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Abstract

A distinctive feature of cloud computing is that it enables customers to dy-
namically summon server instances. Service providers facing uncertain demand
patterns may exploit this feature by setting automatic provisioning rules for
right-sizing the capacity contracted from the cloud. This situation can be mod-
eled by a queueing system where the numbers of both jobs and servers evolve in
time, the latter subject to delays in creation and deletion. We study in this con-
text different feedback rules with the objective of efficiently matching capacity
and load, while simultaneously providing a high quality of service.

These rules are analyzed by means of fluid and diffusion limits for Markov
chains. In particular we develop suitable extensions of the classical literature on
this topic, required to accommodate non-homogeneous intensity scalings and
non-differentiable drift fields. With these tools, our final proposal is shown
to exhibit properties akin to the Halfin-Whitt regime, achieved automatically
without knowledge of the system load. We further investigate by simulation its
behavior under time-varying load, demonstrating the capabilities of our design
to provide quality and efficiency in highly dynamic scenarios.
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1. Introduction

The cloud computing paradigm has significantly changed the way comput-
ing services are conceived and deployed. A service provider facing an uncertain
demand need no longer invest on a proprietary infrastructure, with the ensu-
ing risk in choosing its appropriate size. Instead, cloud services provide the
alternative of an essentially unlimited infrastructure, which can be contracted
dynamically as demand arises.

Under idealized circumstances, such a system could be modeled as an infinite-
server queue, in which active instances track instantaneously the current job
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population. There are, however, delays in server creation and deletion, which
are non-negligible with respect to the time-scale of jobs. Thus, a model of the
resulting queueing system must distinguish the quantities of jobs and servers,
and explicitly consider the rules for server creation and deletion, to achieve an
efficient use of the infrastructure while guaranteeing quality of service. The
analysis and design of such rules is the subject of this paper.

If properly controlled, such a system should operate in the “heavy-traffic”
regime [1]; i.e., with load approximately matching capacity. In contrast with
most of the literature on this topic, we do not assume heavy-traffic occurs
through an exogenous tuning of the load parameter to approach a fixed capac-
ity (a tuning which is typically not given a practical motivation); rather, it is
the automatic control of the capacity side that provides the “right-sizing” [2] to
match the load. This explanatory mechanism for heavy-traffic cannot be stud-
ied with tools of fixed server queues: instead, we use a two-dimensional Markov
model where the number of servers becomes a state variable, in addition to the
number of jobs; the former is subject to exponential startup/deletion times. A
mismatch between both populations indicates loss of efficiency (overprovisioned
servers) or quality of service (jobs being queued).

We use fluid and diffusion limits to analyze the large-scale behavior of these
Markov processes, under different control rules; the analysis requires extensions
to the standard theory of [3]. We first consider in Section 2 a basic model which
modifies the M/M/∞ queue to incorporate the server dynamics; the resulting
fluid model is shown to globally converge to the natural equilibrium, and its dif-
fusion scale approximation exhibits fluctuations in both the overprovisiong and
queueing directions. In Section 3 we introduce a bias in the server provisioning
control, favoring quality of service (zero queueing). A bias proportional to the
current population can be tuned to achieve quality of service with small impact
on overprovisiong; however this tuning would depend on the load ρ.

In Section 4 the bias is modified to be proportional to the square-root of the
job population; in this way a universal tuning is possible across a wide variety
of loads. The steady-state behavior of this system is consistent with the quality
and efficiency driven (QED) regime of Halfin and Whitt [4]; in particular with
O(
√
ρ) idle servers. The distinctive contribution is that we provide a mechanism

to reach this operating regime automatically through feedback.
In Section 5 the performance of these methods is demonstrated through

extensive simulations. In particular, we validate empirically the behavior of our
control rules when subject to non-stationary traffic loads.

Our main contributions are:

� From an applications perspective, we provide control rules for summon-
ing and deleting server instances from a cloud service provider, in order
to track an uncertain or time-varying demand. Of the different design
choices, we favor rules deliberately biased to guarantee no queueing delay
is incurred with high probability, while keeping the overprovisioning level
at a minimum. We show this can be achieved in a manner that self-scales
to the exogenous load.
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� From a theoretical perspective, we extend results of Kurtz and co-authors
in regard to scaling limits of continuous time Markov chains [3, 5]. Specifi-
cally, we allow transition rates that depend inhomogeneously on the scaling
parameter, with potentially differing effects between the fluid and diffu-
sion limits, and we also accommodate non-differentiable drifts. Proofs of
these results are outlined in the Appendices.

Conclusions are given in Section 6. Preliminary versions of these results were
presented in [6] and an extensive treatment of the mathematics used throughout
the paper is provided in the thesis [7].

1.1. Related work

The possibility of controlling in real-time the capacity of service systems has
been considered in many contexts. One motivation originates in contact centers
where customers consult agents whose time is expensive. In this setting, rather
than have the agents work fixed shifts, it can be cheaper to implement strategies
for contacting the agents on-demand in a way that minimizes the waiting time
of both customers and agents [8, 9]. Another motivation, originating in [10],
is the “speed scaling” of hardware (e.g. the microprocessor clock), to trade off
processing efficiency with energy consumption. The performance of scaling rules
for service capacity as a function of the number of jobs, in combination with
job scheduling disciplines, has been analyzed with different tools: [11, 12, 13]
study the worst-case over a finite batch of jobs, [14, 15, 16] employ stochastic
queueing tools and a control-theoretic viewpoint is given in [17].

A similar kind of tradeoff appears in the situation of a large data center,
where servers may enter a power saving mode in times of low demand; the
control of active capacity in this context has been termed the “right-sizing”
problem [2]. With the emergence of cloud computing these infrastructures have
become increasingly distributed, and a great deal of attention has been given to
the question of load balancing in a large pool of servers; in particular, the issue
of finding efficient policies with no centralized queuing and small messaging
requirements [18, 19, 20, 21, 22, 23, 24]. The interplay between the right-sizing
and load balancing problems has been studied in [25, 26, 27] and is a relevant
problem from the perspective of cloud vendors, who need to distribute server
instances among multiple customers with time-varying requirements.

In this paper we consider, instead, the viewpoint of cloud clients: i.e., service
providers contracting computing capacity from a cloud vendor. Cloud clients
typically outsource the load balancing mechanism, and for many applications
resort to central queues to store job requests from users [28]. For instance, in
e-commerce purchase requests are typically received by web servers which place
them in a central queue, from which they are picked by back-end servers for
processing; it is only after the purchase has been processed that the user receives
an email confirmation with the receipt. A second example are social media sites,
which resort to a similar procedure to handle status updates and photo uploads.
Another typical example is the web/work split found in several Platform as a
Service providers such as Google App Engine or Heroku, where worker processes
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can be spawned on demand to serve a time-varying load of time-intensive tasks
collected by the central web process. These processes typically communicate
through a queue service such as Amazon SQS or RabbitMQ which are central
queues where worker processes collect jobs.

In all these examples, the request placed on the queue is a short message
describing a potentially time consuming task to be executed by a back-end
server; this task is typically resource intensive or depends on a remote service
that may not always be available. The central queue architectures described
above decouple the collection and execution of user requests, speeding up the
first of these processes by allowing web servers to quickly respond to users while
the job is processed in the background; for implementation details we refer to
[29, 30]. In this context it is natural to control the back-end capacity contracted
from the cloud vendor in feedback with the number of job requests in the central
queue, and cloud vendors provide tools for doing this [28]. This paper concerns
the design of such controls.

The basic mathematical tool for exploring this problem is the theory of fluid
and diffusion limits for density dependent families of Jump Markov processes.
This theory was established by Kurtz in [5, 31, 32], and is summarized in [3] for
a class of density dependent sequences of continuous time Markov chains. These
can be used to model a broad class of queueing systems under several large-scale
regimes, for which fluid and diffusion approximations follow directly from the
standard theory. However, some of the more interesting heavy-traffic regimes,
such as the one described in [4], do not fall into this standard framework and
have required the use of ad-hoc techniques [33].

In the load balancing references cited above, policies are mostly distinguish-
able in heavy-traffic; however it is difficult to find a practical explanation for
the relevance of this regime. In our model with controlled scaling of the service
capacity, heavy-traffic emerges naturally and our analysis extends the methods
of Kurtz to these situations, covering in particular the case of [4].

Another limitation in the applicability of Kurtz’s results stems from the
regularity hypotheses on the drift, which is assumed continuous for fluid limits
and continuously differentiable for diffusion approximation. In previous works
[34, 35, 36] this has motivated generalizations of the fluid limit in [3] to con-
template discontinuous drifts. In our work, extensions of the diffusion limit are
provided for a class of non-smooth drifts.

2. A basic control and its large-scale behavior

Consider a service system where job requests arrive as a Poisson process of
intensity λ and have exponential service times of mean 1/µ. The number of
jobs in the system is denoted by N(t) and the number of active servers, ready
to work, is denoted by M(t); we highlight that M(t) may change over time.

Incoming jobs are put in a central queue whenever N(t) > M(t), afterwards
these jobs are served in arrival order as servers become available. Instead, when
M(t) > N(t), the system is overprovisioned with M(t)−N(t) servers idling. In
either case, the total number of active servers is always min{M(t), N(t)}.
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(m,n)

(m,n+ 1)

(m+ 1, n)

(m,n− 1)

(m− 1, n)

λ

b[n−m]+

µmin(m,n)

b[m− n]+

Figure 1: Transition rates of the continuous time Markov chain X = (M,N) corresponding
to a system operating under the two-sided backpressure policy.

If the system could create and delete servers instantaneously, it could adapt
to an arbitrary load, operating as an infinite-server queue with M(t) = N(t)
at all times. However, such fast control of server instances is not possible in
practice; in the context of cloud computing, the cloud vendor cannot respond
immediately to provisioning requests [24, 25].

In this paper we consider a simple model for the lags in the creation and
deletion of servers, assuming they are exponentially distributed with mean 1/b.
By choosing appropriate rules for server creation and deletion, the stochastic
process X = (M,N) becomes a continuous time Markov chain on N2. Below we
describe one of such rules, which provisions servers in feedback with the current
system occupation.

� A server creation request is generated whenever a job arrives and must be
queued because there are no available servers.

� A deletion request is generated when a server becomes available.

The number of creation (deletion) requests that are pending at a given time
is thus [N(t) − M(t)]+ (respectively, [M(t) − N(t)]+)2, which multiplied by
the exponential rate b will give the horizontal transition rates of Fig. 1. The
vertical transitions model the job queue. In this way, the queue length acts as
backpressure against the increase in queue length itself, and the same happens
with the number of idle servers.

Denoting by βl(m,n) the transition rate in the direction l ∈ Z2, we have:

βl(m,n) =


b[n−m]+ if l = (1, 0),

b[m− n]+ if l = −(1, 0),

λ if l = (0, 1),

µmin(m,n) if l = −(0, 1).

(1)

2Strictly speaking, keeping the creation requests aligned with [N(t) − M(t)]+ requires
canceling requests if jobs depart, and similarly with deletion requests if jobs arrive.
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The invariant distribution of this Markov chain does not admit a closed form
expression. Nevertheless, in the context of large-scale cloud systems, it is natural
to analyze it through appropriate scaling limits.

2.1. Fluid limit

To understand how the system behaves in a large-scale regime, we introduce
a scale parameter k to model the level of demand for service. Specifically, we let
the arrival rate be kλ and we consider growing values of k approaching infinity,
thus modeling systems which receive requests from a large number of users.
This scaling is standard for infinite-server queues, see e.g. [37]; note that due
to the infinite-server nature of the system, the average number of active servers
in steady-state also scales with k. Indeed, while the service capacity of each
individual server is kept constant, the overall active capacity grows with k.

We denote the stochastic process corresponding to the scaled system by
X̂k = (M̂k, N̂k); the transition rates are the same as in Fig. 1 except for the
new arrival rate kλ. The normalized process Xk = X̂k/k may be studied with
the tools of [3], which are now briefly reviewed.

The Markov chainXk is called a density dependent population process: it has
state space in k−1N2, a lattice in the positive quadrant R2

+, and the transition
rate between two states, x and y, is qkxy = kβk(y−x)(x), invoking (1). Intuitively,
transitions occur k-times faster but cover a k-times smaller distance than in the
original chain. The process Xk converges with k to a fluid limit, a deterministic
function on R2

+, specified as follows.
Introduce the drift vector field

F (x) =
∑
l∈D

lβl(x) for all x ∈ R2;

here D refers to the set of valid transitions (in this case four) of (1). This gives

F (m,n) =

[
b(n−m)

λ− µmin(m,n)

]
,

which is piecewise linear, thus Lipschitz. We invoke the next result from [3].

Theorem 2.1 (Kurtz). Suppose the maps βl are bounded on compact sets and
the drift F is locally Lipschitz. Assume that the deterministic initial conditions
Xk(0) converge to x0 ∈ R2

+ and let x(t) denote the unique solution to ẋ = F (x)
with initial condition x0. If this solution is defined on [0, T ] then

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞.

The function x(t) is called fluid limit.

In our specific case, the fluid limit is the deterministic function denoted
x(t) = (m(t), n(t)), solution of the differential equation:

ṁ = b(n−m), (2a)

ṅ = λ− µmin(m,n). (2b)
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Figure 2: Sample path of the Markov chain X(t) and its fluid limit x(t); the parameters of
the simulation are λ = 100, µ = 1, b = 1 and x0 = (50, 150).

Here we are slightly overloading the notation (m,n), different from its use in
Figure 1 where (m,n) represents an element of the state-space of the Markov
chain X; the interpretation in each case should be clear from context.

To test how close the deterministic approximation (2) is to the stochastic
dynamics shown in Fig. 1, we analyze the next example: Fig. 2 shows a sample
path of a system where the offered traffic or load is ρ := λ/µ = 100, and the
unique solution to (2) with the same initial condition. This system corresponds
to a service provider contracting, on average, about a hundred servers from
the cloud; this is still an order of magnitude below the maximum number of
instances that can be managed through auto-scaling features of, for instance,
Microsoft Azure. We see that the fluid model correctly describes the average
trend of the stochastic process, converging to an an equilibrium point.

We focus for a while on the fluid dynamics (2), later on returning to the
fluctuations. A first simple observation is that they have a unique equilibrium
point: x∗ = (ρ, ρ), i.e. the number of jobs and servers in the large-scale limit
matches the load. Moreover, we have the following stability result.

Proposition 2.2. x∗ = (ρ, ρ) is a global attractor of the dynamics (2).

Proof. The dynamics (2) are piecewise linear, switching at the line m = n, hence
we have different Jacobian matrices in {m < n} and {m > n}, respectively:

A1 =

[
−b b
−µ 0

]
, A2 =

[
−b b
0 −µ

]
.

We claim that there exists a common quadratic Lyapunov function. Namely,
a positive definite symmetric matrix

P =

[
1 q
q r

]
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such that ATi P + PAi is negative definite for i = 1, 2. Let ti and di denote,
respectively, the trace and determinant of ATi P + PAi. To prove the claim we
must find q, r ∈ R such that P is positive definite and:

t1(q, r) = 2(b− µ)q − 2b < 0,

d1(q, r) = −4b(b+ µq)q − (b− µr − bq)2 > 0,

t2(q, r) = 2b(q − 1)− 2µr < 0,

d2(q, r) = −4b(bq − µr)− [b− (b+ µ)q]2 > 0.

The set {d1(q, r) > 0} is the interior of an ellipse, located inside {q ≤ 0}
and tangent to the line q = 0 at the point (0, b/µ), whereas {d2(q, r) > 0} is the
open set above the graph of a parabola that contains the point (0, b/4µ) and
has positive concavity. The two sets intersect, moreover, there exists δ > 0 such
that (−ε, b/µ) lies in the intersection for all ε ∈ (0, δ). Since t1(ε, b/µ) → −2b
and t2(ε, b)→ −4b as ε→ 0, there exists some ε > 0 such that

P =

[
1 −ε
−ε b/µ

]
satisfies all the conditions listed on the previous paragraph; this matrix is posi-
tive definite for all sufficiently small ε.

The above result implies the system will approach the desired equilibrium,
regardless of the initial condition, and remain close afterwards. In addition,
the stability result can be extended to the pre-limit process Xk, exploiting the
common quadratic Lyapunov function to show that Xk is ergodic, by means of
a Foster-Lyapunov argument; this is done in [7, Section 4.2].

The fluid equilibrium has the same number of jobs and servers, but the
oscillations of X around x∗ will result in queueing at some times and overpro-
visioning on other occasions. In steady-state, the opposing transition rates in
Fig. 1 cancel on average. Particularly, if we look at the transitions in the m-
direction, we see that, in the steady-state, the mean queue length equals the
average number of idle servers:

E[N −M ]+ = E[M −N ]+.

To better understand these fluctuations we may use a diffusion model.

2.2. Diffusion approximation

Let us introduce the standard central limit scaling of the process Xk around
the equilibrium: Zk :=

√
k(Xk−x∗). We have the next approximation theorem.

Theorem 2.3. Assume the deterministic initial condition of Zk converges to
some Z0 ∈ R2 as k →∞. Then Zk has a limit in distribution in the Skorokhod
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space DR2 [0,∞). This limit is the unique solution Z = (Zm, Zn) of the following
stochastic differential equation (SDE), with initial condition Z0.

dZmt = b(Znt − Zmt )dt, (3a)

dZnt = −µmin(Zmt , Z
n
t )dt+

√
2λdWt, (3b)

with W a standard one-dimensional Wiener process.

In contrast to the fluid limit result, the above theorem is not covered by
the classical diffusion limit of [3]; the reason is the vector field F (x) is not
differentiable at x∗. In Appendix B we provide a suitable generalization, using
a notion of pseudo-differentiability : namely, the existence of a local piecewise
linear approximation, which in the above case takes the form

∂F (x) = ∂F (m,n) =

[
−b b
−µ 0

]
x if m > n,

[
−b b
0 −µ

]
x if m < n.

The stochastic dynamics (3) are an approximation to the oscillations of X
around x∗ in the scale of

√
ρ, the approximation becomes exact when ρ → ∞.

We are currently unable to compute the invariant distribution of (3) explicitly
because the non-linear term µmin(Zmt , Z

n
t ) makes it difficult to solve this SDE.

Still, (3a) implies that any invariant distribution of (3) satisfies E[Zm] = E[Zn],
which suggests that X will fluctuate between the overprovisioning and the
queueing zone as it approaches the steady-state regime; this is the behavior
that we observed in Fig. 2.

In the next sections we explore alternatives to the two-sided backpressure
policy, in order to bias the allocation to avoid queueing delays. The design
criterion is that our policies should not require prior knowledge of the system’s
offered load and should cope with possibly large variations of its value.

3. Achieving zero queueing delay

Our first approach to eliminate queueing is better explained by returning to
the fluid dynamics (2). The many-server component, captured by (2b), forces
possible equilibria to lie in the L-shaped region min{m,n} = ρ, as depicted in
Fig. 3; the remaining degree of freedom is the rule for provisioning servers.
Consider the following alternative dynamics at the fluid level:

ṁ = b[(1 + δ)n−m], (4a)

ṅ = λ− µmin{m,n}. (4b)

The fluid queue is unmodified from (2b), but the rule for summoning servers
has been altered, still preserving the time lags that are part of our physical
constraints. The new rule (4a), aims for a fraction δn of spare capacity, hedging
against full utilization of servers by summoning them before full occupancy.

The unique equilibrium x∗ of (4) has coordinates m∗ = (1 + δ)ρ and n∗ = ρ,
as shown in Fig. 3. The number of jobs still operates at ρ, which is a hard lower
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Figure 3: Feasible equilibria and the result of control (4a).

bound; however, we accept an average overprovisioning of about δρ servers, with
the aim of avoiding operation in the queuing region {n > m}. To achieve this
control, we modify the policy of Section 2 adding a δn bias term as in (4a); the
corresponding chain X = (M,N) has the intensities depicted in Fig. 4.

(m,n)

(m,n+ 1)

(m+ 1, n)

(m,n− 1)

(m− 1, n)

λ

b[(1 + δ)n−m]+

µmin{m,n}

b[m− (1 + δ)n]+

Figure 4: Transition rates of the Markov chain with linear overprovisioning bias.

A similar relationship holds here between Markov and fluid models. Namely,
denote again by X̂k = (M̂k, N̂k) the process governed by the transition rates in
Fig. 4 but with arrival rate scaled by kλ. The Markov chain Xk = X̂k/k is a
density dependent population process with drift

F (m,n) =

[
b((1 + δ)n−m)
λ− µmin(m,n)

]
.

This vector field is Lipschitz, so Theorem 2.1 implies the following.

Proposition 3.1. Assume Xk(0) converges to some x0 ∈ R2
+ as k → ∞ and

let x = (m,n) be the unique solution to (4) with initial condition x0. Then

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞ for all T ≥ 0.
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The dynamics (4) have switching at the line m = n as in Section 2, but
now the equilibrium x∗ = ((1 + δ)ρ, ρ) lies on the interior of {m > n}. Still,
there exists a common quadratic Lypaunov function as in Proposition 2.2, which
yields the next result; see [7, Proposition 4.3.1] for further details.

Proposition 3.2. x∗ is a global attractor of (4) provided that δ ∈ (0, 1).

In order to characterize variability around this biased equilibrium, we resort
again to a diffusion approximation. In this case, since the equilibrium of the
fluid limit lies in the interior of the linear region {m > n}, the diffusion is given
by a linear SDE and its steady-state can be completely characterized.

Consider the process Zk =
√
k(Xk − x∗) describing the oscillations of Xk

around the fluid equilibrium x∗ on the scale of
√
k. We have the following

diffusion approximation.

Proposition 3.3. Assume Zk(0) converges to some Z0 ∈ R2 as k →∞. Then
Zk converges weakly in DR2 [0,∞) to the unique solution Z = (Zm, Zn) of the
following SDE, with initial condition Z0.

dZmt = b[(1 + δ)Znt − Zmt ]dt, (5a)

dZnt = −µZnt dt+
√

2λdWt, (5b)

where W is a standard one-dimensional Wiener process.

The proof follows from the standard results for density dependent population
processes in [3] since the drift is linear in a neighborhood of x∗. Equation (5b)
is now linear, so the diffusion corresponds to an Ornstein-Uhlenbeck process
whose stationary distribution can be computed exactly.

Specifically, let η = µ/b denote the ratio between mean provisioning delays
and mean service times; the stationary distribution of Z is a bivariate Gaussian
N (0,Σ), with mean zero and covariance matrix

Σ = ρ
1 + δ

1 + η

[
1 + δ 1

1 1+η
1+δ

]
. (6)

The latter is obtained by solving the Lyapunov equation AΣ+ΣAT +BBT = 0,
where dZ = AZdt+BdW is the SDE (5) written in matrix form.

From a practical perspective, the interpretation of Propositions 3.1 and 3.3
is that X̂k ≈ kx∗ +

√
kZ is a reasonable steady-state approximation3 for large

enough k. Recall that M̂k and N̂k are the number of servers and jobs, respec-
tively, in a system where the arrival rate is kλ. The fluid equilibrium of this
system is kx∗ = (kρ, kρ), and the steady-state covariance of

√
kZ is as in (6) but

replacing ρ by kρ. Thus, another way to express this estimate, incorporating
the scaling into λ, is to say that X ≈ x∗ + Z when λ is large enough.

3Strictly speaking, invoking this steady-state approximation involves interchanging the
diffusion limit with the limit in time. This aspect is currently outside our scope.

11



70 80 90 100 110 120 130 140 150
60

80

100

120

140

m
=
n

m

n

Figure 5: Level set of (y − x∗)T Σ−1(y − x∗) and the states visited by a sample path of X;
the parameters of the simulation are λ = 100, µ = 1, b = 10, δ = 0.1 and x0 = (100, 110).

This is illustrated in Fig. 5, which shows the states visited by a system X
operating with about a hundred servers; the states are not connected through
lines as in Fig. 2 to make the plot clearer. The plot corresponds to the stationary
behavior of the system, which was started from the equilibrium x∗; a level set
of the density of the stationary distribution of Z has been drawn to show the
similarity with the shape of the cloud of states visited by the system.

3.1. Parameter setting

We now discuss how to set the parameter δ. For this purpose, note that the
random variable which measures idle capacity is [M −N ]+ and that the above
estimate translates into M −N ≈ N (δρ, σ2), where the variance is

σ2 =
[
1 −1

]
Σ

[
1
−1

]
=
δ2 + η

1 + η
ρ. (7)

We can use this variance to adjust the parameter δ so that queueing is avoided
with high probability. For instance, setting δρ− 2σ ≥ 0 (the equilibrium point
two standard deviations away from the diagonal), the probability of negative
values for M −N is made very small. From equation (7), this design condition
on δ can be rewritten as4:

δ ≥
√

η

ρ(1 + η)/4− 1
. (8)

Given a certain load ρ, the above choice of δ results in the queue remaining
empty with very high probability. This is represented in Fig. 6, where we see
how M − N fluctuates around δρ, hardly ever reaching {m < n}, the region

4We assume the load is large enough, so the denominator is always positive.
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Figure 6: Simulation of the system X showing the overprovisioning level and the avoidance
of the queueing zone; the parameters of the simulation are λ = 100, η = 0.1 and δ = 0.07.

where incoming jobs are queued upon arrival. The Gaussian approximation
adopted to derive the design criterion (8) can also be used to estimate the mean
number of job requests waiting in the central queue in steady-state; this estimate
is provided in [6], where it is also evaluated for different values of δ and ρ.

This design rule has an important drawback: it requires a priori knowledge
of the load ρ. If δ is set for a given estimate of ρ, performance can deteriorate
if the offered load changes, either in the direction of excessive overprovisioning,
or incurring in undesired queueing. This is why in the next section we propose
an automatic policy which can be tuned independently of the load.

4. Automatic efficient scaling

We develop here an automatic rule, independent of the load, with the aim of
achieving an optimal provisioning level. Equation (8) suggests that the overpro-
visioning fraction δ should be of the order of 1/

√
ρ, or equivalently, the absolute

overprovisioning in equilibrium should be of order
√
ρ. This is exactly what is

suggested by the square-root staffing rule of Halfin and Whitt [4] in the context
of many-server queues with a static number of servers. However, applying such
a rule in practice requires the designer to know the load it will be facing. In
what follows we propose instead an automatic rule for provisioning the number
of servers, based on the current job occupation; this rule is shown to achieve, in
equilibrium, the same overprovisioning level without previous explicit knowledge
of the system load.

The proposal is to take the current occupation n as proxy for the load, mak-
ing the backpressure bias of order

√
n. This alternate dynamics are represented

in the transitions diagram of Fig. 7. Comparing with Fig. 4, the bias term
δn has been replaced by ε

√
n. Consider the scaled processes X̂k = (M̂k, N̂k)

where, as before, the arrival rate λ is replaced by kλ in Fig. 7. Consider also
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Figure 7: Transition rates for the rule with square-root overprovisioning bias.

the normalized processes Xk = X̂k/k. A first result is that the
√
n terms in the

transition rates of Fig. 7 disappear from the fluid scale as k →∞.

Theorem 4.1. Assume the deterministic initial conditions Xk(0) converge to
some x0 ∈ R2

+ as k →∞ and let x = (m,n) be the unique solution to:

ṁ = b(n−m), (9a)

ṅ = λ− µmin{m,n}, (9b)

with initial condition x0. Then the processes Xk satisfy:

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞ for all T ≥ 0.

Note the coincidence of (9) with our first fluid model (2); in the fluid scale we
see the same system as in Section 2, with zero overprovisioning. The intuition
behind this result is that the bias ε

√
n is of order

√
ρ, and hence negligible in the

asymptotic regime ρ→∞ with respect to the system’s operating point (ρ, ρ).
The previous result does not follow directly from Kurtz’s Theorem 2.1 as in

Section 2. In this case we do not have a density dependent population process,
as assumed there, because of the

√
n terms in the transition rates of Fig. 7.

A suitable modification of Theorem 2.1 is provided in Appendix A and the
previous theorem is a particular case of this modification.

To see how the system counteracts queueing delay, we look into the oscilla-
tions around the fluid equilibrium in the diffusion scale, considering again the
processes Zk =

√
k(Xk − x∗). In this scale, the system manages to move away

from the queueing region {n > m}, minimizing delay while the overprovisioning
is of order

√
ρ. Formally, we have the following result.

14



80 90 100 110 120 130 140

80

100

120

140

m
=
n

ε
√
ρ

m

n

Figure 8: Simulation of the Markov chain of Fig. 7, the plot shows the states the system
visited. The parameters of the simulation are λ = 100, µ = 1, b = 10 and ε = 0.6.

Theorem 4.2. Assume Zk(0) converges to Z0 ∈ R2 as k →∞. Then Zk has a
limit in distribution in the Skorokhod space DR2 [0,∞). This limit is the unique
solution Z = (Zm, Zn) of the following SDE with initial condition Z0.

dZmt = b[Znt − Zmt + ε
√
ρ]dt, (10a)

dZnt = −µmin{Zmt , Znt }dt+
√

2λdWt, (10b)

where W is a standard one-dimensional Wiener process.

Again, the proof of Theorem 4.2 requires modifications on the standard dif-
fusion limits for density dependent population processes. One reason is the
vector field for the drift in (10) is not differentiable, as was already the case for
Theorem 2.3. Here we have the additional issue that Xk is not a density depen-
dent population process, as it was explained before. In Appendix B we prove a
generalization of the classical diffusion theorem in [3] to inhomogeneous scalings
and pseudo-differentiable drifts, and in Appendix C we use this generalization
to prove Theorem 4.2.

This extension has, in addition to technical difficulties, non-trivial conse-
quences. In particular, if we compare equations (9) and (10), there is an extra
drift term in (10a); removing the noise from the diffusion does not give the same
result as the incremental fluid model. Equation (10a) implies E[Zm−Zn] = ε

√
ρ

for any steady-state distribution, so the O(
√
ρ) overprovisioning, invisible in the

fluid scale, appears in the diffusion scale. Fig. 8 shows this overprovisioning in
a system with a moderately high load; the system is in steady-state, hovering
around (ρ+ ε

√
ρ, ρ), thus operating with an overprovisioning of ε

√
ρ servers.

Remark 4.3. The result from Appendix B implies the ε
√
ρ term in (10a) disap-

pears when the bias ε
√
n is replaced by any o(

√
n) expression. Therefore, ε

√
n

is the minimal amount of bias that results in diffusion scale overprovisioning.
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4.1. Parameter setting

Recall the steady-state approximation X ≈ x∗ + Z introduced in Section 3,
in this case with x∗ = (ρ, ρ) the unique equilibrium of (9) and Z the stationary
distribution of (10). In contrast to Section 3, now we cannot derive a closed
form expression for Z because (10) contains switching; this means we do not
have an exact analytic expression to set the parameter ε.

However, the solution of (10) remains within {m > n} most of the time for
all large enough ε, as we may infer from the plot of Fig. 8. This suggests a
further approximation, X ≈ x∗ + Z̃ with Z̃ the stationary distribution of the
Ornstein-Uhlenbeck process that solves:

dZ̃mt = b[Z̃nt − Z̃mt + ε
√
ρ]dt, (11a)

dZ̃nt = −µZ̃nt dt+
√

2λdWt. (11b)

Note that (11a) corresponds to (10a) exactly, whereas in (11b) we have replaced
the non-linear term min{Zmt , Znt } of equation (10b) with Z̃nt . This approxima-
tion will be evaluated in the following section through extensive simulations.

As in Section 3, the stationary distribution of the linear SDE (11) is Gaus-
sian. In this case with mean (ε

√
ρ, 0) and covariance matrix Σ̃ as in (6), but

with δ replaced by zero. Consequently, M −N ≈ N (ε
√
ρ, σ2) with

σ2 =
[
1 −1

]
Σ̃

[
1
−1

]
=

η

1 + η
ρ.

As in Section 3.1, we can now choose ε such that ε
√
ρ − 2σ ≥ 0, so that the

mean of M − N is two standard deviations away from zero, thus avoiding the
queueing region with high probability. This condition translates into

ε ≥ 2

√
η

1 + η
. (12)

Comparing with (8), the parameter selection no longer depends on the load of
the system, ε can be set without knowing ρ.

5. Performance evaluation under varying demand

The analysis of sections 3 and 4 was developed assuming a stationary setting:
i.e., the demand profile does not change over time. However, the most important
application of auto-scaling is tracking a time-varying load while keeping the
number of active instances close to the number of jobs at all times.

From an implementation perspective, the linear bias rule shown in Fig. 4
only depends on the number of active jobs and servers, as well as the design
parameter δ that controls overprovisioning. The controller or automatic scaler in
cloud settings, should keep track of both magnitudes and request the allocation
of dN(t)(1 + δ) −M(t)e new server instances whenever this number is greater
than zero, and request deactivation of dM(t) − N(t)(1 + δ)e instances in the
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(a) Probability of a job being queued and reference design (dashed).
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(b) Average relative overprovisioning in the systems and their fluid estimates (dashed).
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(c) Average queuing delay experienced by customers.

Figure 9: Simulations for two systems with µ = 1, b = 10 and different arrival rates. The
linear bias scaling uses δ = 0.07 and the square-root bias scaling ε = 0.6, both designed for
approximately 2.5% queueing probability at ρ = 100. The marks in the plots correspond to
time averages from simulations.
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Figure 10: Simulation of the square-root bias rule under an abrupt increase in demand:
λ(t) = 500 for all t ∈ [50, 150] and λ(t) = 100 otherwise. The remaining parameters of the
simulation are µ = 1, b = 10 and ε = 0.6.

overprovisioning situation. The exact same discussion applies for the square-
root bias rule depicted in Fig. 7. Note that whenever the load grows, the queue
will grow faster and the scaler will command more servers. When load decreases
the system will detect the overprovisioning and adjust accordingly.

One of the advantages of the square-root rule is it can be designed to au-
tomatically provide the same quality of service across different loads. This is
explored in Fig. 9, where the linear rule is designed as in (8), assuming a nom-
inal load ρ = 100, and the square-root bias rule is designed as in (12), which
is independent of ρ. As load varies, we see that the square-root rule keeps a
constant queueing probability while the overprovisioning, relative to the load,
decreases as O(1/

√
ρ). The linear rule has a similar performance for the design

load ρ = 100, but the queueing probability becomes too high when the load is
below the nominal value, and goes to zero as the load grows, maintaining an
unnecessary amount of idle instances. Also, in both cases the average queueing
delay experienced by users is small and decreasing as a function of ρ.
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Given the simplicity of the square-root rule, and its robustness to load
changes, we now explore how the system behaves under time-varying arrivals
using this rule. Our first scenario, depicted in Fig. 10, analyzes the case of
an abrupt 5-fold increase in the load from a nominal value ρ = 100, achieved
by changing the job arrival rate. From the phase diagram, we can see that
after some transient behavior the system automatically readjusts to the new
situation, keeping the right overprovisioning to have approximately the same
queueing probability, and then returns to normal as the load decreases again.
The second plot emphasizes that the transients are indeed very short and mostly
governed by the instance creation and recall delay 1/b.

Our second scenario, depicted in Fig. 11, shows the behavior of the square-
root bias mechanism when the job arrival rate slowly varies in time. We chose
µ = 1 and b = 10 as before, and λ(t) follows a sinusoidal pattern between ρ = 50
and ρ = 150. As the phase diagram shows, the system mostly operates in the
overprovisioning zone, following the m ≈ n+ε

√
n bias and keeping the queueing

probability small, even though ρ is constantly changing. The second plot shows
that the system is indeed capable of following the load changes smoothly.

6. Conclusions

In this paper we analyzed certain feedback policies through which cloud
clients may automatically control the deployment of server instances; these po-
lices were designed to cope with variable demands, and our analysis considers the
startup lag of servers. We derived simple control rules that explore the tradeoffs
between queueing and overprovisioning. Based on both classical and new fluid
models and diffusion approximations of the underlying queueing processes, we
showed that it is possible to work under a reduced amount of queueing delay,
provided the overprovisioning is appropriately scaled with demand. In partic-
ular we showed that a simple dynamic version of the square-root staffing rule
of [4] achieves nearly zero queueing while keeping the overprovisioning scaling
sublinearly with the load. Simulation analysis also showed the devised rule is ro-
bust against load variations, keeping track of demand in real time and providing
uniform quality of service across all loads.

A direction of future work, from the theoretical standpoint, would be to
establish the interchange between the diffusion and stationary limits, as men-
tioned in Section 3. We also plan to analyze the performance of the feedback
control rules when the scaling feature is combined with distributed load balanc-
ing mechanisms such as Join-the-Idle-Queue or power-of-d choices.

Appendix A. Fluid and diffusion limits for inhomogeneous scalings

For each k ≥ 1 let us consider a collection of non-negative maps βkl , indexed
on D ⊂ Zd, having a common domain E ⊂ Rd, and such that

x+
l

k
∈ E ∩ Zd

k
for all l ∈ D and all x ∈ E ∩ Zd

k
such that βkl (x) > 0.
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Figure 11: Simulation of the square-root bias rule under time-varying arrival rate of tasks:
λ(t) = 100 + 50 sin(πt/50). The other parameters are µ = 1, b = 10 and ε = 0.6.
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Under this hypothesis we may consider the continuous time Markov chains Xk(t)
with state-space Sk = E ∩ k−1Zd and transition rates given by

qkxy =

{
0 if k(y − x) /∈ D,
kβkk(y−x)(x) if k(y − x) ∈ D.

Remark A.1. The subsequent results hold under mild hypotheses on E. For
instance, it is enough to let E be either open or closed and convex; in the
previous sections we took E = R2

+. Also, we assume below that Xk(t) is well-
defined for all t ≥ 0 for simplicity, precluding the possibility of finite explosion
times. The results hold in general though, for details we refer to [7]. We further
assume that D is a finite set.

The maps βkl (x) describing the intensities may be decomposed in two terms:

βkl (x) = γl(x) + δkl (x),

the first term is homogeneous in k and the second depends on k; below we will
assume that δkl (x) converges to zero with k, which implies the decomposition
is unique. When the inhomogeneous terms are identically zero, the processes
defined above are called density dependent population processes. Fluid and
diffusion limits for density dependent population processes were provided by
[3] under mild assumptions. In this appendix we extend these results to the
broader class of processes introduced above, and we adopt weaker assumptions
as explained in the introduction.

Let the initial conditions Xk(0) be deterministic The processes Xk(t) may
be constructed as in [3, 7] on a common probability space (Ω,F ,P), from a set
of independent Poisson processes {Nl}l∈D of intensity one, such that

Xk(t) = Xk(0) +
∑
l∈D

l

k
Nl
(∫ t

0

kβkl (Xk(τ))dτ

)
for all t ≥ 0 and k ≥ 1.

It is convenient to let Yl(t) = Nl(t)− t, so that we may write

∑
l∈D

l

k
Nl
(∫ t

0

kβkl (Xk(τ))dτ

)
=
∑
l∈D

l

k
Yl

(∫ t

0

kβkl (Xk(τ))dτ

)

+

∫ t

0

∑
l∈D

lγl(Xk(τ))dτ +

∫ t

0

∑
l∈D

lδkl (Xk(τ))dτ.

Definition A.2. The homogeneous and inhomogeneous drifts of the process
Xk(t) are, respectively, the vector fields F,Gk : E −→ Rd such that

F (x) =
∑
l∈D

lγl(x) and Gk(x) =
∑
l∈D

lδkl (x).
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For all t ≥ 0 and all k ≥ 1, we may now write

Xk(t) = Xk(0) +
∑
l∈D

l

k
Yl

(∫ t

0

kβkl (Xk(τ))dτ

)

+

∫ t

0

F (Xk(τ))dτ +

∫ t

0

Gk(Xk(τ))dτ.

(A.1)

The next result generalizes the fluid limit provided in [3, Chapter 11] for
density dependent population processes: the case where the maps δkl (x) are
identically zero. The proof is similar, see [7, Theorem 2.2.5] for details.

Theorem A.3. Suppose that the maps γl(x) are bounded on compact sets,
that the drift F (x) is locally Lipschitz and that for each compact K ⊂ E:

sup
x∈K
|δkl (x)| <∞ for all l ∈ D and k ≥ 1,

lim
k→∞

sup
x∈K
|δkl (x)| = 0 for all l ∈ D.

(A.2)

In addition, assume that Xk(0) → x0 ∈ E as k → ∞, and that there exists a
unique solution x : [0, T ] −→ E, with initial condition x0, to ẋ = F (x). Then

sup
t∈[0,T ]

||Xk(t)− x(t)|| a.s.−−→ 0 as k →∞.

Condition (A.2) means that the maps δkl (x) vanish in the fluid scale. As
a result, the fluid limit x(t) is determined by the homogeneous drift alone,
the inhomogeneous drift has no impact on it. The most interesting behavior
corresponds to the case where the maps δkl (x) disappear in the fluid scale but
not in the diffusion scale, as below.

Theorem A.4. Suppose that the hypotheses of Theorem A.3 hold, that the
maps γl(x) are locally Lipschitz and that for each compact K ⊂ E we have

lim
k→∞

sup
x∈K

kα|δkl (x)| = 0 for all α ∈ [0, 1/2) and l ∈ D.

Let us define Zk(t) =
√
k[Xk(t)− x(t)]. Also, assume that F (x) is continuously

differentiable and that there exists a continuous vector field G : E −→ Rd such
that for each compact K ⊂ E we have

lim
k→∞

sup
x∈K

∣∣∣∣∣∣√kGk(x)−G(x)
∣∣∣∣∣∣ = 0 for all l ∈ D.

Suppose that Zk(0)→ Z0 ∈ Rd as k →∞, and let Z be the solution to

dZt = [F ′(x(t))Zt +G(x(t))]dt+BtdWt (A.3)

with initial condition Z0, where F ′(x) is the Jacobian matrix of the homogeneous
drift, W is a d-dimensional standard Wiener process and

Bt =

√∑
l∈D

llT γl(x(t)).
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Then Zk ⇒ Z in the Skorokhod space DRd [0, T ] as k →∞.

This diffusion limit has its counterpart in [3, Chapter 11] as a special case
where G(x) is identically zero. When the inhomogeneous drifts behave asymp-
totically5 as 1/

√
k, equation (A.3) has the additional term G(x(t))dt, the effect

of the inhomogeneous drifts on the processes is captured by the diffusion limit,
even though it is not apparent in the fluid limit. This has interesting conse-
quences for applications, as in Section 4 for example.

Proof. Let us introduce the process

Uk(t) =
∑
l∈D

l√
k
Yl

(∫ t

0

kβkl (Xk(τ))dτ

)
. (A.4)

Using equation (A.1) and the definition of Zk(t) we see that

Zk(t) = Zk(0) + Uk(t) +

∫ t

0

√
k[F (Xk(τ))− F (x(τ))]dτ +

∫ t

0

√
kGk(Xk(τ))dτ.

Furthermore, we have

√
k[F (Xk(t))− F (x(t))] =

√
kF ′(x(t))[Xk(t)− x(t)] +

√
kRt(Xk(t))

= F ′(x(t))Zk(t) +
√
kRt(Xk(t)),

where Rt(x) is the first order Taylor remainder of F (x) at the point x(t).
Introducing the process

νk(t) =

∫ t

0

√
k [Gk(Xk(τ)) +Rτ (Xk(τ))] dτ,

we may write the following equation:

Zk(t) = Zk(0) + Uk(t) + νk(t) +

∫ t

0

F ′(x(τ))Zk(τ)dτ. (A.5)

The strategy is the same as in [3]. We will write Zk as a continuous function
of Vk = Zk(0) + Uk + νk and we will prove that Vk has a limit in distribution,
the statement will then follow from the continuous mapping theorem.
Claim I: Zk is a continuous function of Vk.

Let Γ(s, t) be the unique solution to

∂Γ

∂t
(s, t) = F ′(x(t))Γ(s, t) and Γ(s, s) = Id for all s, t ∈ [0, T ].

5The hypothesis concerning the maps δkl (x) is slightly weaker, terms of higher order could
cancel when one computes Gk(x).
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For each f ∈ DRd [0, T ] there exists a unique φf ∈ DRd [0, T ] such that

φf (t) = f(t) +

∫ t

0

F ′(x(τ))φf (τ)dτ for all t ∈ [0, T ].

This function may be given explicitly in terms of f as follows:

φf (t) = f(t) +

∫ t

0

Γ(τ, t)F ′(x(τ))f(τ)dτ.

The corresponding mapping φ : DRd [0, T ] −→ DRd [0, T ] is continuous in the
Skorokhod topology; we refer to [7, Lemma 2.3.4]. Since Vk, Zk ∈ DRd [0, T ],
then Zk = φ(Vk) by definition of φ, and Claim I follows.
Claim II: Vk = Zk(0) + Uk + νk has a limit in distribution in DRd [0, T ].

Let {Wl}l∈D be independent Wiener processes, and let us define

V (t) = Z0 + U(t) +

∫ t

0

G(x(τ))dτ with U(t) =
∑
l∈D

lWl

(∫ t

0

γl(x(τ))dτ

)
.

From Theorem A.3 and the functional central limit theorem for the Poisson
process we see that Uk ⇒ U in DRd [0, T ] as k →∞. Moreover, we also have

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣νk(t)−
∫ t

0

G(x(τ))dτ

∣∣∣∣∣∣∣∣ P−−→ 0 as k →∞.

The proofs of these facts are provided in [7, Theorem 3.2.3, Lemma 3.2.4], re-
spectively, and are technical. From [7, Proposition A.1.8] it follows that the
convergence of Uk in distribution and the convergence of νk in probability, to
a deterministic process, imply Vk ⇒ V in DRd [0, T ], which establishes the claim.

Invoking the continuous mapping theorem we see that Zk = φ(Vk) converges
in distribution to Z = φ(V ), which by definition of φ is the unique continuous
process such that

Z(t) = Z0 + U(t) +

∫ t

0

[F ′(x(τ))Z(τ) +G(x(τ))] dτ for all t ∈ [0, T ].

This process has the same law as the solution of (A.3).

We note that equation (A.3) defines a time inhomogeneous Gaussian process.
Its mean is the solution to the integral equation

µ(t) = Z0 +

∫ t

0

[F ′(x(τ))µ(τ) +G(x(τ))] dτ,

and its covariance is the same as in the diffusion limit of [3], namely:

Σ(s, t) =

∫ s

0

Γ(τ, s)BτB
T
τ Γ(τ, t)dτ for all 0 ≤ s < t ≤ T ;

for details see [7, Section 3.2].
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Appendix B. Extension for pseudo-differentiable drifts

Here we provide a version of Theorem A.4 for the case where F (x) is not
differentiable. Specifically, we suppose that the nominal solution to the fluid
dynamics is an equilibrium point, and we obtain a diffusion limit assuming only
that F (x) admits a pseudo-differential at this point.

Definition B.1. A Lipschitz field ∂F : Rd −→ Rd is a pseudo-differential of F
at x if the subsequent conditions hold.

1. ∂F (y) is positively homogeneous, in the sense that ∂F (αy) = α∂F (y) for
all y ∈ Rd and all α ≥ 0.

2. The remainder R(y) = F (y)− F (x)− ∂F (y − x) is such that

lim
y→x

R(y)

||y − x||
= 0.

The definition is intended to cover fields F which exhibit switching around
the point x between a set of differentiable functions; this includes the important
special case of piecewise linear fields, which appear in this paper. It is easy to
check that ∂F is unique when it exists, and such that

∂F (y) = lim
h→0+

F (x+ hy)− F (x)

h
.

An explicit formula for ∂F is available for a field F that has lateral directional
derivatives in a set of basis directions; see [7, Proposition 3.4.2].

We tackle now the extension of the diffusion results to this setting. Suppose
that the fluid dynamics ẋ = F (x) have an equilibrium at x∗ ∈ E, and that
Xk(0)→ x∗ as k →∞. By Theorem A.3 this implies that

sup
t∈[0,T ]

||Xk(t)− x∗|| a.s.−−→ 0 as k →∞ for all T ≥ 0.

Theorem B.2. Suppose that the maps γl(x) are locally Lipschitz, that F (x)
has a pseudo-differential ∂F (y) at x∗ and that for each compact K ⊂ E:

sup
x∈K
|δkl (x)| <∞ for all l ∈ D and k ≥ 1,

lim
k→∞

sup
x∈K

kα|δkl (x)| = 0 for all α ∈ [0, 1/2) and l ∈ D.

Assume that there exists a continuous field G : E −→ Rd such that

lim
k→∞

sup
x∈K

∣∣∣∣∣∣√kGk(x)−G(x)
∣∣∣∣∣∣ = 0

for all compact sets K ⊂ E, and that Zk(0)→ Z0 ∈ Rd as k →∞. In addition,
let Z be the solution to

dZt = [∂F (Zt) +G(x∗)]dt+BdWt (B.1)
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with initial condition Z0, where W is a d-dimensional Wiener process and

B =

√∑
l∈D

llT γl(x∗).

Then Zk ⇒ Z in the Skorokhod space DRd [0,∞) as k →∞.

Proof. By [38, Theorem 16.7], the convergence in DRd [0,∞) will be established
if we show that Zk ⇒ Z in DRd [0, T ] for an arbitrary T ≥ 0.

Recalling (A.1), the definition of Zk leads to

Zk(t) = Zk(0) + Uk(t) +

∫ t

0

√
k[F (Xk(τ))− F (x∗)]dτ +

∫ t

0

√
kGk(Xk(τ))dτ,

where Uk is defined as in equation (A.4) and we note that F (x∗) = 0. Also,
√
k[F (Xk(t))− F (x∗)] =

√
k∂F (Xk(t)− x∗) +

√
kR(Xk(t))

= ∂F (Zk(t)) +
√
kR(Xk(t)),

where R(y) is the remainder that appears in Definition B.1 and the last equality
follows from the positive homogeneity of ∂F (y).

Consider now the process

νk(t) =

∫ t

0

√
k [Gk(Xk(τ)) +R(Xk(τ))] dτ.

The following equation is the analog of (A.5):

Zk(t) = Zk(0) + Uk(t) + νk(t) +

∫ t

0

∂F (Zk(τ))dτ.

The strategy now is as in the proof of Theorem A.4. Namely, we will show
that Zk is a continuous function of Vk = Zk(0) + Uk + νk and that Vk has a
limit in distribution, to then apply the continuous mapping theorem. The main
difference appears in the proof of Claim I of Theorem A.4. There we were able
to use the continuous differentiability of F to provide an explicit expression for
the mapping φ, simplifying the analysis; this is no longer possible.
Claim I: For each f ∈ DRd [0, T ] there exists a unique φTf ∈ DRd [0, T ] such that

φTf (t) = f(t) +

∫ t

0

∂F
(
φTf (τ)

)
dτ for all t ∈ [0, T ].

Furthermore, the mapping φT : DRd [0, T ] −→ DRd [0, T ] is continuous.
The proof of the claim is provided in [33] for d = 1; for the general case we

refer to [7, Section 3.3]. Since Vk, Zk ∈ DRd [0, T ] then Zk = φT (Vk).
The limit in distribution of Vk is as in Claim II of Theorem A.4. Consider

an independent family {Wl}l∈D of Wiener processes and let

V (t) = Z0 + U(t) + tG(x∗) with U(t) =
∑
l∈D

lWl (tγl(x
∗)) .
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By [7, Theorem 3.2.3] we have Uk ⇒ U in DRd [0, T ] and by [7, Lemma 3.2.4]

sup
t∈[0,T ]

||νk(t)− tG(x∗)|| P−−→ 0 as k →∞.

It follows that Vk ⇒ V in DRd [0, T ] as k →∞, by [7, Proposition A.1.8].
Using Claim I we may define Z such that Z|[0,t] = φt

(
V |[0,t]

)
for all t ≥ 0,

and this process satisfies the integral equation

Z(t) = Z0 + U(t) +

∫ t

0

[∂F (Z(τ)) +G(x∗)] dτ for all t ≥ 0.

So Z has the same law as the solution to (B.1). Since Z|[0,T ] = φT
(
V |[0,T ]

)
, the

continuous mapping theorem yields: Zk ⇒ Z in DRd [0, T ] as k →∞.

Appendix C. Proof of Theorem 4.2

(m̂, n̂)

(m̂, n̂+ 1)

(m̂+ 1, n̂)

(m̂, n̂− 1)

(m̂− 1, n̂)

kλ

kb

[
n̂
k + ε√

k

√
n̂
k − m̂

k

]+

kµmin
(
m̂
k ,

n̂
k

)kb

[
m̂
k − n̂

k − ε√
k

√
n̂
k

]+

Figure C.12: Transition rates of the processes X̂k.

We begin by writing down the intensities of the processes X̂k of Section 4,
these are shown in Fig. C.12. The intensities of the normalization Xk = X̂k/k
are obtained through the change of variables m = m̂/k and n = n̂/k; they can
be expressed in terms of maps βkl = γl + δkl on R2

+, explicitly:

γl(m,n) =



b[n−m]+ if l = (1, 0),

b[m− n]+ if l = −(1, 0),

λ if l = (0, 1),

µmin(m,n) if l = −(0, 1),

and

δkl (m,n) =



b
[
n+ ε√

k

√
n−m

]+
− b[n−m]+ if l = (1, 0),

b
[
m− n− ε√

k

√
n
]+
− b[m− n]+ if l = −(1, 0),

0 if l = (0, 1),

0 if l = −(0, 1).
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Furthermore, the homogeneous and inhomogeneous drifts are, respectively,

F (m,n) =

[
b(n−m)

λ− µmin(m,n)

]
and Gk(m,n) =

bε√
k

[√
n

0

]
.

In order to prove Theorem 4.2, it is enough to verify that all the hypotheses
of Theorem B.2 hold. To begin, we observe that γl(m,n) is Lipschitz and∣∣δkl (m,n)

∣∣ ≤ ε√
k

√
n for all (m,n) ∈ R2

+,

so the supremum of
∣∣δkl (m,n)

∣∣ on a compact set is O
(

1/
√
k
)

. In addition,

√
kGk(m,n) = bε

[√
n

0

]
= G(m,n) for all (m,n) ∈ R+

2 ,

and last, F (m,n) admits a pseudo-differential at (ρ, ρ), given by

∂F (m,n) =

[
−b b
−µ 0

] [
m
n

]
if m > n, ∂F (m,n) =

[
−b b
0 −µ

] [
m
n

]
else.
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