing system applying Foster-Lyapunov
methods to the Markov chain. In particular, we need the
following moment bound from [12]:

Lemma 5.1 (cf. [12] Chapter 6). Let X(t) be a con-
tinuous time Markov chain in the state space X and V , f ,
and g are nonnegative functions on X . Assume that:

QV (x) ⩽ −f(x) + g(x) ∀x ∈ X

where QV is the drift of the Lyapunov function V over
the chain dynamics. If X(t) is positive recurrent, so that
the means are well-defined, then in steady state E[f(X)] ⩽
E[g(X)].

We also need the following bound:

Lemma 5.2. For x ∈ Rd,

∥Px∥ ⩽
√

d2 − d
(
x̄−min

i
xi

)
. (14)

Proof. First note that both sides of (14) are invariant if
we shift the coordinates by c ∈ R, i.e. by adding a vector
c1 to x. Taking c = −mini xi we can assume without loss
of generality that mini xi = 0. Also, the inequality is scale
invariant, so we can also assume that x is normalized such
that x̄ = 1, or equivalently 1Tx = d. We must therefore
prove the bound ∥Px∥ ⩽

√
d2 − d for such vectors. We first

observe that

max
{1T x = d, min(xi) = 0}

∥Px∥ ⩽ max
{1T x = d, xi ≥ 0}

∥Px∥

(15)
and the right-hand side problem involves the maximization
of a convex function over a convex set, its optimum must be
an extreme point. For the simplex in the right-hand side the
extreme points are of the form dei, ei being the coordinate
vectors. Evaluating the function at these points we have:

∥Pdei∥ = ∥dei − 1∥ =
√

d2 − d.

Thus, the right-hand side of (15) evaluates to
√
d2 − d and

the result follows.

We are now ready to prove the main result of this Section:

Theorem 5.3. Consider the Markov chain (1) under the
LLP policy described by (12) with d server pools, either with
infinite capacity of with a total capacity C equally distributed
among them. Then for any value of λ, µ, in steady state:

J1
imb = E[||PX||] ⩽ (d− 1)

√
1− 1

d
.

Proof. We first establish positive recurrence of the chain
for the case1 C = ∞, introducing the Lyapunov function
V1(x) = x̄. Computing its drift we obtain:

QV1(x) =
∑
i

λpi(x)
1

d
−
∑
i

µxi
1

d
=

1

d
λ− µx̄,

where we have invoked (13). In particular, QV1(x) ⩽ −ε < 0
outside a compact set, so the Foster criterion implies the
positive recurrence of the chain.

We now introduce a second Lyapunov function, V2(x) =
||Px||2. To compute the drift of V2, we first write the iden-
tity:

||P (x± ei)||2 = (x± ei)
TPTP (x± ei)

= (x± ei)
TP (x± ei)

= ||Px||2 ± 2eTi Px+ eTi Pei

= |Px||2 ± 2(xi − x̄) +
d− 1

d
; (16)

the last step uses the expression (2) for the projection.
We can now compute the drift of V2(x) at a non-blocking

1The case C < ∞ with a finite state-space is also positive
recurrent.
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Figure 4: Scatter plot representing the 90% most probable points from the steady-state distribution, showing the state space
collapse of the LLP policy, A = 40, C = 60.

state (again, invoking (13)):

QV2(x) =
∑
i

λpi(x)2(xi − x̄)−
∑
i

µxi2(xi − x̄)

+
d− 1

d

[∑
i

λpi(x) + µxi

]

= 2λ
[
min

i
xi − x̄

]
− 2µ

[∑
i

x2
i − dx̄2

]

+
d− 1

d
λ+ (d− 1)µx̄.

Define now the Lyapunov function V (x) = (d − 1)V1(x) +
V2(x). Using the above expressions, the total drift of V at
a non-blocking state is:

QV (x) = 2λ
[
min

i
xi − x̄

]
− 2µ

[∑
i

x2
i − dx̄2

]
+ 2

d− 1

d
λ

⩽ 2λ
(
min

i
xi − x̄

)
+ 2λ

d− 1

d
, (17)

where the term multiplying 2µ is non-negative from a direct
application of Cauchy-Schwarz inequality.

We note that the drift bound (17) also holds at the block-
ing state x = C

d
1 (when C < ∞). At this point V1(x) =

C
d
, V2(x) = 0, and only downward transitions are allowed,

with:

V (x− ei) = (d− 1)x− ei + ∥P (x− ei)∥2

= (d− 1)
C − 1

d
+

d− 1

d
= (d− 1)

C

d
= V (x);

note the first two terms in (16) vanish at this state. Thus,
the drift QV (x) is zero; and so is the first term on the right
of (17), satisfying the bound.

We are now ready to apply Lemma 5.1 by choosing f(x) =
2λ (x̄−mini xi) and g(x) ≡ 2λ d−1

d
, to conclude that in

steady-state:

E
[
X̄ −min

i
Xi

]
⩽

d− 1

d
. (18)
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Figure 5: Cumulative distribution function of ||PX||2 for
d = 3, A = 40 under the Least Loaded Pool policy and
previous policies for comparison.

Combining this last inequality with the bound (14) from
Lemma 5.2, we arrive at:

E[∥PX∥] ⩽
(√

d2 − d
)
E
[
X̄ −min

i
Xi

]
⩽
(√

d2 − d
) d− 1

d
= (d− 1)

√
1− 1

d
,

which concludes the proof.

A remarkable fact is that the bound of Theorem 5.3 only
depends on the number of pools d. As a consequence, the
imbalance metric J1

imb remains uniformly bounded for any
system load and any system size. This can be interpreted
in terms of the state-space collapse results of [10]: routing
to the least loaded pool collapses the state space towards
the diagonal (perfect balance), and large excursions are not
allowed. An example of this collapse is shown in Figure 4.

We also depict in Figure 5 the CDF of the imbalance mea-
sure J2

imb for this example and compare it to the previous



policies, showing that for small d (as in the EV case) the
imbalance is greatly reduced.

Remark 5.4. Let us briefly discuss the tightness of the
bound in Theorem 5.3: the key part of the proof is eq. (18):
this first bound shows that, in steady state, the average pool
occupation is at most 1 off the minimal occupation in expec-
tation. This part of the bound is quite tight and suggests that
the imbalance should not grow with dimension. But in order
to bound the relevant imbalance metric ||PX||, we resort to
Lemma 5.2, which is a worst case bound that grows with d.
There could be room for improvement in this second step.

As a side note, remark that another relevant measure for
imbalance in the system may be the maximum pool occu-
pation, i.e. maxi xi = ||x||∞. From Theorem 5.3 we can
directly prove:

Corollary 5.5. In the conditions of Theorem 5.3, we
also have:

E[max
i

Xi − X̄] ⩽ J imb
1 ,

and thus the bound of Theorem 5.3 also holds for the spread
between the maximum pool occupation and the average occu-
pation.

Proof. The proof follows from the triangular inequality:

max
i

xi = ||x||∞ = ||x̄1+ Px||∞ ⩽ ||x̄1||∞ + ||Px||∞

= x̄+ ||Px||∞ ⩽ x̄+ ||Px||.

In the last step we used that ||1||∞ = 1 and that ||Px||∞ ⩽
||Px||. Taking expectations on both sides we conclude the
proof.

Remark 5.6. Finally, we remark that the least-loaded-
pool policy may not be easy to implement in large scale sys-
tems, where the number of pools and capacities are high. In
this case, the load balancer may not be able to keep track
pool usage in real time without an expensive exchange of in-
formation and messages. Thus, approximate policies based
on sampling, such as power-of-d choices [20], become an at-
tractive alternative. Pursuing the study of such policies in
the large scale limit is outside our scope in this paper, since
we focus on steady state finite size results, but represents an
interesting line of future work.

6. APPLICATION TO THREE-PHASE
ELECTRICAL VEHICLE CHARGING

We now apply our results to a relevant problem for elec-
trical vehicle charging: three-phase imbalance. First we an-
alyze how an EV parking lot can be modeled as a parallel
server system with finite capacity and d = 3 pools, namely
the AC phases. We then show how to cast the relevant mea-
sure of imbalance to our projection matrix P , and how the
analyzed routing policies map naturally to this setting. We
then provide analytical results for the electrical imbalance
that can be expected in the system in the stochastic load
setting, and also illustrate real-world behavior with traces
from the Caltech Adaptive Charging Network [18].

6.1 Parking lot model
Consider a parking lot facility providing EV charging ca-

pabilities. This will be provided by multiple Electrical Vehi-
cle Supply Equipments (EVSEs) connected to the network,

as in Figure 6a. The grid provides three-phase alternating
current (AC), but EVSEs are single-phase, meaning that
they draw their power from two of the three AC lines (thus,
there are three classes or phases for the EVSEs). A typical
Level 2 EVSE consumes 7.2kW, and they are among the
largest single-phase loads connected to the grid [23].

Assume that vehicles requiring charge arrive into the sys-
tem as a Poisson process of rate λ and, provided there are
chargers available, remain in the system for an exponential
time of rate µ. The parking lot has a total of C homogeneous
chargers, with Ci of them connected to phase i, i = 1, 2, 3.
By design typically Ci = C/3 in order to keep the phases
balanced. Vehicles present in the system are charged si-
multaneously, and the total power drawn from each phase
depends on its current occupation.

Under the above assumptions, the EV charging system
behaves as the general model from eq. (1) and Figure 1,
with d = 3 pools and total capacity C equally split among
the pools. Now Xi(t) is the number of vehicles charging in
phase i at time t, and thus the total phase current will be

ρi(t) := I0Xi(t), i = 1, 2, 3, (19)

where I0 is the current of a single EVSE.2

An arriving vehicle may choose to park at any of the
free available spaces at random, without knowledge of the
phase it is connected to. Therefore, traffic will split natu-
rally among the phases according to the free spaces rout-
ing policy analyzed before. If, instead, the station operator
proactively routes vehicles to the least loaded phase, the sys-
tem behaves according to the LLP policy. In what follows,
we analyze electrical imbalance in both systems and show
that important gains can be obtained by applying a more
proactive routing.

6.2 Modeling three-phase imbalance
It is beyond our scope to provide a self-contained back-

ground on three-phase alternating current (AC) circuits (see,
e.g. [5]), but we briefly define our terminology: the sinu-
soidal current in each AC line is represented by a phasor,
i.e. a complex number representing its amplitude and phase.
In this setting, an ideal, balanced three-phase current sys-
tem (Ia, Ib, Ic) must have equal amplitude and 120o relative
phase, that is:

Ia = αIb = α2Ic, (20)

where we have introduced the notation α := ej2π/3, i.e. a
120o rotation; j is the imaginary unit. Some useful identities
for α are:

α3 = 1, α = α2, α+ α2 = −1.

Moreover, an orientation choice, named positive sequence
has been made in definition (20). An asymmetric consump-
tion will deviate the system from perfect balance, either
by differences in magnitude or relative angle. However, as
shown in [1], for EV loads differences in magnitude prevail,
so we can make the following:

Assumption 6.1. The currents Ii drawn by each EVSE
pool satisfy:

I1 = ρ1; I2 = ρ2α
2; I3 = ρ3α, (21)

2This is equivalent to having a constant power consumption
at the given EVSE voltage. A typical value for I0 is 30A,
corresponding to 7.2kW at 240V.
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where the ρi = ρi(t) depend on the system occupation as in
(19).

A final consideration is that, for a given installation, en-
gineers have a choice on how to connect the phases: the ∆
or Y (wye) configuration. We focus on the ∆ case depicted
in Figure 6b, common in practice. From eq. (19) and the
Kirchoff laws we have that:Ia

Ib
Ic

 =

I1 − I3
I2 − I1
I3 − I2

 =

 1 0 −α
−1 α2 0
0 −α2 α

ρ1
ρ2
ρ3

 . (22)

The standard way to measure imbalance in such a sys-
tem is called symmetrical components analysis (see e.g. [5],
Ch 12.): this amounts to a change of coordinates from the
original phasors defined by the Fortescue transformation:I0

I+

I−

 =
1

3

1 1 1
1 α α2

1 α2 α

Ia
Ib
Ic

 . (23)

In fact, eq. (23) amounts to a three-point Discrete Fourier
Transform of the original phasor sequence (Ia, Ib, Ic). The
symmetrical components are then the new phasors I+ (pos-
itive sequence), I− (negative sequence), and I0 (zero se-
quence). In a perfectly balanced system satisfying (20), the
positive sequence is exactly I+ = Ia = αIb = α2Ic and both
I− = I0 = 0. Therefore, the magnitude of the negative and
null sequence phasors serve as a measure of imbalance.

Under Assumption 6.1 we can combine (22) and (23) to

get:I0

I+

I−

 =
1

3

1 1 1
1 α α2

1 α2 α

 1 0 −α
−1 α2 0
0 −α2 α

ρ1
ρ2
ρ3


=

1

3

 0 0 0
1− α 1− α 1− α
1− α2 α− 1 −α+ α2

ρ1
ρ2
ρ3

 . (24)

The zero-sequence component disappears, this is a con-
sequence of the ∆ configuration which forces the sum of
the sum of the line currents to be 0. Define the vector of
magnitudes ρ := (ρ1, ρ2, ρ3). Then the positive sequence
magnitude is

|I+| = |1− α|
3

1T ρ =
1√
3
1T ρ, (25)

and the negative sequence magnitude satisfies:

I− =
1− α2

3

(
1 α α2

)
ρ,

where we have used the identities for α. Computing its
magnitude squared and using that ρi ∈ R we get:

|I−|2 =
1

3
(ρ21 + ρ22 + ρ23 − ρ1ρ2 − ρ2ρ3 − ρ3ρ1).

The above quadratic form can be readily expressed as:

|I−|2 =
1

2
ρTPρ =

1

2
∥Pρ∥2, (26)

where P is the matrix:

P =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 . (27)

Now, P is exactly the projection onto the orthogonal com-
plement of 1 = (1, 1, 1)T that we introduced in (2), for the
case d = 3. In particular substituting (19), in steady state
we should have:

E
[
|I−|

]
=

I0√
2
E [∥PX∥] = I0√

2
J1
imb. (28)

To summarize: in a ∆ configuration, electrical imbalance
is measured by the magnitude |I−| of the negative sequence
component of the line current phasors (Ia, Ib, Ic); this is in
fact defined in [14] as the industry standard. For an EV
parking lot, where Assumption (6.1) holds, this metric is
proportional to the norm of a projection under P in (2)
of the vector of EVSE occupations per phase. Thus, the
expected imbalance under stochastic load for the parking
lot is expressed by (28), enabling us to apply the previous
analysis for d = 3, taking as our server pools the EVSEs in
each phase.

6.3 Numerical experiments
We now apply our previous results to bound the steady

state electrical imbalance. Consider an EV parking lot with
a finite number C of EVSEs evenly distributed among the
phases and let Xi(t), i = 1, 2, 3 be the number of active users
in phase i, and N = X1 +X2 +X3 the total occupation.
If users choose the parking space at random, then the

probability of choosing a free spot from phase i is exactly
(Ci −Xi)/(C −N), i.e. the free spaces routing policy ana-
lyzed earlier. We can thus prove:
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Figure 7: Total number of charging EVs and imbalance evolution for the discussed policies in the JPL system.

Proposition 6.2. For a parking lot with the random free
spaces routing policy, in steady state we have:

E
[
|I−|

]
=

I0√
2
J1
imb ⩽

I0√
2

√
J2
imb ⩽

I0

2
√
3

C√
C − 1

,

for any traffic load A.

The proof follows from expression (28), Jensen’s inequality

to bound J1
imb ⩽

√
J2
imb and the bound for J2

imb in Proposi-
tion 4.3. From this result, the relative amount of imbalance
satisfies:

1

I0C
E[|I−|] ⩽ 1

2
√
3

1√
C − 1

∼
C→∞

O

(
1√
C

)
.

Not surprisingly, relative imbalance vanishes with system
size, but decay is slow, which means smaller installations
may suffer from relatively high imbalance currents, trip-
ping circuit protections. In that case, minimizing imbalance
through vehicle routing can be a useful and simple to im-
plement approach. From our analysis in Section 5, the LLP
policy will achieve better results. Explicitly, applying the
bound in Theorem 5.3 we have:

Proposition 6.3. For a parking lot actively routing ve-
hicles to the least loaded phase, in steady state we have:

E
[
|I−|

]
=

I0√
2
J1
imb ⩽

2√
3
I0

for any traffic load A and system size C.

In this case, the relative imbalance decays much faster:

1

I0C
E[|I−|] ⩽ 2√

3C
,

and thus further reducing the strain on the installation.
The preceding analysis assumes a stationary demand, how-

ever in practice, real world installations will handle a time
varying traffic intensity due to natural daily usage cycles.
Since our imbalance estimates are valid for any traffic load,
provided the arrival rates change slowly in time, the esti-
mates should approximately hold for time-varying scenarios.
Therefore, we can compare them to the imbalance found in
real world traces. To do so, we resort to measured traffic
traces from Caltech Adaptive Charging Network installa-
tions, publicly available in [18].

The trace under consideration comes from an EV parking
lot at NASA Jet Propulsion Laboratory in Pasdena, Califor-
nia. We took a typical work week (Mon-Fri) to capture the
daily cycles, with a total of 385 charging sessions (77 per
day), each having an average demand of 15kWh per EV,
which amounts to 2.1h charging time at 7.2kW. The total
number of chargers is C = 48, with 16 chargers per phase.
The time evolution of the total number of charging vehicles
N(t) is depicted in Figure 7a; we observe the daily cycle.

We then simulate the system using the discussed policies
and compute the time-varying imbalance metric |I−(t)| for
the resulting occupation trajectory X(t). The time evolu-
tion using both policies is depicted in Figure 7b, where we
can see that LLP halves the amount of imbalance current in
the system on average. Moreover, the bounds from Proposi-
tions 6.2 and 6.3 are also shown in the graph. As we can see,
the real time imbalance measure remains most of the time
below the computed bounds, with some deviations occurring
during transient situations.

One of the key takeaways of these numerical experiments
is that random free spaces routing alone in a parking lot may
be insufficient to control imbalance currents in the system,
therefore straining the infrastructure and possibly tripping
system protections due to this imbalance, leading to heavy
performance penalties. There is an incentive for operators
to actively route users to the least loaded phase in order
to reduce this imbalance, and our bounds help design the
system in a robust way.

7. CONCLUSIONS
In this paper, we have analyzed load balancing between

server pools that serve tasks in parallel and may be subject
to capacity constraints. We showed how a suitable measure
of system imbalance behaves under random routing in the
unconstrained case, and how it deviates from this behavior
under capacity constraints. We also obtained sharp bounds
on average imbalance for the case where least-loaded-pool
routing is used. Finally, we applied our results to the prob-
lem of EV charging, where imbalance is a practical limita-
tion, and showed how the bounds derived can be used to
estimate it independently of the traffic load.

In future work, we would like to analyze sampling based
policies such as a Power-of-d version of LLP. Such a policy



would be more amenable to implementation in large scale
systems where information passing is a concern. The case
of heterogeneous pools would also be an interesting line of
work, where imbalance metrics should be defined accord-
ingly and the results in this paper are not straightforward
to generalize. Finally, in the case of EV charging, it would
be interesting to compare the behavior of the simple LLP
policy against other proposals based on online optimization
algorithms, that use more information from the system.
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