
Achieving fairness for EV charging in overload: a fluid
approach

Martı́n Zeballos
Universidad ORT Uruguay

Montevideo, Uruguay

mzeballos@uni.ort.edu.uy

Andres Ferragut
Universidad ORT Uruguay

Montevideo, Uruguay

ferragut@ort.edu.uy

Fernando Paganini
Universidad ORT Uruguay

Montevideo, Uruguay

paganini@ort.edu.uy

ABSTRACT
With the emergence of Electrical Vehicles (EVs), there is a
growing investment in power infrastructure to provide charg-
ing stations. In an EV parking lot, typically not all vehicles
can be charged simultaneously, and thus some scheduling
must be performed, taking into account the time the users
are willing to spend in the system.

In this paper, we analyze the performance of several com-
mon scheduling policies through a fluid model. We show
that in overload, the amount of unfinished work is the same
for all policies, but these can distribute the work performed
unfairly across users. We also introduce a new policy called
Least Laxity Ratio that achieves a suitable notion of fairness
across jobs, and validate its performance by simulation.
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1. INTRODUCTION
Electrical Vehicles (EVs) are becoming increasingly com-

mon in recent years; their penetration is prompted by the
scarcity of fossil fuels and concerns on carbon emissions, and
enabled by the lowering cost of energy storage technologies.
A large scale deployment of EVs in the near term is now
conceivable, posing new demands on the charging infras-
tructure [13,15]. A promising solution is to provide charging
stations at a parking lot. Since the amount of power required
to charge each EV is significant, it may not be practical to
size the system capacity to provide simultaneous power to all
chargers; note the utilization of the parking lot may not be
that high. If a lower sizing is adopted, however, the charg-
ing capacity may be overloaded during busy hours, and thus
some scheduling algorithm must be introduced to determine
the order in which vehicles should be charged.

A typical characteristic of EV charging jobs is that they
can be deferred to a certain extent. This means that a
given vehicle can receive service immediately, or be delayed,
because its sojourn time in the parking lot may be larger
than the time required to provide a full charge. On the
other hand, a feature of this problem is that if a vehicle
leaves the system before full service, the partial amount of
work performed is still useful. This sets the problem apart
from classical scheduling of deadline constrained computing
tasks [12].
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In this paper, we start in Section 2 with a queueing model
for an EV parking lot, where vehicles arrive with random
demands and sojourn times. We assume that each charging
station as well as the total installation have a power con-
straint, and analyze policies to schedule the jobs. A fluid
model is then introduced for a large scale situation: it takes
the form of an advection equation for the density of EVs
flowing through the service-sojourn space. The service pol-
icy impacts the vector field of this flow, a formulation that
includes several well known policies. We show that in under-
load all efficient policies have the same equilibrium. When
the system is in overload, overall reneged work is the same
for all efficient policies, but its distribution across jobs is
highly dependent on the policy implemented. In Section 3,
we analyze several policies and show that the reneged service
may be unfairly distributed across users.

In Section 4 we propose a new policy called least-laxity-
ratio, that is efficient in underload and achieves a suitable
notion of fairness between users when the system is in over-
load. Finally, in Section 5 we provide empirical validation
of the fluid approximation by simulating the discrete system
in detail. Conclusions are given in Section 6.

1.1 Related work
The vehicle charging problem is a current concern for sys-

tem operators. The increasing penetration rate of EVs leads
to the development of optimization techniques to fully uti-
lize resources. In [14], the authors discuss the use of future
demand estimation to maximize the state of charge of vehi-
cles upon departure. In [4, 17, 18], the authors analyze the
scheduling problem by formulating a dynamic programming
approach, and prove properties of the optimal algorithm to
minimize reneged work. Similar ideas in a time-varying envi-
ronment with real data were analyzed in [11]. More relevant
to our work, a queueing approach is proposed in [2], where a
simple model for parallel chargers is analyzed. The authors
in [3] also extend this model to include network considera-
tions for the grid.

In this paper, we seek to extend the results of [2] by con-
sidering more general scheduling policies when subject to
deadlines. In this regard [6, 8] laid the foundations for the
analysis of reneged work in deadline systems with a single
server. Deadline based policies such as earliest-deadline-first
(EDF) were thoroughly analyzed in [5,10] in a fluid and dif-
fusion scale. A more comprehensive analysis of fluid limits
for earliest deadline policies and many server queues is done
in [1, 9], and constitutes an ongoing research subject. Here
we focus on extending this analysis by finding a common
fluid description and extract results for system behavior.



2. SYSTEM MODEL
We consider an EV parking lot where each parking spot

has an associated charging station. We assume that the size
of the parking lot is large (infinite), but the total power
consumed at any given time by the installation is limited by
a finite capacity. The scheduling policy must allocate these
limited resources among the EV clients currently present,
taking into account their energy needs and their planned
departure times.

In addition to the overall capacity limit, each charging sta-
tion has a nominal power rating (maximum charging rate)
that can be delivered to each EV. This quantity is assumed
uniform across the parking lot, and typically much smaller
than capacity.

2.1 Discrete queueing model
To motivate the fluid model which will be the main analyt-

ical tool of this paper, we consider first a discrete, stochastic
counterpart.

Here, vehicles arrive as a Poisson process of intensity λ,
and arriving vehicles choose two random characteristics in
i.i.d. fashion: a required service time Sk, i.e. the energy
requested divided by the nominal rate of charge of the sta-
tion, and a sojourn time Tk, which is the time until the
car leaves the parking lot. We assume that Sk and Tk follow
general distributions, and Tk > Sk with probability 1, which
amounts to assuming that the demand of each EV is a priori
feasible at the charging station. We denote by f(σ, τ) the
joint density of (S, T ).

The allocation decision in the hands of the garage operator
is to assign to each vehicle a charging rate rk(t); we will
normalize to unity the maximum individual charging rate,
and thus require that

0 6 rk(t) 6 1 for every k, t. (1)

Also, the total capacity of the installation is bounded, so we
impose

n(t)∑
k=1

rk(t) 6 C, (2)

where n(t) is the number of EVs present in the garage which
still require service. C can be interpreted as the maximum
number of chargers that could be simultaneously turned on
at full rate; we could, however, choose to activate more than
C chargers at a reduced rate.

We will consider charging policies that take into account
the current population of EVs, and their residual times; for
these, the system state can be represented as a counting
measure on the service - sojourn space, as in [8], namely:

Φt =

n(t)∑
k=1

δ(σk(t),τk(t)).

Here δ(σk(t),τk(t)) is a point-mass measure in R2 located at
the point (σk(t), τk(t)), where σk(t) is the remaining ser-
vice time of each task and τk(t) is the remaining time until
departure.

The system dynamics is as follows: each point k in the
system consumes service time at a rate rk(t) and its lead
time or time-to-deadline at rate 1, as depicted in Figure 1.
The scheduling policy can thus be represented by a (possibly
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Figure 1: Dynamics for each job.
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Figure 2: EDF policy behavior for n(t) = 9 and C = 3.

state-dependent) vector field on R2
+ given by:

u(σ, τ,Φ) = − (r(σ, τ,Φ), 1) . (3)

Points follow this vector field up to reaching σ = 0 (charge
completed), or their time expires at τ = 0. Vehicles that
are completely charged may stay in the parking lot, but we
consider them served and out of our system. Vehicles that
exhaust their time constraint depart the system with partial
charge (reneged service).

We restrict our attention to policies that do not waste
charging opportunities; specifically, we require the following:

Definition 1. A charging policy is called efficient if at
every time t, either (2) is satisfied with equality, or (1) is
at its upper bound for every k = 1, . . . , n(t).

As an example, consider that vehicles are served under
the earliest deadline first (EDF) policy, where the first C
vehicles with closer deadlines are served at rate r = 1. Then
the system dynamics has the form depicted in Figure 2, and
the rate r in equation (3) is:

r(σ, τ,Φ) = 1{τ6τ∗(Φ)} (4)

with τ∗(Φ) = inf{τ : Φ(R+ × [0, τ ]) > C}.
The process Φt, determined by the arrival distributions

and the scheduling policy r, is a measure-valued Markov
process. Such a detailed system description is in general
difficult to analyze. In a large scale situation, it is more
tractable to consider a macroscopic, fluid description of the
dynamics.

2.2 Fluid model
In the fluid scale, the number of points in the system

is large and we replace Φ by a density function over R2
+.

Let g(t, σ, τ) be the density of points that at time t have
remaining work ∈ [σ, σ+dσ] and remaining time ∈ [τ, τ+dτ ].
New mass arrives into the system at rate λf(σ, τ), where f
is the joint density of service and sojourn times, as before.
Mass is transported along the vector field u = −(r(σ, τ, g), 1)
defined by the scheduling policy.



This implies that the density g should satisfy the following
advection equation:

∂g

∂t
+∇ · (gu) = λf (5)

where ∇ · (·) is the divergence operator on R2
+, i.e. on the

variables σ, τ .
To explain this model, consider a region R of the (σ, τ)

plane, with boundary ∂R. The total mass of particles (EVs)
within this region at time t is given by

Φt(R) =

∫∫
R
g(t, σ, τ)dσdτ.

The variation of this quantity over time is due to arriving
mass minus flow across the boundary. We therefore have:

dΦt(R)

dt
= λ

∫∫
R
f(σ, τ)dσdτ −

∫
∂R

g(t, σ, τ)u(σ, τ, g) · d~n.

Here ~n denotes the direction normal to the boundary; this
second term can be transformed using the divergence theo-
rem, leading to∫∫

R

∂g

∂t
dσdτ = λ

∫∫
R
fdσdτ −

∫∫
R
∇ · (gu)dσdτ,

which is the integral version of (5).

Remark 1. The formal relationship between stochastic
and fluid models is usually framed in terms of scaling lim-
its; for these measure-valued processes it is a very tech-
nical subject, beyond our scope here. Relevant references
are [1, 5, 6, 8, 10].

We are interested in steady-state solutions of eq. (5) so we
set ∂g

∂t
= 0 and substitute the vector field, obtaining the

equilibrium condition:

∂(rg)

∂σ
+
∂g

∂τ
+ λf = 0. (6)

In the fluid model, the steady-state population of EVs is
given by

n =

∫∫
g(σ, τ)dσdτ.

Finally, the constraints on the scheduling policy are now:

0 6 r(σ, τ, g) 6 1;∫∫
r(σ, τ, g)g(σ, τ)dσdτ 6 C.

In the next section we will analyze the steady state behavior
of several scheduling policies by solving eq. (6) in each case.

2.3 Underload and Overload
The system load is defined as the product of the arrival

rate and the mean service requirement,

ρ := λE[Sk] = λ

∫ ∞
0

∫ ∞
0

σf(σ, τ)dσdτ.

Remark 2. The load represents the average power re-
quested to the garage; however, since we are representing
service in units of time, then load is a dimensionless quan-
tity. ρ represents the mean number of chargers needed to
fully satisfy the demand.

We now state some general results that apply to all effi-
cient policies, depending only on the load conditions. Proofs
are omitted due to space limitations.

In the underload case, independently of the specific policy
all vehicles receive full service in steady state, hence there
is a common equilibrium.

Proposition 1. Assume ρ < C. The steady state for
any efficient policy is such that r ≡ 1, n = ρ, and

g(σ, τ) = λ

∫ ∞
0

f(σ + x, τ + x)dx.

In the overload case, where the system load exceeds capac-
ity, the steady-state distribution will depend on the specific
policy. However the total amount of reneged work in the
system, i.e. requested energy not delivered, is the same for
all efficient policies. Again, reneged work is expressed here
in dimensionless units.

Proposition 2. Assume that ρ > C, and that the schedul-
ing policy is efficient. Then the amount of reneged work in
steady state is

W =

∫ ∞
0

σg(σ, 0)dσ = ρ− C. (7)

An important question is, however: how is this reneged
service distributed between individual vehicles in the sys-
tem? In the next section we will find that in this aspect
the various scheduling policies differ, and not always in an
intuitive way. In particular, policies such as EDF which
take into account lead time, do not end up discriminating
reneged service based on users’ time in the system.

3. SCHEDULING POLICIES IN OVERLOAD
We have seen that when the system is in underload (ρ <

C), all efficient policies in the fluid limit behave as an infinite
server queue. We now analyze in more detail the overload
case (ρ > C) for different policies, with particular focus on
the distribution of reneged work.

3.1 Earliest deadline first
We begin by considering the EDF policy already described,

depicted in Figure 2. The rate function for this policy is the
fluid counterpart of (4):

r(σ, τ, g) = 1{τ6τ∗(g)}. (8)

Eq. (8) says there is a threshold τ∗, dependent on the state g
such that loads with remaining sojourn time than τ∗ do not
receive service. At equilibrium, this value is fixed. Hence,
the typical service profile is to wait until the time-to-deadline
is τ∗ and then be served up to completion or deadline expi-
ration.

Using the method of characteristic curves [7] we can con-
struct explicit solutions for the PDE (6) under rate function
(8), and prove the following result:

Proposition 3. Under the EDF policy in overload, the
reneged work Sr per user is distributed as (S − τ∗)+, where
the threshold τ∗ satisfies

λE[min{S, τ∗}] = C. (9)

Note that the above equation has a single solution 0 <
τ∗ <∞ provided that ρ > C.
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Figure 3: LLF policy behavior for n(t) = 9 and C = 3.

When the system is in overload, EDF finds a threshold
τ∗ given by (9): jobs with service time S < τ∗ are then
served to completion. Jobs with service time greater that
τ∗ are only delayed and served for a time τ∗ and depart
with reneged work Sr = (S − τ∗)+. Therefore, the policy
is unfair towards large jobs, which get their service chopped
to the threshold τ∗.

Moreover, the service received is independent of the so-
journ time T : jobs that offer more flexibility are only delayed
and not served at all until their remaining time is τ∗.

3.2 Least laxity first
The second policy we analyze is Least Laxity First (LLF)

from the real-time scheduling literature [16], and discussed
in the EV context in [17]. Here, the laxity or spare time
of each job is considered, defined by `k = τk − σk, i.e. the
amount of time that the job can be delayed and still be able
to meet its deadline. The LLF policy, depicted in Figure
3, fills capacity with the jobs of lowest laxity, so the rate
function is

r(σ, τ, g) = 1{τ−σ6`∗(g)}. (10)

In this case, the system serves loads with laxity `k 6 `∗

at full rate, while the remaining consume their spare time
up to reaching this level. In equilibrium, this laxity level
`∗ is fixed, and in overload this laxity level becomes nega-
tive, implying that all jobs depart with reneged work. The
equilibrium of (6) with rate function (10) is again computed
using characteristic curves, and we can prove:

Proposition 4. Under the LLF policy in overload, the
reneged work Sr per user is distributed as min{S, σ∗}, where
the threshold σ∗ = −`∗ satisfies

λE[(S − σ∗)+] = C. (11)

When the system is in overload, it finds a threshold `∗ < 0
and all EVs with initial laxity ` > `∗ consume their spare
time up to reaching `∗ and leave the system with Sr = σ∗ :=
−`∗ when their deadlines expire. However, if a given job
arrives with service request S < σ∗, it never attains the re-
quired laxity level for service and departs the system without
being charged at all, leaving with Sr = S. Thus, an LLF
system in overload discriminates against small jobs. Again,
the system ends up not discriminating by T (time in the
system), only job size.

3.3 Processor sharing
Finally, we discuss a policy that does not consider dead-

lines (or indeed, service times) in allocation decisions. The

processor sharing allocation is as follows: if the total num-
ber of vehicles n is less than C, then the rate at which each
vehicle is served is r = 1. If n > C, then available power is
equally shared by all chargers, i.e. r = C/n. This policy was
analyzed in [8] for the single server queue, where constraint
(1) is not present, and discussed in the EV context in [2].

In equilibrium, a PS system will reach a rate r∗, homo-
geneous across EVs. The corresponding equilibrium PDE
(6) is once more solved for this situation, yielding the cor-
responding result for the reneged work:

Proposition 5. Under the PS policy in overload, the re-
neged work Sr per user is distributed as (S − r∗T )+, where
the equilibrium rate r∗ satisfies

λE[min{S, r∗T}] = C. (12)

Once more, this equation has a single solution 0 < r∗ < 1
under the overload condition. Equation (12) is analogous to
the fixed point equation derived in [8] for the single server
PS queue, and in [2] for the EV case under exponential as-
sumptions.

We find here that the reneged work depends on both the
service requirement S and the sojourn time T offered to the
system, rewarding EVs that offer more flexibility. This oc-
curs despite the fact that deadlines are not explicitly consid-
ered. In contrast, deadline-based policies like EDF and LLF
in overload do not offer any service differentiation based on
T .

Note however that, sojourn times being equal, the PS pol-
icy favors small jobs, which are served to completion, while
large jobs only get partial service.

4. FAIR SCHEDULING: LEAST LAXITY
RATIO

The policies analyzed in Section 3 do not show a fair be-
havior in overload. Both EDF and PS discriminate against
large jobs, by chopping their service, and LLF discriminates
against small jobs, by not giving service at all. In this Sec-
tion we propose a new policy that we call Least-Laxity-Ratio
(LLR). We show that this policy has similar macroscopic
behavior to EDF or LLF in overload, but the amount of ser-
vice received by each job is proportional to their requested
service.

The LLR policy works as follows: given the current set of
jobs with remaining service and deadlines (σk, τk), construct
the following index called laxity ratio:

θk :=
τk
σk

= 1 +
`k
σk
.

Then serve the C jobs with smallest θk in the system at full
rate. The policy serves the most urgent loads, i.e. those
with more urgent deadlines, relative to their residual service
time.

The behavior of the policy is depicted in Figure 4. The
rate allocated to each job is given by:

r(σ, τ, g) = 1{ τ
σ
6θ(g)}, (13)

where θ(g) is the threshold laxity ratio. In equilibrium, this
ratio reaches a value θ∗ so that∫∫

{τ6θ∗(g)σ}
g(σ, τ)dσdτ = C.
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Figure 4: Least laxity ratio policy behavior for n(t) =
9 and C = 3.

Policy Threshold Reneged Att. service
equation work (Sr) (S − Sr)

EDF λE[min{S, τ∗}] = C (S − τ∗)+ min{S, τ∗}
LLF λE[(S − σ∗)+] = C min{S, σ∗} (S − σ∗)+

PS λE[min{S, r∗T}] = C (S − r∗T )+ min{S, r∗T}
LLR λθ∗E[S] = C (1− θ∗)S θ∗S

Table 1: Summary of performance metrics for the
different algorithms.

In an equilibrium condition, an EV will receive no service
until τ/σ falls below the threshold θ∗, and receive unit rate
after that. In overload, θ∗ < 1 meaning that jobs must be
lagging behind their deadline to get service, and will always
have some reneged service. We have thus have the following
result for this policy:

Proposition 6. Under the LLR policy in overload, the
reneged work Sr per user is distributed as S(1 − θ∗), where
the threshold θ∗ satisfies

θ∗ = C/ρ. (14)

Therefore, by using the LLR policy, received service is
simply θ∗S, a uniform downscaling of the service request
S. This amounts to a notion of proportional fairness be-
tween jobs: all EVs will receive the same fraction of their
required charge. This proportionality is arguably a fair way
to distribute resources in the case of overload.

Finally, we summarize in Table 1 the properties derived
for all the policies analyzed in the paper.

5. SIMULATIONS
We now validate the predictions of the fluid model by sim-

ulating the discrete system under the different policies an-
alyzed before and compare its results with the fluid model
predictions. The arrival rate is λ and sets the scale of the
system. The job size Sk is exponentially distributed with
rate µ. Each job arrives with an initial laxity Lk also expo-
nentially distributed with rate γ, independent of Sk, and we
set Tk = Sk + Lk. This corresponds to the joint density:

f(σ, τ) = µγe−(µ−γ)σ−γτ 0 6 σ 6 τ.

The load of the system is thus ρ = λ/µ and we set ρ > C.
By integrating this exponential distribution we can compute

the different thresholds given in Table 1 yielding:

τ∗ = − 1

µ
log

(
1− C

ρ

)
EDF

σ∗ = − 1

µ
log

(
C

ρ

)
LLF

r∗ :
γ(1− r∗)2

µr∗ + γ(1− r∗) = 1− C

ρ
PS

θ∗ =
C

ρ
LLR

0 1 2 3 4 5 6
0

2

4

6

8

10

τ = τ∗

σ

τ

In service

Not in service

0 1 2 3 4 5 6
0

2

4

6

8

10

τ = σ − σ
∗

σ

τ
In service

Not in service

0 1 2 3 4 5 6
0

2

4

6

8

10

τ = θ
∗σ

σ

τ

In service

Not in service

Figure 5: Steady-state snapshot of a system under
EDF (above), LLF (center) and LLR (below), with
in service and not in service loads. The dotted line
indicates the corresponding thresholds predicted by
the fluid model.

We simulate the system with λ = 120, µ = 1, γ = 0.5
and C = 80, so the load is ρ = 120 > C, using the classical
policies EDF and LLF as well as our proposal LLR. In Figure
5 we plot a snapshot of the system in steady-state, and the
thresholds computed using the fluid model. As we can see,
the fluid model predicts correctly the transition for all three
policies. The number of loads in the system is on the scale
of ρ, i.e. few hundred vehicles, highlighting the power of the
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fluid approximation, which even for a medium sized station
captures the correct behavior.

More importantly, in Figure 6 we plot the initial demand
S and final reneged work Sr achieved by the jobs under the
three policies, as well as the fluid model predictions. As
we can see, the empirical observations follow the predicted
behavior closely, and the EDF and LLF policies discrimi-
nate against large and small jobs respectively. On the other
hand, our proposed LLR policy achieves the desired linear
relationship, imposing proportional fairness across jobs.

Finally, we explore the performance of the policies as we
approach the overload condition. As discussed before, in the
fluid model the rate of reneged work is 0 whenever ρ < C,
and is ρ−C when ρ > C, given by Proposition 2. Therefore,
the fraction of reneged work is (1− C/ρ)+.

In Figure 7 we plot the empirical fraction of reneged work
as ρ moves from underload to overload, and using the same
demand parameters as before. In the discrete system around
the critical point, the fraction of reneged work is highest
for PS and lowest for LLF and LLR. Therefore, while our
proposed policy was derived to perform well in overload,
it empirically performs as well as the other policies across
all load conditions, while maintaining fairness. Note that
the fluid limit correctly captures the reneged work, however
differences within policies remain, and around the critical
load not all policies perform equally. Therefore, it would
be interesting to enhance the analysis around criticality by
using diffusion approximations to better differentiate across
policies.

6. CONCLUSIONS
In this work, we analyze the performance of several com-

mon scheduling policies for EV charging by means of a fluid
model, showing that in overload the amount of unfinished
work is invariant across work conserving policies, but can be
unfairly distributed across jobs. We introduced a new pol-
icy called Least Laxity Ratio that achieves fairness across
jobs when in overload, while showing good behavior in un-
derload and critical scenarios. We validated its performance
by simulation experiments on the discrete system. In future
work, we plan to address more refined approximations for
the system to analyze its behavior around the critical load,
as well as considering time-varying scenarios.
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