
Generalized Exact Scheduling: a Minimal-Variance
Distributed Deadline Scheduler

Yorie Nakahira
Carnegie Mellon University, yorie@cmu.edu

Andres Ferragut
Universidad ORT Uruguay, ferragut@ort.edu.uy

Adam Wierman
California Institute of Technology, adamw@caltech.edu

Many modern schedulers can dynamically adjust their service capacity to match the incoming workload.
At the same time, however, unpredictability and instability in service capacity often incur operational and
infrastructural costs. In this paper, we seek to characterize optimal distributed algorithms that maximize
the predictability, stability, or both when scheduling jobs with deadlines. Specifically, we show that Exact
Scheduling minimizes both the stationary mean and variance of the service capacity subject to strict demand
and deadline requirements. For more general settings, we characterize the minimal-variance distributed
policies with soft demand requirements, soft deadline requirements, or both. The performance of the optimal
distributed policies is compared to that of the optimal centralized policy by deriving closed-form bounds and
by testing centralized and distributed algorithms using real data from the Caltech electrical vehicle charging
facility and many pieces of synthetic data from different arrival distributions. Moreover, we derive the
Pareto-optimality condition for distributed policies that balance the variance and mean square of the service
capacity. Finally, we discuss a scalable partially-centralized algorithm that uses centralized information to
boost performance and a method to deal with missing information on service requirements.

Key words : Deadline scheduling, Service capacity control, Exact Scheduling, Online distributed algorithm

1. Introduction
Traditionally, the scheduling literature has assumed a static or fixed service capacity. However, it
is increasingly common for modern applications to have the ability to dynamically adjust their
service capacity in order to match the current demand. For example, power distribution networks
match the energy supply to changing demand. When using cloud computing services, one can
modify the total computing capacity by changing the number of computing instances and their
speeds. The ability to adapt service capacity dynamically gives rise to challenging new design
questions. In particular, how to enhance the predictability and stability of service capacity is of
great importance in such applications since peaks and fluctuations often come with significant costs
[1–3]. For example, in the emerging load from electric vehicle charging stations, maintaining stable
power consumption (i.e. limiting the fluctuations in power consumption) is important because large
peaks in power use may strain the grid infrastructure and result in a high peak charge for the station
operators. The stations also prefer predictable power consumption (i.e. knowing future power
consumption) because purchasing power in real time is typically more expensive than purchasing
in advance. Cloud content providers also prefer stable and predictable service capacity because
on-demand contracts for compute instances (e.g. Amazon EC2 and Microsoft Azure) are typically
more expensive than long-term contracts. Additionally, significant fluctuations in service capacity
induce unnecessary power consumption and infrastructure strain for computing equipment.

1



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
2

Thus, in situations where service capacity can be dynamically adjusted, an important design
goal is to reduce the costs associated with unpredictability and instability in the service capacity
(Figure 2) while maintaining a high quality of service, e.g. meeting job deadlines and satisfying job
demands. In this work, we study this problem by designing policies that minimize the variance of
the service capacity in systems where jobs arrive with demand and deadline requests. Our model
is motivated by power distribution networks, where the size of jobs and (active) service capacity
are small compared to the total energy resources available and where contracts often depend on
the mean and variance of service capacity, e.g. if a charging station participates in the regulation
market, then costs/payments rely explicitly on them [4,5].

Although the literature on deadline scheduling is large and varied, optimal algorithms are only
known for certain niche cases. We review some of these results in the related work section below. We
emphasize however that only recently have researchers approached the task of designing algorithms
that balance service quality and costs associated with variability. Much of the work on this topic
has been application-driven, particularly in the areas of cloud computing and power distribution
systems. As we mentioned before, in these areas service capacity is indeed elastic by design, and
variability has direct cost implications. In this regard, no general optimality results have been
proven so far about how to balance service quality and cost, except in some limited settings, such
as deterministic worst-case settings [6], single server systems [7–9], and/or heavy traffic settings
[10,11]. In heavy traffic settings, the dynamic behavior can be approximated by a continuous-state
process involving Brownian motion, for which there exist established tools to optimize. On the
other hand, optimizing queueing systems without continuous-state approximations remains a hard
problem. Solving this problem is a challenging task due to the heterogeneity of jobs (diversity in
service requests) and the size of the state and decision space (numbers of possible configurations
on existing job profiles and the set of feasible control policies).

In this paper, we consider the cases when the system needs to schedule jobs to achieve high
quality of service while maintaining predictability and stability of the service capacity. We seek to
design optimal distributed algorithms, which only use local information about each job to decide
the desirable service rate. We consider cases with stationary and non-stationary arrival distribu-
tions under strict or soft service constraints. We derive general optimality results that hold beyond
the heavy-traffic regime. The algorithms we study are particularly useful for large systems such as
power distribution networks and cloud computing, where implementing centralized algorithms is
likely to be prohibitively slow and costly in large-scale service systems, i.e. we are unlikely to be
able to access global information about all jobs and servers in real time when deciding the service
rate of individual jobs. Despite such constraints on information sharing, we show that, interest-
ingly, the optimal distributed algorithms under mild assumptions have comparable performance to
centralized algorithms.

Contributions of this paper. In this paper, we adapt tools from optimization and control theory to
characterize the optimal distributed policies in a broad range of settings without any approximation
(see Table 1 for a summary of the results). Further, we provide a novel performance bound that
describes the gap between the performance of optimal distributed policies and the performance of
optimal centralized policies.

Specifically, we identify the optimal distributed algorithms under strict demand and deadline
requirements (Theorem 1), soft demand requirements (Theorem 2), soft deadline requirements
(Theorem 3), and soft demand and deadline requirements (Theorem 4) in settings with stationary
Poisson arrivals as well as non-stationary Poisson arrivals (Theorem 5 and Corollary 3).

Our first results focus on stationary arrivals. While a considerable amount of work has analyzed
the variance of specific policies (see [12] and references therein), little prior work characterizes the
optimal policies. In the basic setting of strict service requirements, we show that Exact Scheduling
is the optimal distributed algorithm, i.e. the distributed algorithm that minimizes the stationary
service capacity variance. Exact Scheduling is a simple scalable algorithm that works by finishing
jobs exactly at their deadlines using a constant service rate [3, 12, 13]. Although it has received



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
3

(a) Predictability + penalties for unsatisfied service

Stationary arrivals Non-stationary arrivals
Problem formulation Section 3.1 Section 5.1
Strict demands and deadlines Section 3.2, Theorem 1 Section 5.2, Theorem 5
Soft demands and strict deadlines Section 3.3, Theorem 2 Section 5.2, Corollary 3
Strict demands and soft deadlines Section 3.4, Theorem 3 Section 5.2, Corollary 3
Soft demands and strict deadlines Section 3.5, Theorem 4 Section 5.2, Corollary 3

(b) Predictability + stability

Non-stationary arrivals
Problem formulation Section 5.1
Predictability Section 5.2, Theorem 5
Stability Section 5.3, Corollary 4
Balancing predictability and stability Section 5.4, Theorem 6

Table 1 Summary of the main results

considerable attention in the existing literature, its optimality conditions have been unknown.
In more general settings of soft service requirements, we propose novel generalizations of Exact
Scheduling, each of which minimizes a combination of the service capacity variance, the expected
penalties for unsatisfied demands, and the expected penalties for deadline extensions. These optimal
algorithms all have closed-form expressions and use constant service rates with varying forms of
rate and admission control. Due to these properties, they are also easy to implement and highly
scalable.

We also extend our results to the case of non-stationary Poisson job arrivals and characterize the
pareto-optimal algorithm that balances service capacity variance, penalties for unsatisfied demands,
and penalties for deadline extensions. Additionally, we consider a more general class of objective
functions: the service capacity variance, the mean-squared service capacity, and the weighted sum
of the two. The resulting optimal algorithm has a striking analogy to the YDS algorithm [14], which
is an offline algorithm that minimizes service capacity peaks in a related, deterministic worst-case
version of the problem. This connection suggests the opportunity to transform other deterministic
offline algorithms to stochastic online algorithms in related problems.

Given our focus on distributed algorithms, an important question is how these distributed al-
gorithms perform compared with the optimal centralized algorithm. However, a major difficulty
comes from the fact that the optimal centralized algorithms are unknown and no bounds on the
optimal cost exist. Leveraging tools from optimal control, we provide closed-form formulas on the
performance degradation due to using distributed algorithms (Lemma 3 and Corollary 2). The
resulting bounds suggest that, when sojourn times are homogeneous, Exact Scheduling attains the
optimal trade-off between service capacity variance and total remaining demand variance achiev-
able by any centralized algorithms. Note that our proof technique (Lemma 3) is novel in its use
of optimal control and has the potential for providing performance bounds for other scheduling
policies. We also compare distributed algorithms with centralized algorithms in our motivating
examples of electric vehicle charging. Our test in Caltech electric vehicle charging testbed [15]
shows that the proposed optimal distributed algorithms also achieve comparable performance with
existing centralized algorithms in practice.

Related work. There is extensive literature that studies the design and analysis of deadline
scheduling algorithms, particularly in the computing literature (e.g. [3,16] and references therein).
The most classical deadline scheduling algorithms include Earliest Deadline First (EDF) [7–9, 17]
and Least Laxity First (LLF) [17], among others [18,19]. These algorithms are originally developed
for situations when jobs must be completed before their deadlines, and their analysis primarily
focused on the rate or amount of job completion as opposed to the service capacity predictability.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
4

The EDF policy is shown to maximize the number of completed jobs in the single-server case when
reneging occurs after service [8]. On the other hand, the LLF policy is optimal when reneging
occurs before entering service. The LLF policy is also known to maximize the amount of completed
work in a multiserver system that models EV charging [20].

In the context of manufacturing systems, optimal schedules were derived for systems where tasks
are flexible in time and variable service (machine production) speed [21]. The problem of minimizing
the total completion time of a sequence of tasks was studied for manufacturing systems with variable
service capacity [22]. In this context, the sequence of tasks is fixed and given beforehand, and
optimization can be performed offline, something that we explore in our papers when considering
offline optimal algorithms. However, in our work we are concerned with online distributed schedules
and consider instead a steady arrival of new tasks. Instead of focusing on total completion time,
we explore a tradeoff between users perceived performance and resource predictability.

In modern applications such as cloud computing and smart grid, it is important to study the
trade-offs between service quality and costs associated with variability in service capacity [12,23,24].
In the context of cloud computing, algorithms have been proposed to control the variability of
power usage in data centers using deferrable jobs (see [25–30] and references therein). In the context
of power distribution systems, algorithms have been designed to control the variability of energy
supply using deferrable loads (see [31–34] and references therein). The focus of this line of work is to
track a given power profile and provide regulation service to the network (i.e. reducing variability
and ensuring predictability). The most common approach to do so is the use of model predictive
control (MPC), which solves optimization problems at each time and may not be scalable.

The optimal schedulers for deadline scheduling have been obtained for deterministic worst-case
settings [6,14], single server systems [7–9], and/or heavy traffic [10,11]. In the heavy traffic analysis,
the dynamic behavior of discrete queueing systems is often approximated by a continuous-state
process of stochastic differential equations.

2. Model description
The goal of this paper is to characterize the online scheduling policies that minimize service capacity
variance, mean square, and both subject to service quality constraints for systems with the ability
to dynamically adjust their service capacity. We use a continuous time model, where t∈ T = [0, T ]
denotes a point in time and T ≥ 0 is the (potentially infinite) time horizon. Each job, indexed by
k ∈ V = {1,2, · · · }, is characterized by an arrival time ak, a service demand σk, a sojourn time τk,
a unit cost for unsatisfied demand δk, and a unit cost for deadline extension εk. Given the arrival
time ak and the sojourn time τk, the deadline of job k is defined to be ak + τk. Before we formulate
the scheduler design problem, we first introduce below the arrival profiles, the service profiles, and
the design objectives.

Arrival profiles. We represent the set of jobs as a marked point process {(ak;σk, τk, δk, εk)}k∈V in
space T ×S×C, where the arrival times ak ∈ T are the set of points, and the service requirements
(σk, τk)∈ S and costs for unmet requirements (δk, εk)∈C are the set of marks.1 We assume that the
point process is an independently marked Poisson point process, which is defined by an intensity
function Λ̃(a) on T and a mark joint density measure fa(σ, τ)ga(δ)ha(ε) on S ×C [35]. This also
implies that {(ak;σk, τk)}k∈V is a Poisson point process on T × S with the intensity function
Λ(a,σ, τ) = Λ̃(a)fa(σ, τ). We assume that fa(σ, τ) has a bounded support. Intuitively, the intensity
function is the average rate at which jobs with service requirement (σ, τ) arrive at time a. When
both Λ̃(a) ≡ Λ and fa(σ, τ) ≡ f(σ, τ) do not depend on a, we say that the arrival distribution is
stationary . For a stationary arrival distribution, the intensity function of the Poisson point process
simplifies to Λf(σ, τ). We focus on stationary arrival processes in Section 3 and then generalize our
results to non-stationary arrivals in Section 5. Throughout, we assume that the service demand σ

1 Here, we use (a;σ, τ, δ, ε) to denote the random variables and (ak;σk, τk.δk, εk) to denote one realization of them in
job k.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
5

and the sojourn time τ have finite first and second moments, S is bounded, and S ⊂ {(σ, τ) : τ ≥
σ and σ≥ 0}.2

Service profiles. The service system works on each job k ∈ V with a service rate rk(t), which is
an integrable function of t. The service rate can take any non-negative values that are smaller than
the maximum rate r̄k, i.e.

rk(t)∈ [0, r̄k], (1)

and without loss of generality, we assume that r̄k = 1. To meet the demand requirements, the
service rate must satisfy ∫ ∞

ak

rk(t)dt= σk, ∀k ∈ V. (2)

To meet the deadline requirements, it needs to satisfy

rk(t) = 0, ∀ak < t,∀k ∈ V,
rk(t) = 0, ∀t > ak + τk,∀k ∈ V,

(3)

where 1{ε} denotes the indicator function for an event ε.
The service rate also determines three important quantities associated with costs: service ca-

pacity, the amount of unsatisfied demands, and the amount of deadline extensions. The service
capacity is the instantaneous resource consumption of the system, given by

P (t) =
∑
k∈V

rk(t).

We assume that P (t) has no upper bound, implying that there is always enough capacity to serve
the jobs. The total penalty for unmet demands of jobs with deadline t is

U(t) =
∑

k∈V:ak+τk=t

δk(σk− σ̂k),

where σ̂k =
∫∞
ak
rk(t)dt is defined to be the satisfied demands of job k. The total penalty for deadline

extensions of jobs with deadline t is

W (t) =
∑

k∈V:ak+τk=t

εk(τ̂k− τk).

where τ̂k = min{max{t− ak : rk(t)> 0}, T} is defined to be the actual sojourn time of job k.
Design objectives. We consider designing online scheduling algorithms, which decide the service

rates in real-time without using the future job arrival information. For scalability, we restrict our
attention to distributed algorithms which only need local information about each job to decide its
service rate. Examples of online distributed algorithms are Immediate Scheduling, Delayed Schedule,
and Exact Scheduling (see Figure 1).

Recall from Section 1 that the predictability and stability of service capacity are important
design criteria for modern schedulers because peaks and fluctuations in service capacity strain the
system infrastructure and knowing the future demand of the service capacity helps reduce cost
(Figure 2). Thus, our design objective is to reduce the variance and mean square in service capacity

2 The condition τ ≥ σ constrains the service demand σ of a job to be no more than the amount of service that can
be provided within its sojourn time τ .



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
6

for the settings with strict or soft service constraints. Specifically, we consider the optimization
problem

minimize
1

T

∫ T

0

(
αE[P (t)]2 +βVar(P (t))

)
dt

where the first term of the integrand quantifies the service capacity stability, and the second term
quantifies the service capacity predictability. The coefficient α,β(≥ 0) balances the predictability
and stability of P (t), and the objective function reduces to the time average of E[P (t)2] at (α,β) =
(1,1).

We also consider the case when the service requirements do not need to be perfectly satisfied.
In such cases, we consider the optimization problem

minimize
1

T

∫ T

0

(
Var(P (t)) +E[U(t)] +E[W (t)]

)
dt,

which balances service capacity variance with the penalties for not meeting the demands and/or
deadlines of some jobs.

tak

τk

σk

ak + τkak +σk

rk(t) = 1{ak ≤ t < ak +σk}

x(t)

Immediate Scheduling

tak

τk

σk

ak + τkak +σk

rk(t) = 1{ak + (τk −σk)≤ t < ak + τk}

x(t)

Delayed Scheduling

tak

τk

σk

ak + τkak +σk

rk(t) = σk
τk

1{ak ≤ t < ak + τk}

x(t)

Exact Scheduling

Figure 1 Examples of distributed scheduling algorithms. The solid black lines represent the remaining demand
x(t) at time t. Immediate Scheduling works by serving jobs at full rate upon arrival. Delayed Scheduling
works by serving at full rate with a delay that is equal to its laxity a+ τ − σ. Exact Scheduling works
by throttling service to a constant rate σ/τ so that all jobs are completed exactly at its deadline.

Motivating examples. The general model we have defined is meant to give insight into the design
trade-offs that happen in applications with dynamic capacity, e.g. electric vehicle charging, cloud
content providers. Importantly, in this paper we are not trying to model a specific application,
rather we are exploring design trade-offs using a simple, general model. However, to highlight the
connection to our motivating examples, consider first the case of electric vehicle charging. In this
case, each job k ∈ V corresponds to an electric vehicle with an arrival time ak, an energy demand
σk, and a sojourn time τk. At each time t, the charging station draws P (t) =

∑
k∈V rk(t) amount

of power from the grid to provide each vehicle k with a charging rate of rk(t). When doing so,
stable resource usage is highly desirable because fluctuations and large peaks in P (t) can strain the
grid and result in a high peak charge for station operators. Moreover, predictable resource usage is
also important when purchasing energy from the day-ahead market, whose price is lower and less
volatile than that of the real-time market. Note that our model assumes P (t) is unbounded and,
thus corresponds to a setting where there are more charging stations than arriving cars.

In the case of cloud content providers, each job k ∈ V corresponds to a task (requested to the
cloud or data centers) with an arrival time ak, a work requirement σk, and an allowable waiting



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
7

Figure 2 Illustration of the design objectives. The left plot illustrates the predictability of the service capacity,
and the right plot illustrates the stability.

time τk. The service system works on job k with speed rk(t) using P (t) =
∑

k∈V rk(t) number of
computers (or amount of power). Here again, a good estimate of the future resource use enables
the cloud users to reserve resources through a long-term contract, whose price is lower and less
volatile than that of a short-term contract, suggesting the benefit of having predictable resource
use. Note that our model considers the case where P (t) is unbounded and, thus, the data center
has enough capacity to avoid congestion, i.e. is in low utilization. Such periods are common, since
data centers often operate at utilizations as low as 10% [36]. For future work, it is important to
study how to manage congested periods by considering an upper bound on P (t).

In this paper, we primarily focus on the cases when the arrival times, demands, and sojourn
times are all available to the scheduler upon the arrival of each job. Such cases are common in
many scheduling problems and modern applications operating on an increasingly smarter infras-
tructure [6,14,15,17,33,37,38]. For example, in the electric vehicle charging testbed [15], the users
input the service request (σk, and τk) through a control panel upon arrival. In cloud computing, the
demands can be estimated from the past, and deadlines are determined by operational/performance
requirements [38]. Beyond the case of our primary focus, there are also situations when the in-
formation on demands and deadlines cannot be accessed for some or all jobs. For such cases, we
discuss the algorithm to be used and its performance analysis in Section 4.1.

3. Maximizing predictability under stationary job arrivals
In this section, we characterize optimal distributed scheduling policies in a wide range of objectives
when job arrivals are stationary, starting with the simplest and moving toward the most complex.
To begin, we define each setting and pose the scheduler design problems as constrained functional
optimizations (Section 3.1). Then, we focus on strict service requirements and show that Exact
Scheduling minimizes the stationary variance of the service capacity (Section 3.2). Relaxing the
demand requirements, we show that a variation of Exact Scheduling minimizes the weighted sum
of the stationary variance of service capacity and the penalty for unsatisfied demand (Section
3.3). Relaxing the deadline requirements, we show that a different variation of Exact Scheduling
minimizes the weighted sum of both the stationary variance of service capacity and the penalty for
demand extension (Section 3.4). Finally, we consider the case when both the demand and deadline
requirements are relaxed (Section 3.5) and show that the optimal policy can be constructed from an
integration of the above optimal policies. It is interesting that all optimal algorithms admit closed-
form expressions, which provide clear interpretations and insights regarding the optimal trade-
offs between reducing service capacity variability, satisfying the demands, and meeting deadlines.
Moreover, they are also highly scalable and easy to implement.

3.1. Problem formulation
We study a setting where the time horizon is infinite, i.e. T =∞, and the arrival process is an
independently marked stationary Poisson point process. The intensity function of the process is

Λ(a,σ, τ) = Λf(σ, τ), a∈ T , (σ, τ)∈ S,



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
8

where Λ(a,σ, τ) takes the same value for different values of a given fixed σ, τ . We first consider
the case when the unit cost for unsatisfied demands δk and that for deadline extensions εk are
deterministic and homogeneous among different jobs, i.e. δk = δ, εk = ε for any k ∈ V.3 We consider
distributed scheduling policies of the form

rk(t) = u(xk(t), yk(t))≥ 0 (4)

where u : R+ ×R→ R+ is a non-negative integrable function of the remaining demand xk(t) and
the remaining time yk(t) of job k.

Scheduling policies of the form (4) can change the service rate based on the remaining time and
remaining demand, pause service in the middle (we allow discontinuity in u), and stop before the
full completion of jobs in the cases of soft demands. This policy assumes that the system can access
the information about the service demands and deadlines. This assumption holds, for example, in
electric vehicle charging systems [15]. The policy is also distributed in the sense that service rate
of a job is determined using only its own information. We study policies of the form (4) assuming
a situation where there is enough capacity available to satisfy the demand, and so the focus is on
determining the optimal service rate for the jobs in a distributed manner.

In the special case when Immediate Scheduling policy is used, the system becomes M/G/∞
queue.4 More generally, under any policy of the form (4), the remaining job process {(xk(t), yk(t)) :
k ∈ V, ak ≤ t} can be represented as a point process in a two-dimensional space of remaining times
and remaining demands [35]. As t→∞, the process {(xk(t), yk(t)) : k ∈ V, ak ≤ t} converges to a
stationary point process whose distribution is determined by the job profiles and scheduling policy.
Moreover, it is a Poisson process in the space with mean measure λ(x, y) satisfying:5

0 =
∂

∂x
(λ(x, y)u(x, y)) +

∂

∂y
λ(x, y) + Λf(x, y). (5)

The above equation is also known as the continuity equation and can be derived from the movement
and conservation of density of the Point Process [20, 39]. The movement of each point (x, y) has
velocity −u(x, y) in the x-dimension and velocity −1 in the y-dimension because its remaining
demand is reduced by u(x, y) per unit time, and its remaining time is reduced by 1 per unit time.
The conservation of density states that the flow inward (of existing jobs) and new arrivals minus
flow outward through the surface of a region sum up to be zero.

Because the remaining job process becomes stationary as t→∞, the distribution of P (t) also
becomes stationary, i.e. P (t)→ P in distribution. Moreover, its stationary mean E[P ] is determined
only by the total service provided. For example, in the special case when the demand constraints
are to be strictly satisfied, we have E[P ] = ΛE[σ]. In a more general setting, the stationary mean
is given in the following proposition.

Proposition 1. Consider a service system with stationary Poisson arrivals with intensity mea-
sure Λf(σ, τ) and a distributed scheduling policy of the form (4). Let us define σ̂(σ, τ) to be the
total service a job with demand σ and a sojourn time τ receives.6 The stationary mean of P (t) is
given by

E[P (t)] = ΛE[σ̂(σ, τ)].

3 This assumption is relaxed in Corollary 1.

4 In general, the system under policy (4) may be different from M/G/∞ queue because M/G/∞ requires the service
rate to be constant.

5 We use (x, y) to denote the coordinate in the two dimensional space of remaining demands and remaining times
and (xk(t), yk(t)) to denote a point (job profile) in the space at time t.

6 Here, σ, τ are random variables, and σ̂(σ, τ) is the output of the function with input (σ, τ). So σ̂(σ, τ) is also a
random variable.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
9

We present a proof of Proposition 1 in Appendix B. Alternatively, it can also be derived from
classical queueing results such as Little’s Law and the Brumelle’s formula [40, Chapter 3, eq.
(3.2.1)]. From Proposition 1, E[P (t)] only depends on Λ and E[σ̂(σ, τ)], but it takes the same value
for an arbitrary choice of policy u in (4) with identical σ̂(σ, τ). In the special case when the demand
constraint (3) is strictly enforced, E[P (t)] = ΛE[σ] equals the expected value of total service demand
arriving per unit time. This property suggests that the stability of the service capacity, measured
using limT→∞

∫ T
0
E[P (t)]2dt, does not depend on the choice of policy u given E[σ̂(σ, τ)]. In other

words, there is no tradeoff between maximizing stability vs. predictability.
Accordingly, we consider minimizing the stationary variance of P (t) under strict service (demand

and deadline) constraints, soft demand constraints, soft deadline constraints, and soft demand and
deadline constraints. In the case of strict service (demand and deadline) constraints, we consider
the following optimization problem:

minimize
u:(1)(2)(3)(4)(5)

Var(P ), (6)

where the optimization variable is taken over the set of distributed policies (4) subject to the
service rate constraints (1), the demand constraints (2), and the deadline constraints (3). Here,
Var(P ) is a functional of u and λ(σ, τ), where λ(σ, τ) satisfies (5).

In the case of soft demand constraints, we relax the demand constraints (2) into paying penalty
δk = δ for each unit of unsatisfied demands and consider balancing the service capacity variance
and the penalties due to unsatisfied demands:

minimize
u:(1)(3)(4)(5)

Var(P ) +E[U ]. (7)

In the case of soft deadline constraints, we relax the deadline constraints (3) into paying penalty
ε for each unit of deadlines extensions and consider balancing the service capacity variance and
the penalties due to deadline extensions:

minimize
u:(1)(2)(4)(5)

Var(P ) +E[W ]. (8)

In the case of soft demand and deadline constraints, we relax both the demand and deadline
requirements (2) and (3) into paying δ for each unit of unsatisfied demands and ε for each unit of
deadline extensions. We consider balancing the service capacity variance and the penalties due to
unsatisfied demands and deadline extensions:

minimize
u:(1)(4)(5)

Var(P ) +E[U ] +E[W ]. (9)

Finally, we consider the most general setting, when the penalties for unsatisfied demands and
deadlines are heterogeneous among jobs. To account for this heterogeneity, we consider distributed
scheduling policies of the form

rk(t) = ū(xk(t), yk(t), δk, εk)≥ 0. (10)

Under any policy of the form (10), the remaining job profiles in the system {(xk(t), yk(t), δk, εk) :
k ∈ V, ak ≤ t} can be represented as a point process in the 4-dimensional space of remaining times,
remaining demands, unit costs for unsatisfied demand, and unit costs for deadline extension. This
point process converges to a stationary Spatial Poisson Point Process with an intensity function
λ(x, y, δ, ε) satisfying

0 =
∂

∂x
(λ(x, y, δ, ε)ū(x, y, δ, ε)) +

∂

∂y
λ(x, y, δ, ε) + Λf(x, y)g(δ)h(ε). (11)

This leads to the following optimization problem:

minimize
ū:(1)(10)(11)

Var(P ) +E [U ] +E [W ] . (12)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
10

Remaining demand (x)
R

em
ai

n
in

g
ti

m
e

(y
)

Infeasible
region

Figure 3 Exact scheduling depicted in the space of remaining demand x and remaining time y.

3.2. Strict service (demand and deadline) requirements
We first consider the case of strict service requirements and show a closed-form characterization of
the optimal algorithm that minimizes the stationary variance Var(P ). To do so, it can be shown
that service rates contribute to the service capacity variance in a quadratic form (see Lemma 2,
presented later). Thus, having a large value in the service rate, i.e. u(x, y) taking large values for
some (x, y), results in disproportionately more service capacity variance. This observation suggests
that having a flat service rate may achieve small variance. One such policy is Exact Scheduling,

u(x, y) =


x

y
, if y > 0,

0, otherwise.
(13)

which works by finishing each job exactly at its deadline using a constant service rate (Figure 3). It
is also highly scalable because it is distributed, and it does not require much computation, memory
use, communication, or synchronization. Although existing literature has analyzed its performance
in various settings [3, 12, 13, 41], no work has shown its optimality conditions in either centralized
or distributed settings. In this section, we show that Exact Scheduling minimizes the stationary
service capacity variance under strict demand and deadline constraints.

Theorem 1. Exact Scheduling (13) is the optimal solution of (6) and achieves the optimal value7

Var(P ) = ΛE
[
σ2

τ

]
.

Theorem 1 shows that the optimal policy for minimizing variance is to keep a constant service
rate at all times. Therefore, when considering strict demands and deadlines, the optimal policy is
to have a flat service rate across its sojourn time τk. Additionally, Theorem 1 shows the achievable
performance improvement by controlling the service capacity using distributed algorithms. If no
control is applied, then rk(t) = 1{t ∈ [ak, ak + σk)}, and the stationary mean and variance of P (t)
is E(P ) = Var(P ) = ΛE[σ] By performing a distributed service capacity control, the stationary
variance can be reduced by

ΛE
[
σ(τ −σ)

τ

]
∈
[
0,ΛE[σ]

]
where τ − σ is a slack time (the amount of time left at job completion if a job is served at its
maximum service rate).

7 Observe that Λ is the cumulative arrival rate.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
11

Next, we present the proof of Theorem 1. To circumvent the complex constraints of (6), we first
provide a lower bound on its optimal solution by relaxing the class of control policies into

rk(t) = v(σk, τk, yk(t)) k ∈ V, (14)

and solve the optimization problem

minimize
v:(1)(2)(3)(14)

Var(P ). (15)

Notice that any policy that can be realized by u in (4) can also be realized by v in (14), but a
policy that can be realized by v may not necessarily be realized by u. Thus, policy v is more general
than u, and the constraint set of (6) is contained in the constraint set of (15). Consequently, the
optimal value of (15) lower-bounds that of (6). Therefore, given the optimal solution of (15), if the
solution of (15) (given in the next lemma) is also achievable by a control policy u of the form (4),
it must be the optimal solution of (6) as well.

Lemma 1. The optimal solution of (15) is

v(σ, τ, y) =
σ

τ
1{y > 0}, (16)

and it yields the optimal value

Var(P (t)) = ΛE
[
σ2

τ

]
.

To show Lemma 1, we use the following property of the system: since the service rate of a job
only depends on the property of that job, its impact on Var(P ) can be computed by integrating
along the trajectory of a job over its distribution Λf(σ, τ) [35].8 In particular, the following relation
holds.

Lemma 2. The mean and variance of P (t) under the policy (14) are given by

E[P ] =

∫
(σ,τ)∈S

∫ τ

0

v(σ, τ, y)Λf(σ, τ)dydσdτ

Var(P ) =

∫
(σ,τ)∈S

∫ τ

0

v(σ, τ, y)2Λf(σ, τ)dydσdτ.

Lemma 2 can be obtained from Campbell’s theorem (see Appendix A). Now we are ready to
prove Lemma 1.

Proof of Lemma 1. The demand constraints (2) and the deadline constraints (3) leads to∫ τ

0

v(σ, τ, y)dy= σ, (σ, τ)∈ S. (17)

The objective function (15) satisfies

Var(P ) =

∫
(σ,τ)∈S

∫ τ

0

v(σ, τ, y)2Λf(σ, τ)dydσdτ (18)

=

∫
(σ,τ)∈S

{∫ τ

0

v(σ, τ, y)2dy

}
Λf(σ, τ)dσdτ (19)

≥
∫

(σ,τ)∈S

{
σ2

τ

}
Λf(σ, τ)dσdτ. (20)

8 This is a restatement of Brumelle’s formula [42] from queueing theory for systems with infinitely many servers with
time-varying rates.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
12

Here, equality (18) is due to Lemma 2. Inequality (20) is due to (17) and the Holder’s inequality,
i.e. for any fixed (σ, τ),(∫ τ

0

v(σ, τ, y)2dy

)1/2(∫ τ

0

1dy

)1/2

≥
∫ τ

0

v(σ, τ, y)dy= σ,

where v(σ, τ, y)≥ 0. Alternatively, it can be verified that (20) can be attained with equality when
v equals (16). Therefore, (16) is the optimal solution of (15). Q.E.D.

Lemma 1 considers the optimal scheduler among policies of the form v(σ, τ, y), which takes a more
general form than u(x, y) with the same objective function. Interestingly, the optimal scheduler in
Lemma 1 does not use the additional freedom given by v(σ, τ, y) and can be represented by the
form u(x, y). This indicates that accounting for job arrival times by considering a more complex
form of scheduler v(σ, τ, y) does not increase the system performance. Now, we can prove Theorem
1 using Lemma 1.

Proof of Theorem 1. Recall that the optimal solution of (15) is the policy (16). Under the policy
(16), the ratio between its remaining demand x(t) and remaining time y(t) are constant for any
t ∈ [a,a+ τ ]. Therefore, (16) can be realized using policies of the form (4). Because the optimal
value of (15) is a lower bound on that of (6), the optimal solution of (15)—Exact Scheduling—is
also the optimal solution of (6). Q.E.D.

In fact, the same property also holds for the optimization problems (7), (8), and (9). This
property allows us to derive their closed-form solutions.

3.3. Soft demand requirements
The previous section shows the optimal algorithm under strict service constraints. In this section,
we relax the assumption of strict service constraints and characterize the optimal algorithm under
soft demand constraints. Specifically, we consider the setting of (7), where the system does not
need to satisfy all demands but needs to pay a penalty δ for each unit of unsatisfied demands. The
resulting optimal algorithm is a variation of Exact Scheduling with an additional rate upper-bound:

u(x, y) =


x

y
, if

x

y
≤ δ

2
and y > 0,

δ

2
, if

x

y
>
δ

2
and y > 0,

0, otherwise.

(21)

This policy essentially imposes a threshold (an upper bound) of δ/2 on the service rate: jobs whose
ratio σ/τ is above threshold δ/2 are served at a constant rate δ/2 until its deadline; jobs whose
ratio σ/τ is below this threshold are served according to Exact Scheduling. In other words, a job
k receives its full service demand only if σk/τk ≤ δ/2.

Theorem 2. The policy (21) is the optimal solution of (7) and achieves the optimal value

Var(P ) +E[U ] =E
[
σ2

τ
1

{
σ

τ
≤ δ

2

}
+ δ

(
σ− δτ

4

)
1

{
σ

τ
>
δ

2

}]
Λ. (22)

A proof of Theorem 2 is given in Appendix C. Theorem 2 shows the performance improvement
gained by relaxing the demand requirements. Recall from Theorem 1 that the average cost per
unit job arrival is E [σ2/τ ] if all demands must be satisfied. If the system does not need to satisfy
all demand requests, then the average cost for jobs satisfying σ/τ > δ/2 can be reduced from
E [σ2/τ ] to E [δ (σ− (δτ/4))]. And the portion of such jobs is given by E[1{σ/τ > δ/2}]. The optimal
policy (21) is also simple and easy to implement. Despite the convenience and wide use of simple
thresholding policies in practice, to the best of our knowledge, its optimality results and the optimal
choice of thresholding values on rate have not been proposed in the existing literature.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
13

3.4. Soft deadline requirements
The previous section shows the optimal algorithm under soft demand requirements. In this section,
we relax the deadline requirements instead and characterize the optimal distributed algorithm.
Specifically, we consider the setting of (8), where the system needs to pay penalty ε for each unit
of deadline extensions. Although scheduling problems with deadline extension (tardiness) are often
NP-hard [43,44], here we present the optimal distributed algorithm in closed-form for infinite time
horizon. This is done by first relaxing the original optimization problem into the ones that can be
solved analytically and then showing the feasibility and optimality of the obtained solution in the
original problem. The resulting optimal algorithm is a variation of Exact Scheduling with deadline
extensions:

u(x, y) =


x

y
if
x

y
≤
√
ε and y > 0

√
ε 1{x> 0} otherwise.

(23)

Similarly to (21), this policy essentially sets a threshold (an upper bound)
√
ε on the service rate:

jobs with the ratio above threshold
√
ε are served according to Equal Service of rate

√
ε until it

finishes, jobs with the ratio below threshold
√
ε are served according to Exact Scheduling. In other

words, the deadline of job k is extended only if σk/τk >
√
ε.

Theorem 3. The policy (23) is the optimal solution of (8) and achieves the optimal value

Var(P ) +E[W ] =E
[
σ2

τ
1
{σ
τ
≤
√
ε
}

+
(
2
√
εσ− ετ

)
1
{σ
τ
>
√
ε
}]

Λ. (24)

Theorem 3 shows the performance improvement by relaxing the deadline requirements. Theorem 1
states that, if all deadlines must be satisfied, then the average cost per unit job arrival is E [σ2/τ ].
By allowing deadline extensions, the average cost of jobs satisfying σ/τ >

√
ε can be reduced from

E [σ2/τ ] to E [(2
√
εσ− ετ)], and the portion of such jobs is given by E [1{σ/τ >

√
ε}]. Moreover,

service capacity variance and penalties for deadline extension are optimally balanced when jobs
whose deadline extension penalties are smaller than σ/τ , i.e. σ/τ >

√
ε, are served with deadline

extension.

3.5. Soft demand and deadline requirements
The previous sections show the optimal algorithms under soft demand requirements and soft dead-
line requirements. In this section, we relax both demand and deadline requirements and characterize
the optimal distributed algorithm. Specifically, we consider the setting of (9) where the system
needs to pay penalty δ for each unit of unsatisfied demands and penalty ε for each unit of deadline
extensions. This setting recovers all previous settings as special cases.9

Recall from previous sections that, under soft demand requirements, the optimal policy uses a
constant service rate and rejects partial demand requests only if σ/τ > δ/2. Meanwhile, under soft
deadline requirements, the optimal policy uses a constant service rate and extends the deadline
only if σ/τ >

√
ε. These two special cases motivate us to combine the policies (13), (21), and (23)

as follows:

u(x, y) =


x

y
if y > 0 and

x

y
≤min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x

y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x> 0} otherwise

, (25)

9 For sufficiently large δ, this setting recovers the case of strict demand requirements. For sufficiently large ε, this
setting recovers the case of strict deadline requirements. For sufficiently large δ and ε, this setting recovers the case
of strict demand and deadline requirements.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
14

Unit cost for unsatisfied demands (δ)

U
n
it

co
st

fo
r

d
ea

d
li
n
e

ex
te

n
si

on
s

(ε
)

ε= 1
4
δ2

2σ
τ

(
σ
τ

)2

Extend deadlines to

satisfy demands

Satisfy both

demands and deadlines
Meet deadlines with
unsatisfied demands

Figure 4 The decision space of the optimal policy for (9). For job profiles with a service demand σ, a sojourn time
τ , and costs (δ, ε), the optimal policy performs either one of the following using constant service rates:
satisfy both demands and deadlines (white region), meet deadlines with unsatisfied demand (yellow
region), or satisfy the demand by extending the deadline (green region).

The policy uses three strategies depending on different regimes of job states and penalties: high
penalties regime, low demand penalty regime, and low deadline penalty regime. These regimes are
illustrated in Figure 4 as the white, green, and yellow regions, respectively.
• High penalties regime. When min(δ/2,

√
ε)>σ/τ , it is less costly to satisfy the service require-

ments than paying penalties for unsatisfied demands or deadlines. So, the best strategy is to satisfy
both demands and deadlines optimally using Exact Scheduling (13).
• Low demand penalty regime. When δ/2≤

√
ε, the penalties for unsatisfied demands is smaller

than that of deadline extensions, so the best strategy is to meet all deadlines optimally with
potentially unsatisfied demands using the policy (21).
• Low deadline penalty regime. When δ/2>

√
ε, the penalties for deadline extension is smaller

than that of unsatisfied demands, so the best strategy is to satisfy demands optimally with potential
deadline extensions using the policy (23).
From above, the policy (25) generalizes the optimal algorithms in Sections 3.2-3.4, and we term it
Generalized Exact Scheduling. The following theorem states its optimality condition.

Theorem 4. The policy (25) is the optimal solution of (9) and achieves the optimal value

Var(P ) +E[U ] +E[W ] = (26)

E
[
σ2

τ
1

{
σ

τ
≤min

{
δ

2
,
√
ε

}}
+ δ

(
σ− δτ

4

)
1

{
σ

τ
>
δ

2
,
δ

2
≤
√
ε

}
+
(
2
√
εσ− ετ

)
1

{
σ

τ
>
√
ε,
δ

2
>
√
ε

}]
Λ.

Theorem 4 shows when one should extend the deadline to satisfy the demand or let the job
depart at its deadline with unsatisfied demands. Moreover, Generalized Exact Scheduling is also
optimal for a more general problem (12), when the unit costs for unsatisfied demands and deadline
extensions are allowed to be heterogeneous.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
15

Corollary 1. The optimal solution of (12) is

ū(x, y, δ, ε) =


x

y
if y > 0 and

x

y
≤min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x

y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x> 0} otherwise

.

Corollary 1 is an immediate consequence of Theorem 4.

4. Performance degradation inherent to availability of job information
Given our focus on distributed algorithms, we now investigate how much performance degrades
in comparison to centralized algorithms. This investigation also includes practically important
questions such as: is there is any middle ground between centralized and distributed algorithms in
which scalability and close-to-centralized performance can be achieved simultaneously? What can
be done if the information on the service requirements (demands and/or deadlines) is missing? How
much does the performance degrade due to such missing information? In this section, we answer
these questions using both numerical experiments and theory.

Specifically, we compare the performance of optimal offline algorithms, centralized online op-
timization, particularly-centralized algorithms, online distributed algorithms using actual electric
vehicle charging data from the Caltech Testbed [15] and synthetic data drawn from varying ar-
rival distribution (Section 4.1). The results show that Generalized Exact Scheduling has superior
performance when compared to other distributed algorithms. This performance is achieved by sys-
tematically optimizing service capacity to find the right balance between service capacity variance
and the penalties for unsatisfied demands or deadlines. Moreover, the results in the testbed also
suggest that Generalized Exact Scheduling performs well beyond the case of Poisson arrivals, under
which Exact Scheduling is optimal, such as in the charging of electric vehicles. Then, we derive
bounds on the cost of the optimal centralized policy and use these bounds to characterize the
performance degradation of the optimal distributed algorithm (Section 4.2). When it comes to de-
riving performance bounds, there is no standard technique in queueing to derive the performance
limits of centralized policies in this setting. Instead, we borrow tools from optimal control and
provide an upper bound on the performance. Finally, we present a proof of the upper bound, which
is potentially useful for providing performance degradation bounds for policies in other settings as
well (Section 4.2.1).

4.1. Empirical evaluation
To evaluate the performance of the proposed algorithms (Generalized Exact Scheduling), we com-
pare its performance with existing scheduling algorithms using both a case study of an electric
vehicle charging testbed and synthetic data of varying arrival distributions.

4.1.1. System and data We develop a trace-driven simulation using real data from an electric
vehicle charging testbed [15], and use a synthetic data set randomly drawn from a set of arrival
distributions with varying parameters. The real data contains the arrival profiles of 92 days in
2016. A charging instance contains service requests from each electric vehicle arriving in one day.
A service request of a job is defined by its arrival time, energy demand, and sojourn time. The
statistics of the service requests are summarized in Table 2. The synthetic data are generated from
the following set of arrival distributions. Time is discretized into the sampled time t1 = 0, t2, · · · , tn.
Given a vector b(i) of i.i.d. Bernoulli random variables with mean pB(� 1), the sampled time ti is
considered to have one arrival if b(i) = 1; and zero arrival if b(i) = 0. For each arrival, its service
demand σ is uniformly distributed in [σ, σ̄]. Its sojourn time is generated from two different cases,
defined by two types of arrival distributions (I and II). In distribution I, the sojourn time is given



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
16

(a) Job profiles

Demand Sojourn time
σk (kW × minutes) τk (minutes)

Mean 5.1 · 102 3.2 · 102

Variance 3.1 · 105 3.9 · 104

(b) Instance profiles

Total demand Time horizon Number of jobs∑
k∈V σk (kW × minutes) T (minutes) |V|

Mean 8.4 · 103 6.5 · 102 14.2
Variance 2.0 · 107 1.4 · 104 48.2

Table 2 Statistics of the electric vehicle charging instances at the testbed [15].

by σ+ ` (additive), where ` is i.i.d. exponentially distributed with mean ¯̀. In distribution II, the
sojourn time is given by γσ (multiplicative), where γ is uniformly chosen from the interval [1, γ̄].
In both distributions I and II, all jobs are feasible, i.e. σk ≤ τk for all k ∈ V. The parameters for
the arrival distributions are chosen to be pB ∈ [0.1,0.3], σ= 10, σ̄= 20, ¯̀∈ [10,50], γ̄ = 3.

4.1.2. Algorithms We compare a few standard schedulers with Generalized Exact Schedul-
ing. The schedulers include an optimal offline policy, online fully-centralized policies, online
partially-centralized policies, and online distributed policies. The details of these schedulers are
defined below.

Offline optimal algorithms (centralized).To understand the best possible performance, we compare
with the optimal offline algorithms. Let At = {(ak, σk, τk, xk(t), yk(t)) : ak ≤ t} be the set that
contains the information of jobs arriving no later than t. The optimal offline algorithm tells the
best performance achievable given the centralized information of all jobs arriving in the future.
The offline policy takes the form

rk(t) = o(k, t,{At}t∈[0,T ]), ∀k ∈ V, (27)

where o(k, t, ·) is a deterministic mapping from the complete arrival information {At}t∈[0,T ] to a
service rate rk(t) and is allowed to vary by each job k and each time t. The offline policy (27) can
use the information of all future arrivals to generate the service rate at time t and can be computed
from the following optimization problem:

minimize
(1)(2)(3)

1

T

∫ T

0

(P (t)− P̄ )2dt, (28)

where the optimization variable is o in (27), and P̄ = (1/T )
∫ T

0
P (t)dt be the time average of P (t).

We denote the solution of problem (28) as Optimal Offline.
This assumption on Optimal Offline is often too strong in practice: offline algorithms cannot be

used when future information is hard to obtain. However, as any distributed or online algorithms
can perform no better than the optimal offline algorithm, it is still useful to have its performance
as a baseline. Specifically, we quantify the relative cost of any online algorithm and Optimal Offline
using the ratio of the cost of the algorithm and that of Offline Optimal (with a slight abuse of
notation, we denote this ratio as the empirical competitive-ratio10). This quantity is used in Figures
5, 6, 11 to evaluate the performance of different algorithms under varying arrival distribution.

10 Competitive-ratio typically refers to the worst-case ratio among all possible instances, but here, we use empirical
competitive-ratio to refer to the empirically realized ratio in one instance.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
17

Fully-centralized online algorithms. We consider centralized (online) scheduling policies of the form

rk(t) = c(k, t,At), ∀k ∈ V, (29)

where c(k, t.·) is a deterministic mapping from past and present arrival information At =
{(ak, σk, τk, xk(t), yk(t)) : ak ≤ t} to a service rate rk(t) and is allowed to vary by each job k and
each time t. The centralized online policy (29) can use the information of jobs that arrived by time
t to generate the service rate at time t. We list below a few centralized online policies tested in
this paper.
• Online Optimization (MPC). This policy essentially performs Model Predictive Control (MPC)

on the objective function (28).11 The service rates are recomputed at discrete points in time t0(=
0), t1, t2, · · · , tN(= T ), where N = dT/he is the discrete index for the time horizon, and the sampling
interval h (= tn+1− tn, n∈ {0,1, · · · ,N}) is chosen to be sufficiently small. Let Vt = {k ∈ V : ak ≤ t}
be the set of jobs arriving by time t, and N` = {n ∈ Z+ : n ≥ max(0, `), n ≤ N} be the discrete
time index from ` (≥ 0) to N . At each discrete point in time ti, this policy finds the service rate
rk(τ), τ ≥ ti defined from the optimization variable r̂k(i),

rk(τ) = r̂k(i) τ ∈ [ti, ti+1), k ∈ Vti (30)

and
rk(τ) = r̂k(i+ 1) τ ∈ [ti+1, ti+2), k ∈ Vti
rk(τ) = r̂k(i+ 2) τ ∈ [ti+2, ti+3), k ∈ Vti

...

rk(τ) = r̂k(N − 1) τ ∈ [tN−1, tN ], k ∈ Vti

(31)

which minimizes the objective function (28) subject to the rate constraint (1), demand constraint
(2), and deadline constraint (3), i.e.

minimize
r̂k(i),k∈Vti ,i∈Ni:(1)(2)(3)(30)(31)

1

T

∫ T

0

(P (tk)− P̄ )2dt, (32)

subject to the rate constraint (1), demand constraint (2), deadline constraint (3). The optimization
problem (32) computes the service rates in discrete time, which approximate the continuous-time
optimal service rate for (28) for time horizon T . Since an online algorithm cannot access future job
arrivals in decision making, this problem does not use the future job arrival information, i.e. Vtn in
(32) only contains jobs arriving by time tn. At each time tn, it recomputes problem (32) using the
available job information in Vtn and serves according to (30) until the next sample time, while (31)
is accounted for in the optimization problem (32), rk(τ), τ ≥ ti+1 is not executed. The computed
service rates are optimal if no jobs arrive in the future but are only greedily optimal otherwise.
• Fair Sharing (FS). This policy equally distributes a fixed capacity among jobs. In the

case of soft demand constraints, each job k is served until their deadlines according to
rk(t) = min{pFS/n(t),1}1{yk(t) > 0}, where n(t) is the number of unfinished jobs at time
t. Under soft deadline constraints, jobs are served to their completion according to rk(t) =
min{p′FS/n(t),1}1{xk(t)> 0}. In the experiment, the parameters pFS and p′FS are chosen to be the
optimal offline values.12

11 See [45,46] and references therein for the use of MPC in similar scheduling problems.

12 We choose fixed these parameters to be the same for all instances but choose these parameters to be the ones that
minimize the average cost of all instances. The optimal offline values for the parameters are numerically computed
from grid search. Since the optimal offline parameters are unknown in practice, the test results obtained here are
optimistic.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
18

• Earliest Deadline First (EDF). This policy allocates a fixed capacity to jobs in ascending
order of their deadlines. In the case of soft demand constraints, at time t, each job k with positive
remaining time yk(t)> 0 receives the smaller of the remaining demand or maximum service rate,
min{xk(t),1}, in the order of jobs with closest deadlines, until either the fixed capacity pEDF is
exhausted or all jobs receive min{xk(t),1}. In the case of soft deadline constraints, at time t, each
unfinished job receives the smaller of the remaining demand or maximum service rate, min{xk(t),1},
in the order of jobs with closest deadlines until either the fixed capacity pEDF is exhausted or all
jobs receive min{xk(t),1}. In the experiment, pEDF and p′EDF are chosen to be the optimal offline
values.12

• Least Laxity First (LLF). This policy allocates a fixed capacity to jobs in ascending order of
their laxity, where laxity of job k at time t is defined as

`k(t) := yk(t)−xk(t).

In the case of soft demand constraints, at time t, each job k with positive remaining time xk(t)> 0
receives the smaller of the remaining demand or maximum service rate, min{xk(t),1}, in the order
of jobs with smallest laxities, until either the fixed capacity pLLF is exhausted or all jobs receives
min{xk(t),1}. In the case of soft deadline constraints, at time t, each unfinished job receives the
smaller of the remaining demand or maximum service rate, min{xk(t),1}, in the order of jobs with
smallest laxities until either the fixed capacity p′LLF is exhausted or all jobs receives min{xk(t),1}.
In the experiment, pLLF and p′LLF are chosen to be the optimal offline values.12

The parameters pFS, p
′
FS, pEDF , p

′
EDF , pLLF , p

′
LLF for the above algorithms are the service capac-

ities that the system is willing to provide in their respective settings, and this capacity is shared
among all unfinished jobs.

Distributed online algorithms. Recall from Section 3.1 that a distributed online policy takes the
form (4). Below lists the distributed online policies tested in our experiments.
• Generalized Exact Scheduling (25). This policy recovers Exact Scheduling (13) under strict

service requirements, the policy (21) under soft demands, and the policy (23) under soft deadlines.
• Immediate Scheduling. This policy schedules jobs at its maximum rate upon arrival, i.e. for

any job k ∈ V, rk(t) = 1{xk(t)> 0}.

Partially-centralized algorithms. The fully-centralized online algorithms above require the scheduler
to access all service requirement information (demands and deadlines) for all jobs present in the
system, whereas the distributed online algorithms use no centralized information (i.e. the service
rate of each job is only determined using its own information). Beyond the two extreme cases of
totally centralized versus totally distributed, there is the middle ground of partially centralized
algorithms where service rates are determined mostly using the local information of each job but are
allowed to access some global state variables. The design choices for partially centralized algorithms
are vast, yet their potential is under-explored in the existing literature. Although a comprehensive
study of such design space is beyond the scope of this paper, we have explored a few such options
empirically to facilitate future discussion. As the major goal of our paper is to design scalable
algorithms, we focus on near-distributed policies that only use a limited number of global variables.
Such policies take the form

rk(t) = pc(xk(t), yk(t), z(t))≥ 0, k ∈ V (33)

where z(t) is a low-dimensional vector that is shared among the local schedulers for each job. For
example, z(t) can contain the service capacity, total remaining demands, total remaining time,
number of jobs, and combinations of these quantities. The policy (33) requires much less resources in
computation and communication compared to the centralized algorithms listed above. For example,
Online Optimization (MPC) solves at each time step a quadratic program; EDF and LLF require
jobs to be sorted. In contrast, (33) only requires the evaluation of a closed-form function and
minimum communication (sending z(t) to local schedulers).

We tested the following two algorithms of the form (33).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
19

• Exact Scheduling PC. This policy performs Exact Scheduling plus minor adjustment using
partially centralized (PC) variable P (t). It operates as Exact Scheduling when the service capacity
is higher than average but adds additional boosts in service rate otherwise, i.e.

pc(xk(t), yk(t), z(t)) =


µ
xk(t)

yk(t)
P (t− dt)< P̄

xk(t)

yk(t)
otherwise

where dt captures the latency in communicating P (t), and µ≥ 1 is the factor that boosts service rate
at the low service capacity regime. Empirically, the values for µ that work well for the scheduling
instances that we tested range from 1.2 to 1.6.
• Equal Service. This policy offers a homogeneous service rate to all unfinished jobs. In the case

of strict service requirements, it serves jobs with positive laxity at a homogeneous service rate
cES and jobs with zero laxity at its maximum rate 1. The service rate under this policy is given
by rk(t) = cES1{`k(t)> 0 and xk(t)> 0}+ 1{`k(t)≤ 0 and xk(t)> 0}. In the case of soft demand
constraints, it serves jobs at a homogeneous service rate c′ES before its deadline, and the service rate
is given by rk(t) = c′ES1{xk(t)> 0 and yk(t)≥ 0}. Note that this policy may not fulfill the demand
of all jobs but does satisfy all deadlines. In the case of soft deadline constraints, it serves jobs at a
homogeneous service rate until its completion, and the service rate is given by rk(t) = c′′ES1{xk(t)>
0}. Note that this policy satisfies all demands but may extend the deadlines of some jobs. Insights
from Section 3 suggest that Equal Service may perform well when the values of cES, c

′
ES, c

′′
ES are

close enough to E[v∗(σk, τk, yk(t))], where v∗ are the optimal solutions for problems (15), (112), and
(123).13 Indeed, we observed this behavior empirically. Moreover, we noticed that Equal Service is
robust to small perturbations in cES, c

′
ES, c

′′
ES near their desired value E[v∗(σk, τk, yk(t))].

4.1.3. Fully-centralized vs partially-centralized vs distributed algorithms We tested
the above algorithms in the case of strict service constraints and studied how the characteristics of
the scheduling instance influence the relative performance. We also studied how different algorithms
behave in the cases of soft demand constraints and deadline constraints for varying penalties of
unsatisfied demands and deadlines. The results are summarized below.

Performance in strict service constraints. In the setting of strict service constraints, we can only
use Exact Scheduling, Immediate Scheduling, and Equal Service, Online Optimization (MPC),
and Offline Optimal because other algorithms cannot guarantee to satisfy the service requirements
strictly.

For the instances in the testbed (Figure 5a), we observed a significant performance degradation
from Offline Optimal to Online algorithms: online algorithms experience 50% times more cost due
to the lack of future information. However, among online algorithms, there is less than 10% of
cost increment from fully-centralized Online Optimization (MPC) to Exact Scheduling PC, which
requires much less computational and communication resources, and another 10% cost increment
from Exact Scheduling PC to fully-distributed Exact Scheduling.

For synthetic instances (Figures 5b, 5c), the performance degradation from Offline Optimal to
online algorithms is much less than in the testbed, which may be attributable to the fact that
the synthetic data’s arrival distribution is closer to our assumptions in the arrival distribution of
the optimization problems. On the other hand, the performance degradation from fully-centralized
to partially-centralized to fully-distributed remains similar. Exact Scheduling PC (partially cen-
tralized) degrades from fully-centralized Online Optimization (MPC) by about 10% on average,
and Exact Scheduling (fully-distributed) degrades from Exact Scheduling PC by another 10% on
average. This relation holds beyond the specific arrival distribution considered in Figure 5 (see
Figure 11 in the Appendix for the performance comparison in varying arrival distributions).

13 Problem (112) and (123) are defined in the Appendix.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
20

(a) Performance in the electric vehicle charging testbed.

0 1 2 3 4 5 6 7 8 9 10

Offline Optimal

Online Optimization (MPC)

Exact Scheduling

Exact Scheduling PC

Equal Service

Immediate Scheduling

Empirical competitive-ratio

(b) Performance in synthetic data generated from arrival distribution I.

0 1 2 3 4 5

Offline Optimal

Online Optimization (MPC)

Exact Scheduling

Exact Scheduling PC

Equal Service

Immediate Scheduling

Empirical competitive-ratio

(c) Performance in synthetic data generated from arrival distribution II.

0 0.5 1 1.5 2

Offline Optimal

Online Optimization (MPC)

Exact Scheduling

Exact Scheduling PC

Equal Service

Immediate Scheduling

Empirical competitive-ratio

Figure 5 Performance comparison of algorithms under strict service (demand and deadline) constraints in the
testbed [15]. The ratio of each algorithm’s empirical variance to the Offline Optimal is averaged over
all scheduling instances. The number of instances averaged are 92 in plot (a) and 500 in plot (b) and
plot (c). The instances used here are described in Section 4.1.1. In plot (b), the arrival distribution I is
set to have parameter ¯̀= 15. In plot (c), the arrival distribution II is set to have parameter γ̄ = 2. For
arrival distribution with different parameters from (b) and (c), the performance is shown in Figure 11
in the Appendix I.

Performance by instance characteristics. The relative performance/cost of Exact Scheduling
and others depends on the characteristics of the scheduling instance. To further investigate this
dependency, we grouped instances according to its empirical competitive-ratio of Exact Scheduling
and computed the average arrival rate and the demand to sojourn time ratio for each group. In
general, empirical competitive-ratio improves as the number of arrivals decrease (Figure 6a) and
also as average demand to sojourn time ratio increases in size (Figure 6b). These points can also be
seen in Figure 10, which compares the service rates for the instance in which the Exact Scheduling
performed equally well with Offline Optimal (Figure 10a) and those for the instance in which
Exact Scheduling performed much worse (Figure 10b). Intuitively, sparser arrivals would require



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
21

(a) Average arrival rate vs empirical competitive-ratio

2 4 6 8 10
0.8

1

1.2

1.4

1.6

Empirical competitive ratio

A
v
er

a
g
e

a
rr

iv
a
l

ra
te

(c
o
u
n
t/

h
o
u
r)

(b) Demand to sojourn time ratio vs empirical competitive-ratio

2 4 6 8 10
2

2.5

3

3.5

4

4.5

Empirical competitive ratio

D
em

a
n
d

to
so

jo
u
rn

ti
m

e
ra

ti
o

(c) Number of instances in each class, which are grouped by the range of empirical competitive-ratio

2 4 6 8 10
0

10

20

30

40

Empirical competitive ratio

N
u
m

b
er

o
f

in
st

a
n
ce

s

Figure 6 Instance characteristics that allow Exact Scheduling to have comparable performance with the Offline
Optimal. For each instance, the ratio between the cost of Exact Scheduling and that of Offline Optimal
(denoted as the empirical competitive-ratio with a slight abuse of notation10) is computed. Based
on this ratio, instances are grouped into 5 classes, each containing instances for which the empirical
competitive-ratio ranges between [1,3), [3,5), [5,7), [7,9), [9,11]. For each group, the average arrival rate
and average ratio of demand to sojourn time σ/τ for jobs in each class are shown in (a) and (b), and
the number of instances (days) in each class are shown in (c).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
22

(a) Normalized cost for varying unit penalty of unmet demand.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Unit cost for unsatisfied demands

N
or

m
a
li

ze
d

co
st

Immediate Scheduling
Equal Service
Fair Sharing
Earliest Deadline First
Least Laxity First
Generalized Exact Scheduling

(b) Average amount of unsatisfied demands per instance for varying unit penalty of unmet demand.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·104

Unit cost for unsatisfied demands

M
ea

n
to

ta
l

u
n
m

et
d

em
an

d
s

in
a

in
st

an
ce

Immediate Scheduling
Equal Service
Fair Sharing
Earliest Deadline First
Least Laxity First
Generalized Exact Scheduling

Figure 7 Generalized Exact Scheduling compared to existing algorithms in the case of soft demand constraints.
For varying unit penalty δ, the empirical costs in all instances are shown. The top plot (a) compares
the average empirical costs of all instances for varying values unit penalty δ. The cost is normalized by
the cost of Offline Optimal (for strict service requirements).14 The bottom plot (b) shows the average
amount of unmet demands in one instance for varying δ. The policy parameters cES, pFS, pEDF, and pLLF

used in Equal Service, Fair Sharing, Earliest Deadline First, and Least Laxity First are set to be the
optimal offline values that minimize the average empirical costs.12



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
23

(a) Normalized cost for varying unit penalty of deadline extension.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

11

Unit cost for deadline extension

N
or

m
a
li

ze
d

co
st

Immediate Scheduling
Equal Service
Fair Sharing
Earliest Deadline First
Least Laxity First
Generalized Exact Scheduling

(b) Average amount of deadline extensions per instance for varying unit penalty of deadline extension.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·104

Unit cost for deadline extension

M
ea

n
to

ta
l

d
ea

d
li

n
e

ex
te

n
si

on
s

in
a

in
st

a
n

ce

Immediate Scheduling
Equal Service
Fair Sharing
Earliest Deadline First
Least Laxity First
Generalized Exact Scheduling

Figure 8 Generalized Exact Scheduling compared to existing algorithms in the case of soft deadline constraints.
For varying unit penalty of unmet demand ε, the empirical costs in all instances are shown. The top
plot (a) compares the average empirical costs of all instances for varying values unit penalty ε. The cost
is normalized by the cost of Offline Optimal (for strict service requirements).14 The bottom plot (b)
shows the average amount of deadline extension in one instance for varying ε. The policy parameters
cES, pFS, pEDF, and pLLF used in Equal Service, Fair Sharing, Earliest Deadline First, and Least Laxity
First are set to be the optimal offline values that minimize the average empirical costs.12



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
24

less coordination in scheduling different jobs, which in turn reduces the advantages of being able to
use centralized information. Moreover, when the deadline is tight, the service requirements do not
allow much flexibility in varying the service rate over time, and the offline (centralized) algorithm
may not be able to exploit the future arrival information to its full advantage.

Performance in soft demand constraints. When the demands do not need to be strictly satisfied,
the scheduler can exploit this flexibility to reduce the overall cost by balancing the service capacity
variance and the penalties for unsatisfied demands. In this setting, the behavior of distributed
algorithms (Generalized Exact Scheduling, Immediate Scheduling, Equal Service) and centralized
algorithms (Earliest Deadline First, Least Laxity First, Fair Sharing) is compared in Figure 7.14 As
the unit penalty for unmet demands δ grows, all algorithms inevitably suffer from increased costs
as well. However, the cost of Generalized Exact Scheduling plateaus at relatively small δ, which
results in a lower cost compared with other centralized and distributed algorithms (Figure 7a).
This quick plateau is achieved by a highly adaptive reduction in the total amount of unsatisfied
demands. For small unit penalty δ, Generalized Exact Scheduling is among the algorithms with
the largest amount of unmet demand to exploit the flexibility in being able to miss some demands.
For large unit penalty δ, it has the smallest amount of unmet demand in order to minimize its high
penalty associated with not meeting demands (Figure 7b). This dynamic and optimal adjustment
is obtained as the solution of the optimization problem (7), which balances the service capacity
variance and unmet demand. So the design process to achieve this behavior does not require tedious
manual adjustments.

Performance in soft deadline constraints. Similarly, when job deadlines do not need to be strictly
enforced, the scheduler can exploit this flexibility to reduce the overall cost by balancing the service
capacity variance and the penalties for deadline extensions. In this setting, the behavior of a few
distributed algorithms and centralized algorithms is compared in Figure 8.14 Similar to the setting of
soft demand, Generalized Exact Scheduling achieves a lower cost than other distributed algorithms,
and it also has a comparable performance with the centralized algorithms when the unit penalty
for unsatisfied deadline ε is large (Figure 8a). Such performance is achieved by drastically reducing
the total amount of unsatisfied deadlines as ε increases to avoid the high penalty associated with
deadline extension (Figure 8b). As ε→∞, it becomes increasingly costly to miss a job deadline,
so the mean total unmet deadlines should converge to zero. This property can be observed in
Generalized Exact Scheduling, and the optimal adjustment is obtained as the solution of the
optimization problem (8), which systematically balances the service capacity variance and deadline
extension.

4.1.4. Dealing with demand and deadline uncertainties Most algorithms discussed in
this section require knowledge about the demands and deadlines of all jobs. This condition is valid
for certain applications [6,14,15,33]. For example, in the electric vehicle charging testbed [15], the
system receives user input about the energy demand and departure time of each vehicle. On the
other hand, there are other situations where the information on service requirements (demands
and/or deadlines) can be missing for all, or a subset of, jobs.

Recall from Section 3 that the optimal distributed policy is to have a flat and low service
rate in the service rate trajectory. This intuition motivates us to consider a mixture of Exact
Scheduling and Equal Service: serve according to Exact Scheduling if the demands and deadlines
are known; otherwise, make the best guess about a good service rate and apply that rate to
all jobs with unknown demand and/or deadlines. This policy reduces to Exact Scheduling if the
service requirements for all jobs are known, whereas it reduces to Equal Service when the service
requirements for all jobs are unknown. With a slight abuse of notation, we denote this extension
for cases of potentially unknown service requirements as Generalized Exact Scheduling as well.

14 In Figure 7-8, we use “normalized cost” instead of empirical competitive-ratio. This is because, unlike the case of
empirical competitive-ratio, the cost under soft service requirements is compared here with that of offline optimal for
hard service requirements.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
25

Now we look into how much system performance may degrade in Var(P ) if the demands and
deadlines are unknown. Let sk be a binary random variable taking the value of 1 if the system
has access to the demand and deadline of job k and 0 otherwise. We assume that the probability
of s = i ∈ {1,0} is p(s = i), and s is independent with a and (σ, τ). Following the argument of
(18)-(19), we have

Var(P ) =E
[∫ τ

0

v(σ, τ, y)2dy

]
= p(s= 1)E

[
σ2

τ

∣∣∣s= 1

]
+ p(s= 0)E

[∫ τ

0

v(σ, τ, y)2dy
∣∣∣s= 0

]
(34)

= p(s= 1)E
[
σ2

τ

∣∣∣s= 1

]
+ p(s= 0)E

[
σ2

τ

∣∣∣s= 0

]
+ p(s= 0)E

[∫ τ

0

v(σ, τ, y)2dy
∣∣∣s= 0

]
− p(s= 0)E

[
σ2

τ

∣∣∣s= 0

]
(35)

=E
[
σ2

τ

]
+ p(s= 0)

{
E
[∫ τ

0

v(σ, τ, y)2dy
∣∣∣s= 0

]
−E

[
σ2

τ

∣∣∣s= 0

]}
= qES + p(s= 0)

{
E
[∫ τ

0

v(σ, τ, y)2dy− (σ2/τ)
∣∣∣s= 0

]}
, (36)

where qES is the optimal cost of Exact Scheduling. Equalities (34) and (35) use the Law of Total
Expectation. From (36), the performance degradation due to unknown demands and deadlines is
computed to be15{

p(s= 0)E
[
c′ES

2
min{τ,σ/c′ES}− (σ2/τ)

]
in case of soft demand

p(s= 0)E
[
c′′ESσ− (σ2/τ)

]
in case of soft deadline

. (37)

For the instances in the testbed and the synthetic data (from Section 4.1.1), the performance
degradation is estimated to be 15∼ 40% of the cost of Exact Scheduling multiplied by the ratio of
jobs with unknown service requirements (the overall cost is 100 + 15p(s= 0)∼ 100 + 40p(s= 0)%
of that of Exact Scheduling). This estimation is obtained from the performance difference between
Exact Scheduling and Equal Service in Figure 5 by realizing that the value in (37) is upper-bounded
by that of Equal Service for strict demand and deadlines requirement.

4.2. Theoretical analysis
In this section, we compare the performance of online distributed policies and that of online cen-
tralized policies. The design problem of centralized scheduler is typically formulated as a Markov
decision process, whose optimal solution can only be approximated or computed numerically. To
obtain analytic bounds, we formulate it as a constrained functional optimization problem instead.
Recall from Section 4.1.2 that a centralized scheduling policy has the form c in (29). It can use all
available information of jobs arriving prior to time t in decision making. The minimum-variance
centralized policy can then be obtained as the solution of the following constrained functional
optimization problem

minimize
u:(1)(2)(3)(29)

Var(P ).

where the optimization variable is the scheduling policy of the form (29).

15 No formula is given for the case of strict demand and deadline because demand and deadline satisfaction cannot
be guaranteed without the information of demands and deadlines.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
26

In order to bound the performance degradation from centralized to distributed algorithms, we
first obtain the performance limits for centralized algorithms. Let X(t) be the total remaining
demands of jobs arriving before t. Let D be a value that satisfies

Var(X)≤D (38)

where Var(X) is the stationary variance of X(t).

Lemma 3. Under any centralized policy of the form (29), the stationary variance of P (t) is
lower-bounded by

Var(P )≥ 1

4D
Λ2E[σ2]2.

Corollary 2. Let Var(P ) be the stationary variance of P (t) attained by Exact Scheduling (13).
Let Var(P †) be the optimal performance among the centralized scheduling policies of the form (29)
that satisfy the rate, demand, and deadline constraints (1)–(3). Then, the following inequality holds:

Var(P )≤ 4E [σ2/τ ] (E[τσ2] + ΛE [τσ]
2
)

E[σ2]2
Var(P †). (39)

The proof of Corollary 2 is given in Appendix G. Corollary 2 bounds the ratio of stationary
variance achievable by the optimal distributed algorithm to that achievable by any centralized
algorithms. Here, both the optimal distributed algorithm and the optimal centralized algorithm
are subject to strict constraints on demands (2) and deadlines (3). To evaluate this bound, consider
a special case where both σ and τ are deterministic and σ= aτ for some scalar a> 1. Then bound
(39) reduces to Var(P )≤ 4(1 + Λτ)Var(P †). This formula suggests that Exact Scheduling becomes
more competitive to Centralized Optimal algorithms when arrival rate is small. This observation
is consistent with the observation that large performance difference between Exact Scheduling and
Offline Optimal mostly happens at instances with large arrival rate in the testbed (Figure 6a).
As Λτ → 0, the bound suggests that the cost of Exact Scheduling remains within approximately
4 times of the cost of optimal centralized algorithm. Recall from Figure 5a that the cost of Exact
Scheduling performs approximately 3 times of that of Offline Optimal, and 1.2 times of that of
Online Optimization MPC. This data suggests Exact Scheduling may perform much better than
this performance lower-bound suggests. The pessimistic estimate of bound (39) may be due to the
fact that the proof of Corollary 2 uses a loose bound for (38) (see (160)–(161) in the Appendix G).
Alternatively, a tighter bound can be obtained as

Var(P )≤ 4DE [σ2/τ ]

E[σ2]2
Var(P †).

where an estimate of D can be computed numerically given the arrival distribution.

4.2.1. Proof of Lemma 3 In this section, we present the proof of Lemma 3. Let the stationary
variance of X(t) be bounded as in (38). We consider the following problem:

Qon = minimize
c:(29)(38)

lim
T→∞

1

T

∫ T

0

Var(P (t))dt,

where the optimization is taken over all centralized policies of the form (29) satisfying (38). The
Lagrangian of Qon is

L(c;γ) = lim
T→∞

1

T

∫ T

0

Var(P (t)) + γ(Var(X(t))−D)dt,



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
27

where γ ≥ 0 is the Lagrangian multiplier associated with the constraint (38). Observe that

inf
c:(29)

L(c;γ)≤Qon ≤Var(P ), (40)

where Var(P ) is the stationary service capacity variance of any policy. Then, we can derive a lower
bound of Var(P ) via solving infc:(29)L(c;γ) as follows.

Lemma 4. Let X̄ and P̄ be defined as the stationary mean of X(t) and P (t), respectively. The
infimum in infc:(29)L(c; r) is attained when P (t) is set to be

P (t) =
√
γ(X(t)− X̄) + P̄ (41)

at all time t, and the infimum value is given by

inf
c:(29)

L(c;γ) =
√
γΛE[σ2]− γD (42)

=
√
γΛE[σ2]− γVar(X). (43)

Lemma 4 is proven in Appendix F. From (41), the optimal solution of infc:(29)L(c;γ) satisfies

Var(P ) + γVar(X) = 2γVar(X). (44)

Combining (42) and (44) leads to

Var(X) =
1

2
√
γ

ΛE[σ2]. (45)

Since X(t) also satisfies the constraint (38), the Lagrangian multiplier γ is lower-bounded by

1

2D
ΛE[σ2]≤√γ. (46)

Therefore, we obtain

Var(P )≥ inf
c:(29)

L(c;γ) (47)

=
√
γΛE[σ2]− γVar(X) (48)

=

√
γ

2
ΛE[σ2] (49)

≥ 1

4D
Λ2E[σ2]2. (50)

where (47) is due to (40); (48) is due to (43); (49) is due to (45); and (50) is due to (46).

5. Balancing predictability and stability under non-stationary job
arrivals

Building upon the results of stationary job arrivals, we consider a more general setting with non-
stationary job arrivals in this section. The non-stationary setting is particularly appealing for
practical applications since dynamic capacity management is most crucial when the workload is
not stationary.

In contrast to the stationary setting, there exists a tradeoff between maximizing the stability and
predictability of the service capacity in the non-stationary setting. We characterize this tradeoff and
introduce a Pareto-optimal distributed algorithm that balances stability and predictability. Below,
we first formally define the notion of Pareto-optimality, which recovers maximum predictability
and maximum stability as two special cases (Section 5.1). Then, at one extreme case of maximizing
predictability, we show that Generalized Exact Scheduling is the optimal algorithm (Section 5.2).
In the other extreme case of maximizing stability, we characterize the optimal algorithm and notice
an interesting connection to the well-known YDS algorithm [14], which is optimal in a related,
deterministic worst-case setting (Section 5.3). Generalizing the two extreme cases, we describe the
Pareto-optimal algorithm that balances predictability and stability (Section 5.4).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
28

5.1. Problem formulation
In this section, we relax our previous stationary assumptions on the arrival process. We assume
that the arrival distribution is a non-stationary independently marked Poisson process with the
intensity function Λ̃(a) and a mark joint density measure fa(σ, τ)ga(δ)ha(ε), and let Λ(a,σ, τ) =
Λ̃(a)fa(σ, τ)ga(δ)ha(ε) (see Section 2).

We assume that the time horizon is chosen such that the following conditions hold:

Λ(a,σ, τ) = 0, ∀a< 0 (51)

T ≥ a+ τ, ∀(a,σ, τ) with Λ(a,σ, τ)> 0. (52)

Condition (51) assumes jobs to arrive after time t= 0, and condition (52) sets the time horizon T
to be long enough so that service can be provided during the sojourn time to all jobs. We consider
the following three types of policies:

rk(t) = u(ak, xk(t), yk(t))≥ 0 k ∈ V (53)

rk(t) = ū(ak, xk(t), yk(t), δk, εk)≥ 0 k ∈ V (54)

rk(t) = v(ak, σk, τk, yk(t))≥ 0 k ∈ V, (55)

Here, to better account for changes in the arrival distribution, we allow the scheduling policies u,
ū, v to be a function of the arrival time.16 They are also online and distributed in the sense that
the service rate of each job is determined using only the information of the same job but not other
jobs. Policies of the form (53) is a relaxation of policies of the form (4) in the sense that any policy
u(xk(t), yk(t)) in (4) can be represented by some u(ak, xk(t), yk(t)) in (53).

We seek to design policies with enhanced predictability, quantified by the variance of the service
capacity, and stability, quantified by the mean square of the service capacity. In the settings when
predictability of the service capacity is the only concern, we consider the optimization problem

minimize
u:(1)(2)(3)(53)

lim
T→∞

1

T

∫ T

0

Var(P (t))dt (56)

for the case of strict service requirements and the optimization problem

minimize
ū:(1)(54)

lim
T→∞

1

T

∫ T

0

(
Var(P (t)) +E[U(t)] +E[W (t)]

)
dt (57)

for the case of soft service requirements. In the settings when stability of the service capacity is
the only concern, we consider relaxing the service rate constraint as

rk(t)≥ 0, k ∈ V, t∈ [0, T ] (58)

and solve the optimization problem

minimize
v:(2)(3)(55)(58)

lim
T→∞

1

T

∫ T

0

E[P (t)]2dt. (59)

In the settings involving both predictability and stability of the service capacity, we consider the
optimization problem

minimize
v:(1)(2)(3)(55)

lim
T→∞

1

T

∫ T

0

αE[P (t)]2 +βVar(P (t))dt (60)

for the case of strict service requirements. Note that this problem gives Pareto-optimal policy that
balances predictability and stability.

More optimization problems can be formulated by combining the terms in (56)–(59). Although
such optimization problems are beyond the scope of this paper, our techniques can be used to
analyze such problems as well.

16 In other words, two jobs with identical pairs of (σk, τk) can be served differently based on their arrival times.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
29

5.2. Maximizing predictability
In this section, we consider the optimization problem of maximizing the predictability in service
capacity (i.e. minimizing the service capacity variance) in the settings of strict service requirements
and soft service requirements. The problem allows us to systematically balance the service quality
and service capacity variance and also admits insightful closed-form solutions. Recall from Section
3.2 that Var(P (t)) is minimized at a flat service rate because having peaks and fluctuations in
the service rate within a job’s sojourn time amplifies the uncertainties of the future arrivals to
cause large Var(P (t)). This intuition holds beyond stationary arrivals, and so does for the optimal
algorithm for non-stationary arrival distribution.

Theorem 5. The optimal solution of (56) is Exact Scheduling, defined by

u(a,x, y) =


x

y
x> 0, y > 0

0 otherwise
.

Furthermore, Generalized Exact Scheduling is also optimal under soft demand and deadline
constraints, despite the non-stationary arrival distribution.

Corollary 3. The optimal solution of (57) is

ū(a,x, y, δ, ε) =


x

y
if y > 0 and

x

y
≤min

{
δ

2
,
√
ε

}
δ

2
if y > 0 and

x

y
>
δ

2
and

δ

2
≤
√
ε

√
ε 1{x> 0} otherwise

,

Analogously to its stationary-case counterpart in Section 3.5, unit costs for unmet demands and
deadlines (δk, εk) determines the tradeoffs between reducing service capacity variance versus allow-
ing unmet demands or deadline extension as Figure 4. The policy operates in three regimes:
• High penalties regime. Both demands and deadlines are satisfied. The service rates are identical

to the ones produced by Exact Scheduling (13).
• Low demand penalty regime. All deadlines are strictly enforced with potentially unsatisfied

demands. The service rates are identical to the ones produced by policy (21).
• Low deadline penalty regime. Demands are strictly satisfied with potential deadline extensions.

The service rates are identical to the ones produced by policy (23).
Corollary 3 reduces to Theorem 5 as the unit costs for unmet demands and deadlines (δk, εk)

approach infinity. Corollary 3 also recovers the results from section 3 as the special cases: When
the job arrival distribution is stationary, it becomes Corollary 1.

To prove Theorem 5, we take analogous steps to Theorem 1. We consider the optimization
problem that relaxes the form of the scheduling policy from (53) to (55):

minimize
v:(1)(2)(3)(55)

∫ T

0

Var(P (t))dt, (61)

where the time horizon T is assumed to be finite. Compared with the stationary setting, obtaining
a closed-form solution of (61) requires additional treatment to account for the non-stationarity in
arrival distribution.

Lemma 5. Exact Scheduling v(a,σ, τ, y) = (σ/τ)1{y > 0} is the optimal solution of (61).

The proof of Lemma 5 uses the following lemma.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
30

Lemma 6. The mean and variance of P (t) under the policy (55) are given by

E[P (t)] =

∫
(σ,τ)∈S

∫ τ

0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ (62)

Var(P (t)) =

∫
(σ,τ)∈S

∫ τ

0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dydσdτ. (63)

Lemma 6 can be proved following similar steps to the proof of Lemma 2 (see Appendix A for
more detail). Now we are ready to prove Lemma 5.

Proof of Lemma 5. From Lemma 6, the objective function of (61) satisfies∫ T

0

Var(P (t))dt=

∫ T

t=0

∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dydσdτdt

=

∫
(σ,τ)∈S

{∫ τ

y=0

∫ T

t=0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dtdy

}
dσdτ.

Moreover, the constraints of (61) can be rewritten into∫ τ

y=0

v(a,σ, τ, y)dy= σ a∈ T , (σ, τ)∈ S (64)

0≤ v(a,σ, τ, y)≤ 1 a∈ T , (σ, τ)∈ S,y ∈ [0, τ ] (65)

For any (σ, τ) ∈ S, the optimal solution of (61) is attained at the minimum of the following opti-
mization problem:

minimize
v:(64)(65)

∫ τ

y=0

∫ T

t=0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dtdy (66)

From integration by substitution, the objection function of (66) satisfies∫ τ

y=0

∫ T

t=0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dtdy=

∫ τ

y=0

∫ T+y−τ

a=y−τ
v(a,σ, τ, y)2Λ(a,σ, τ)dady

=

∫ τ

y=0

∫ T

a=0

v(a,σ, τ, y)2Λ(a,σ, τ)dady,

where the last equality is due to the assumption that the time-horizon is chosen to be large enough
to satisfy Λ(a,σ, τ) = 0 for any a∈ [y− τ,T + y− τ ] \ [0, T ]. The Lagrangian of (66) is

L(v;µ,ν) =

∫ τ

y=0

∫ T+y−τ

a=y−τ
v(a,σ, τ, y)2Λ(a,σ, τ)dady−

∫ T

a=0

µσ,τ (a)

∫ τ

y=0

v(a,σ, τ, y)dyda

+

∫ T

a=0

∫ τ

y=0

(ν̄σ,τ (a, y)− νσ,τ (a, y))v(a,σ, τ, y)dyda,

where µσ,τ (a) is the Lagrange multiplier associated with constraint (64); νσ,τ (a, y)≥ 0 is the La-
grange multiplier associated with the constraint v(a,σ, τ, y)≥ 0, and ν̄σ,τ (a, y)≥ 0 is the Lagrange
multiplier associated with the constraint v(a,σ, τ, y) ≤ 1. A necessary condition for v∗ to be the
optimal scheduling policy is that L(v;µ,ν) is stationary at v = v∗. After some manipulation, the
stationary condition can be computed as follows: for any (a,σ, τ) with Λ(a,σ, τ)> 0,

v∗(a,σ, τ, y) =
µσ,τ (a) + νσ,τ (a, y)− ν̄σ,τ (a, y)

2Λ(a,σ, τ)
, (67)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
31

for y ∈ [0, τ ]. In addition, we have

∀y s.t. v(a,σ, τ, y)< 1, ν̄σ,τ (a, y) = 0, (68)

∀y s.t. v(a,σ, τ, y)> 0, νσ,τ (a, y) = 0. (69)

Next, we fix (a,σ, τ), assuming Λ(a,σ, τ)> 0, and use proof by contradiction to show that the
optimal service rate v∗(a,σ, τ, y) remains constant for throughout the sojourn time of a job, i.e.

v∗(a,σ, τ, y1) = v∗(a,σ, τ, y2) ∀y1, y2 ∈ [0, τ ]. (70)

Suppose not, i.e.

∃y1 6= y2 ∈ [0, τ ], v∗(a,σ, τ, y1) 6= v∗(a,σ, τ, y2),

then v∗ must satisfy one of the following cases:
Case 1

1> v∗(a,σ, τ, y1)> v∗(a,σ, τ, y2)> 0, (71)

Case 2

1> v∗(a,σ, τ, y1)> v∗(a,σ, τ, y2) = 0, (72)

Case 3

1 = v∗(a,σ, τ, y1)> v∗(a,σ, τ, y2) = 0, (73)

Case 4

1 = v∗(a,σ, τ, y1)> v∗(a,σ, τ, y2)> 0. (74)

Suppose Case 1 holds, then we have

v∗(a,σ, τ, y1) =
µσ,τ (a)

2Λ(a,σ, τ)
= v∗(a,σ, τ, y2), (75)

from (67), (68), (69), and (71). However, (75) contradicts (71).
Suppose Case 2 holds, then we have

v∗(a,σ, τ, y1) =
µσ,τ (a)

2Λ(a,σ, τ)
> 0 (76)

v∗(a,σ, τ, y2) =
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
= 0 (77)

from (67), (68), (69), and (72). Combining (76) and (77) leads to

0 =
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
<

µσ,τ (a)

2Λ(a,σ, τ)
. (78)

However, νσ,τ (a, y2)≥ 0 implies

µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
≥ µσ,τ (a)

2Λ(a,σ, τ)
,

which contradicts (78).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
32

Suppose Case 3 holds, then we have

v∗(a,σ, τ, y1) =
µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
= 1 (79)

v∗(a,σ, τ, y2) =
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
= 0, (80)

from (67), (68), (69), and (73). From (79) and (80), we have

1 =
µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
>
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
= 0. (81)

Combining ν̄σ,τ (a, y1)≥ 0 and νσ,τ (a, y2)≥ 0 yields

µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
≤
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
,

which contradicts (81).
Suppose Case 4 holds, then we have

v∗(a,σ, τ, y1) =
µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
= 1 (82)

v∗(a,σ, τ, y2) =
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
= 0, (83)

from (67), (68), (69), and (74). Combining (82) and (83) lead to

1 =
µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
>
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
= 0. (84)

However, ν̄σ,τ (a, y1)≥ 0 and νσ,τ (a, y2)≥ 0 give

µσ,τ (a)− ν̄σ,τ (a, y1)

2Λ(a,σ, τ)
≤
µσ,τ (a) + νσ,τ (a, y2)

2Λ(a,σ, τ)
,

which contradicts (84).
Since none Cases 1-4 can hold, the optimal service rate remains constant throughout the sojourn

time of a job, i.e. condition (70) holds. Therefore, the optimal solution of (61) is v(a,σ, τ, y) =
(σ/τ)1{y > 0}, which is Exact Scheduling. Q.E.D.

Note that the optimal value of Exact Scheduling can be represented by control policy of the form
(53), and the optimal value of (56) is lower bounded by that of (61). Therefore, Exact Scheduling
is also optimal for (56), yielding Theorem 5.

The optimization problem (9) can also be solved in a similar manner. The optimal solution of
(56) is also the pointwise minimum of∫ T

a=0

∫
R+

∫
R+

{∫ τ

y=0

v(a,σ, τ, y)2 + δv(a,σ, τ, y)dy+ ε(τ̂(a,σ, τ)− τ)

}
Λ(a,σ, τ)f(δ)f(ε)dδdεda.

From this observation, we can get Corollary 3 by computing

v∗= arg min
v

{∫ τ

y=0

v(a,σ, τ, y)2 + δv(a,σ, τ, y)dy+ ε(τ̂(a,σ, τ)− τ)

}
and converting v∗ to take the form (55).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
33

(a) The behavior of Exact Scheduling. Exact Scheduling is likely to incur a substantial cost at a later time.

(b) Ideal behavior. The service rate of job 1 is increased to account for potentially large arrivals in the future.

Figure 9 This example demonstrates why Exact Scheduling does not maximize stability. This instance has a
small arrival rate initially but higher arrival rate at a later time.

5.3. Maximizing stability
In this section, we consider the optimization problem of maximizing the stability in service capacity
(i.e. minimizing the service capacity mean square) in the settings of strict service requirements.
This problem yields a scheduler that has a striking analogy to the YDS algorithm [14], an optimal
scheduler in a deterministic problem.

Recall from Section 3 that achieving stability and predictability are not mutually conflicting
goals when it comes to the design of distributed algorithms given a stationary arrival distribution.
However, when the arrival process is non-stationary, there is a tradeoff between these two goals,
and the minimum-service-capacity-variance algorithm (Exact Scheduling) does not minimize the
service capacity mean square. This fact can be easily seen in the example instance of Figure 9.
In this instance, the arrival rate increases over time, and Exact Scheduling is likely to incur a
substantial cost at a later time (Figure 9a). Meanwhile, an ideal algorithm should account for
the increment in future arrivals by serving previous jobs more aggressively than Exact Scheduling
(Figure 9).

Formally, the optimal algorithm must satisfy the condition stated below.

Corollary 4. The optimal solution of (59) has the following properties: for each job profile
(a,σ, τ)∈ (T , S),

(i) E[P (h)] takes a constant value for any time h at which v(a,σ, τ, a+ τ −h)> 0.
(ii) If v(a,σ, τ, a+τ−h)> 0 for some h and v(a,σ, τ, a+τ−h′) = 0 for some h′, then E[P (h′)]≥

E[P (h)].

Corollary 4 is a special case of Theorem 6, which is presented in Section 5.4. Corollary 4 states
that a job receives a non-zero service rate only during the period at which the service capacity
is expected to be low. Specifically, if the service capacity is expected to be lower at h than h′,
no service should be provided at h′ without first providing service at h (without exploiting the
expected low service capacity level at h). This desired property is formalized into conditions (i)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
34

and (ii). Condition (i) flattens out the service capacity for times at which the service rate is non-
zero. The flat service capacity is desirable because fluctuations of E[P (h)] during these intervals
compromise stability. Condition (ii) picks the period of lowest expected service capacity to serve.

The impact of conditions (i) and (ii) are illustrated intuitively in Figure 9b. Condition (i)
forces E[P (t)] to be constant during the time intervals [t1, t2] and [t2, t3]. Condition (ii) constrains
E[P (h′)]≥E[P (h)] for any h∈ [t1, t2), h′ ∈ [t2, t3) so that, during interval [t1, t2], job 1 is not served
beyond an extent that makes E[P (h)] in [t1, t2] higher than E[P (h′)] in [t2, t3]. Consequently, the
resulting service capacity has less fluctuations.

The above properties are commonly observed in ‘Valley Filling’ or ‘Water Filling’ algorithms.
Algorithms of this type were previously proposed for budget allocation problems such as CPU
scheduling [14], temperature and energy control [6], electric vehicle charging in deterministic set-
tings [33, 47], Parallel Gaussian Channels [48, Chapter 9], and optimal packet scheduling [49].
Furthermore, the optimal policy in Corollary 4 also has an interesting similarity to the YDS algo-
rithm [6, 14]. Specifically, the YDS algorithm finds the scheduling rate rk(t), k ∈ V, t ∈ [0, T ] that
optimizes

minimize
r:(2)(3)(58)

1

T

T∑
t=0

P (t)α (85)

where α > 1 is some constant. The optimal solution of (85) satisfies the following conditions: for
any job k ∈ V,

(iii) P (h) takes a constant value at any time h at which rk(h)≥ 0.
(iv) If rk(h)> 0 for some h and rk(h

′) = 0 for some h′, then P (h′)≥ P (h).
When we replace E[P (t)] with P (t) and u with r, conditions (i)–(ii) in Corollary 4 become conditions
(iii)–(iv) above. This relationship allows us to adapt the computational tool of the YDS algorithm
to find the optimal distributed policy in our setting.

Next, we present a computational method to find the optimal distributed policy that maximizes
stability. Let V(t1, t2) = {(a,σ, τ) : a≥ t1, a+ τ ≤ t2, (σ, τ) ∈ S} be the set of job profiles that have
an arrival time after t1 and a deadline before t2. We say that jobs with (a,σ, τ) are present in the
interval [t1, t2] when (a,σ, τ) ∈ V(t1, t2). Let w(t1, t2) denote the expected cumulative demand of
jobs present in the interval [t1, t2], i.e.

w(t1, t2) =

∫
a≥t1

∫
τ≤t2−a,(σ,τ)∈S

σΛ(a,σ, τ)dσdτda.

Intuitively, w(t1, t2) is the minimum expected demand that must be supplied during a time interval
[t1, t2] to satisfy the demand requirements. We further define the intensity of an interval [t1, t2] as

I(t1, t2) =
w(t1, t2)

t2− t1
.

Now, we are ready to present the computational method in Algorithm 1.
This method finds the service rate v∗(a,σ, τ, y) in descending order of the intensity I(t1, t2) in

which a job present. Specifically, it iterates the following procedures. It first finds

[t1, t2] = arg max
[t1,t2]

I(t1, t2), (86)

which is a maximum intensity interval (line 4). Then, it computes the scheduling rates that satisfy

E[P (h)] =
I(t1, t2)

t2− t1
h∈ [t1, t2) (87)

v∗(a,σ, τ, y)≤ v̄(a,σ, τ, y). (88)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
35

Algorithm 1: Computing the optimal distributed policy that maximizes stability

input : Λ(a,σ, τ)
output: v∗(a,σ, τ, y)

1 initialize v̄(a,σ, τ, y)←∞;

2 initialize Λ̂(a,σ, τ)←Λ(a,σ, τ);

3 while Λ̂(a,σ, τ)> 0 for some (a,σ, τ) do
4 identify the maximum intensity interval [t1, t2] by solving (86);
5 compute v∗(a,σ, τ, y) for job profiles in V(t1, t2) s.t. (87) and (88);
6 for (a,σ, τ) /∈ V(t1, t2) do
7 set v̄(a,σ, τ, y)← 0 for any a+ τ − y ∈ [t1, t2];

8 set Λ̂(a,σ, τ)← 0 for job profiles in V(t1, t2);

for job profiles present in the maximum intensity interval (line 5). As jobs not present in V(t1, t2)
are assigned zero service capacity during [t1, t2], the maximum service rates v̄(a,σ, τ, y) of jobs
not present in V(t1, t2) are set to be zero during [t1, t2] (line 7). From (88), these jobs will be
assigned zero service rate during interval [t1, t2] in later loops. Because jobs in V(t1, t2) are already
scheduled, before the next iteration, they are removed from the arrival statistics used to compute
the maximum intensity interval of the unscheduled jobs by setting Λ̂(a,σ, τ) = 0 for job profiles in
V(t1, t2) (line 8). Using the modified arrival statistics, the algorithm repeats the same process of
finding a new maximum intensity interval, computing the service rates of jobs present during this
interval, and modifying job statistics.

The following two corollaries state the properties which Algorithm 1 satisfies.

Corollary 5. The output of Algorithm 1 satisfies the conditions (i) and (ii) stated in Corollary
4.

Proof. For each job profile (a,σ, τ), its scheduling rates are determined in a single while loop
(line 2-7), when the job profile is present in the interval being considered. Moreover, the scheduling
rates are chosen to satisfy condition (87). Thus, given any y ∈ [0, τ ] with v(a,σ, τ, y) > 0, the
expected service capacity at a+ τ − y is given by

E[P (a+ τ − y)] =
I(t1, t2)

t2− t1
.

As this value does not depend on y, condition (i) holds.
Because the variable v̄(a,σ, τ, y) is only updated in lines 1 and 6 in Algorithm 1, it can only take

two values, i.e.

v̄(a,σ, τ, y)∈ {0,∞}. (89)

Let v(a,σ, τ, y1)> 0, v(a,σ, τ, y2) = 0 for some y1, y2. Let v̄′(a,σ, τ, y1) be the value of v̄(a,σ, τ, y1)
at the beginning of the loop in which y1 ∈ [t1, t2] in line 3. Similarly, let v̄′(a,σ, τ, y2) be the value
of v̄(a,σ, τ, y2) at the beginning of the loop in which y2 ∈ [t1, t2] in line 3. From (88) and (89), there
are two possible cases:
Case 1: v̄′(a,σ, τ, y1) = v̄′(a,σ, τ, y2) =∞.
Case 2: v̄′(a,σ, τ, y1) =∞, v̄′(a,σ, τ, y2) = 0.
In case 1, as the non-zero scheduling rates are determined in a single while loop (line 2-7), we

have

E[P (a+ τ − y1)] =E[P (a+ τ − y2)] =
I(t1, t2)

t2− t1
,

which satisfies condition (i).



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
36

In case 2, it can be shown that

E[P (a+ τ − y1)] =
I(t1, t2)

t2− t1
(90)

≤ I(t′1, t
′
2)

t′2− t′1
(91)

=E[P (a+ τ − y2)], (92)

where a+ τ − y1 ∈ [t1, t2], and a+ τ − y2 ∈ [t′1, t
′
2]. Here, (90) and (92) are due to (87), and (91)

holds because time a+τ −y2 belongs to the interval that is dealt in an earlier while loop than time
a+ τ − y1. Combining (90)–(92) yields condition (ii). Q.E.D.

Moreover, Algorithm 1 also minimizes the expected peaks in the service capacity.

Corollary 6. Algorithm 1 is the solution for the following optimization problem:

minimize
v:(1)(2)(3)(55)

max
t∈T

E[P (t)].

Proof. Let [t1(1), t2(1)] be the interval found by the first iteration in line 3 of Algorithm 117.
Note that [t1(1), t2(1)] is the interval with largest job demand in an instance. Thus, the value
for maxt∈[t1(1),t2(1)] E[P (t)] is a lower bound for the value of maxt∈T E[P (t)]. On the other hand,

the minimum value for maxt∈T E[P (t)] equals I(t1(1),t2(1))

t2(1)−t1(1)
. From line 4 in Algorithm 1, we have

E[P (h)] = I(t1(1),t2(1))

t2(1)−t1(1)
during h∈ [t1(1), t2(1)), so Algorithm 1 forces maxt∈[t1(1),t2(1)] E[P (t)] to take

the minimum value. Q.E.D.

5.4. Balancing stability and predictability
In the previous two sections, we show the optimal distributed policies that maximize each of
predictability and stability separately. Beyond the two special cases, however, balancing stability
and predictability is a much more complex problem, and it is too ambitious to seek a purely analytic
solution. Instead, we characterize the Pareto-optimality condition for the distributed algorithm
that balances predictability and stability in this section. Here, Pareto-optimality refers to the state
when predictability cannot be improved without compromising stability or vice versa.

Recall that, with regard to maximizing predictability, it is favorable to have a fixed service rate
over time (see Section 5.2). Meanwhile, with regards to maximizing stability, it is desirable to
have a fixed service capacity over time (see Section 5.3). These special cases provide us with the
intuition that the evenness of rk(t) and E[P (t)] may be used to balance predictability and stability.
We formalize this intuition in the following theorem, which generalizes the result in Theorem 5
and Corollary 4.

Theorem 6. The optimal solution of (60), v∗, has the following two properties.
(i) For each fixed job profile (a;σ, τ) ∈ T ×S, if the optimal solution satisfies v∗(a,σ, τ, a+ τ −

t1)> v∗(a,σ, τ, a+ τ − t2) at some t1 6= t2, then

αE[P (t1)] +βv∗(a,σ, τ, a+ τ − t1)≤ αE[P (t2)] +βv∗(a,σ, τ, a+ τ − t2)

(ii) For each fixed job profile (a;σ, τ)∈ T ×S, if the optimal solution satisfies v∗(a,σ, τ, a+ τ −
t1) = v∗(a,σ, τ, a+ τ − t2)∈ (0,1) at some t1 6= t2, then

E[P (t1)] =E[P (t2)]

17 With a slight abuse of notation, we use (1) in [t1(1), t2(1)] to denote the interval found in the first iteration



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
37

When α= 0, Theorem 6 essentially states that Exact Scheduling maximizes predictability.This
is because condition (ii) cannot happen when α= 0, so the optimality condition reduces to the case
when v(a,σ, τ, y) is constant at all y ∈ [0, τ ]. And the proof of Theorem 6 is an alternative way to
derive Theorem 1. When β = 0, the conditions for αE[P (h)] + βv(a,σ, τ, a+ τ − h) reduces to the
conditions stated in Corollary 4.

Proof of Theorem 6. Let Cs(v),Cp(v) be defined as follows:

Cs(v) =

∫ T

0

E[P (t)]2dt

Cp(v) =

∫ T

0

Var(P (t))dt,

where the expected value and variance is taken under policy v. Note that the objective function of
the optimization problem (60) equals

lim
T→∞

1

T

{
αCs(v) +βCp(v)

}
.

The constraints of (60) lead to∫ τ

y=0

v(a,σ, τ, y)dy= σ, (σ, τ)∈ S, a∈ T (93)

v(a,σ, τ, y)∈ [0,1], (σ, τ)∈ S, a∈ T , y ∈ [0, τ ]. (94)

The Lagrangian associated with problem (60) is

L(v;µ,ν) = lim
T→∞

1

T
L(v;µ,ν)

where

L(v;µ,ν) = αCs(v) +βCp(v)−
∫ T

a=0

∫
(σ,τ)∈S

µ(a,σ, τ)

∫ τ

y=0

v(a,σ, τ, y)dydσdτda

+

∫ T

a=0

∫
(σ,τ)∈S

∫ τ

y=0

(ν̄(a,σ, τ, y)− ν(a,σ, τ, y))v(a,σ, τ, y)dydσdτda,

µ(a,σ, τ) is the Lagrange multiplier associated with (93), and ν̄(a,σ, τ, y)≥ 0 and ν(a,σ, τ, y)≥ 0
are the Lagrange multipliers associated with the upper and lower bounds of v(a,σ, τ, y) in (94).

Let U be the space of scheduling policies of the form (55), and Uf ⊂ U be the space of feasible
scheduling policies, i.e.

Uf = {v : v satisfies (93) and (94)}.

We can consider L :U →R as a functional defined on U .
Now we impose an infinitesimal perturbation to v such that

v′ = v+ εṽ ∈Uf .

In order to derive the optimality condition of (60), we will compute the values of

L(v′;µ,ν)−L(v;µ,ν)

= α(Cs(v
′)−Cs(v)) +β(Cp(v

′)−Cp(v)) (95)

+

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

ε(−µ(a,σ, τ) + ν̄(a,σ, τ, y)− ν(a,σ, τ, y))ṽ(a,σ, τ, y)dadydσdτ +O(ε2)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
38

First, we compute Cs(v
′)−Cs(v). From Lemma 2, we have

Cs(v) =

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ

}2

dt, (96)

which yields

Cs(v
′) =

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

(v(t+ y− τ,σ, τ, y) + εṽ(t+ y− τ,σ, τ, y))Λ(t+ y− τ,σ, τ)dydσdτ

}2

dt

= 2ε

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ (97)∫
(σ,τ)∈S

∫ τ

y=0

ṽ(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ
}
dt

+

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ

}2

dt+O(ε2)

= 2ε

∫ T

t=0

{∫
(σ,τ)∈S

∫ t

z=t−τ
v(z,σ, τ, z− t+ τ)Λ(z,σ, τ)dzdσdτ (98)∫

(σ,τ)∈S

∫ t

z=t−τ
ṽ(z,σ, τ, z− t+ τ)Λ(z,σ, τ)dzdσdτ

}
dt

+

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ

}2

dt+O(ε2)

= 2ε

∫ T

t=0

G(t;v)

∫
(σ,τ)∈S

∫ t

z=t−τ
ṽ(z,σ, τ, z− t+ τ)Λ(z,σ, τ)dzdσdτdt (99)

+

∫ T

t=0

{∫
(σ,τ)∈S

∫ τ

y=0

v(t+ y− τ,σ, τ, y)Λ(t+ y− τ,σ, τ)dydσdτ

}2

dt+O(ε2).

Here, (98) is due to the change of variable in integration from (σ, τ, y) to (z = t+ y − τ,σ, τ). In
(99), the function G(t;v) is defined to be

G(t;v) =

∫
(σ,τ)∈S

∫ t

a=t−τ
v(σ, τ, a, y)Λ(a,σ, τ)dadσdτ. (100)

Combining (96) and (97)–(99), we have

Cs(v
′)−Cs(v) = 2ε

∫ T

t=0

∫
(σ,τ)∈S

∫ t

z=t−τ
G(t;v)ṽ(z,σ, τ, z− t+ τ)Λ(z,σ, τ)dzdσdτdt+O(ε2)

= 2ε

∫ T

t=0

∫
(σ,τ)∈S

∫ τ

y=0

G(t;v)ṽ(t− τ + y,σ, τ, y)Λ(z,σ, τ)dydσdτdt+O(ε2)

= 2ε

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

t=0

G(t;v)ṽ(t− τ + y,σ, τ, y)Λ(z,σ, τ)dtdydσdτ +O(ε2)

= 2ε

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

G(a+ τ − y;v)ṽ(a,σ, τ, y)Λ(a,σ, τ)dadydσdτ +O(ε2)(101)

Second, Cp(v
′)−Cp(v) can be computed as

Cp(v) =

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

t=0

v(t+ y− τ,σ, τ, y)2Λ(t+ y− τ,σ, τ)dtdydσdτ



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
39

=

∫
(σ,τ)∈S

∫ τ

y=0

∫ T+y−τ

a=y−τ
v(a,σ, τ, y)2Λ(a,σ, τ)dadydσdτ (102)

=

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

v(a,σ, τ, y)2Λ(a,σ, τ)dadydσdτ (103)

where (102) is due to the change of variable in integration from (σ, τ, y, t) to (σ, τ, y, a= t+ y− τ),
and (103) is due to assumptions (51) and (52). From (103), we have

Cp(v
′)−Cp(v) = 2ε

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

v(a,σ, τ, y)ṽ(a,σ, τ, y)Λ(a,σ, τ)dadydσdτ +O(ε2). (104)

Combining (95), (101), and (104) yields

L(v′;µ,ν)−L(v;µ,ν) = ε

∫
(σ,τ)∈S

∫ τ

y=0

∫ T

a=0

Fv(a,σ, τ, y)ṽ(a,σ, τ, y)dadydσdτ +O(ε2),

where

Fv(a,σ, τ, y) = 2(αG(a+ τ − y;v) +βv(a,σ, τ, y))Λ(a,σ, τ)−µ(a,σ, τ) + ν̄(a,σ, τ, y)− ν(a,σ, τ, y))

= 2(αEv[P (a+ τ − y)] +βv(a,σ, τ, y))Λ(a,σ, τ)−µ(a,σ, τ) + ν̄(a,σ, τ, y)− ν(a,σ, τ, y)).

Here, the second equality is due to (100) and the observation that18

∫
(σ,τ)∈S

∫ t

a=t−τ
v(σ, τ, a, y)Λ(a,σ, τ)dadσdτ =Ev[P (t)].

For the functional L to be stationary at v∗ ∈Uf , the first term should be zero for any ṽ(a,σ, τ, y)
satisfying the constraint v′ ∈Uf . This condition is given by

αE[P (t)] +βv∗(a,σ, τ, a+ τ − y) =
µ(a,σ, τ)− ν̄(a,σ, τ, y) + ν(a,σ, τ, y)

2Λ(a,σ, τ)
(105)

for any y ∈ [0, τ ], (σ, τ) ∈ S, a ∈ T . Since the optimal solution of (59) is a stationary point of L,
(105) is the necessary condition for optimality.

Now we are ready to derive properties (i) and (ii). When v∗(a,σ, τ, y1)> v∗(a,σ, τ, y2) at some
y1 6= y2, there are four possible cases:
Case 1: v∗(a,σ, τ, y1), v∗(a,σ, τ, y2)∈ (0,1)
Case 2: v∗(a,σ, τ, y1)∈ (0,1) and v∗(a,σ, τ, y2) = 0
Case 3: v∗(a,σ, τ, y1) = 1 and v∗(a,σ, τ, y2) = 0
Case 4: v∗(a,σ, τ, y1) = 1 and v∗(a,σ, τ, y2)∈ (0,1)

For case 1, we have

αE[P (a+ τ − y1)] +βv∗(a,σ, τ, y1) =
µ(a,σ, τ)

2Λ(a,σ, τ)

= αE[P (a+ τ − y2)] +βv∗(a,σ, τ, y2).

18 The subscript v in E denotes the expected value under policy v.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
40

For case 2, we have

αE[P (a+ τ − y1)] +βv∗(a,σ, τ, y1) =
µ(a,σ, τ)

2Λ(a,σ, τ)

≤ µ(a,σ, τ) + ν(a,σ, τ, y2)

2Λ(a,σ, τ)

= αE[P (a+ τ − y2)] +βv(a,σ, τ, y2).

For case 3, we have

αE[P (a+ τ − y1)] +βv(a,σ, τ, y1) =
µ(a,σ, τ)− ν̄(a,σ, τ, y1)

2Λ(a,σ, τ)

≤ µ(a,σ, τ) + ν(a,σ, τ, y2)

2Λ(a,σ, τ)

= αE[P (a+ τ − y2)] +βv(a,σ, τ, y2).

For case 4, we have

αE[P (a+ τ − y1)] +βv(a,σ, τ, y1) =
µ(a,σ, τ)− ν̄(a,σ, τ, y1)

2Λ(a,σ, τ)

≤ µ(a,σ, τ)

2Λ(a,σ, τ)

= αE[P (a+ τ − y2)] +βv(a,σ, τ, y2).

The above conditions for cases 1-4 yield property (i).
If v∗(a,σ, τ, y1) = v∗(a,σ, τ, y2)∈ (0,1), then

αE[P (a+ τ − y1)] +βv∗(a,σ, τ, y1) =
µ(a,σ, τ)

2Λ(a,σ, τ)

= αE[P (a+ τ − y2)] +βv∗(a,σ, τ, y2),

implying E[P (a+ τ − y1)] =E[P (a+ τ − y2)]. Thus, property (ii) holds. Q.E.D.

6. Conclusion
As it becomes more common for service systems to have a dynamic capacity that instantaneously
adapts to demand, the goal of providing a high quality of service (e.g. meeting deadlines) while
minimizing the variance of service capacity has received increasing attention. Though there ex-
ists extensive literature analyzing existing algorithms, few analytic results characterizing optimal
policies were known in such settings.

In this paper, we characterize the optimal distributed policies in many common scenarios, sta-
tionary and non-stationary arrivals, strict and soft demands, with and without deadline extensions,
and a variety of objective functions. The results highlight that novel generalizations of Exact
Scheduling maximize the predictability (i.e. minimizes the service capacity variance) under both
stationary and non-stationary Poisson arrival processes. The derivation of the results is enabled
by a combination of a few ideas. To obtain optimal algorithms, we need to solve functional opti-
mization problems whose constraints include a PDE (the continuity equation). Instead of directly
solving these problems, we consider their relaxations without the PDE constraints, which extend
the class of admissible scheduling policies. We first solve the relaxed problem to provide lower
bounds to their minimum costs. The constraint sets of the original optimization problems are sub-
sets of the relaxed problems, so the optimal solutions of the relaxed problems do not necessarily
lie within the original constraint sets. However, interestingly, for a few different settings considered



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
41

in this paper, the optimal schedulers from the latter problem happen to lie within the constraint
set of the original optimization problems, thereby also optimal for the original problems.

When the goal is to balance stability and predictability, more complex policies turn out to be
optimal. Such optimal distributed policies include a stochastic counterpart of the YDS algorithm,
which is shown to be the optimal algorithm in a deterministic setting. This similarity in algorithm
structures and the proofs suggest a new bridge between the stochastic and worst-case scheduling
communities. This connection will be interesting to explore in future work.

In addition to characterizing optimal distributed policies, we also bound the gap between the
performance of distributed policies and centralized policies using both theory and experiment.
To derive theoretical bounds, we adopt optimal control techniques, which can also be extended
to derive performance bounds for related problems. In an experiment conducted in the electrical
vehicle charging testbed, we observe that the optimal distributed policies could nearly match the
performance of centralized policies.

Going forward, we note two interesting future directions of this paper:
Non-asymptotic optimization in related problems. Typically, the analysis of scheduling policies for

non-stationary settings with deadlines has been done using asymptotic regimes, e.g. heavy-traffic
regimes. However, the techniques we develop in this paper do not require asymptotic approxi-
mations. Thus, in addition to the results we have proven, our techniques are also an important
contribution. We hope these techniques will inspire the discovery of other optimality results in
applications that involve scheduling.

The design space of partially-centralized schedulers. In Section 4.1, we made an initial attempt to
explore the middle ground between fully-centralized algorithms and fully-distributed algorithms.
We demonstrated numerically that Exact Scheduling PC can have a competitive performance to
fully-centralized algorithms while preserving the scalability of Exact Scheduling, which is fully-
distributed. Beyond our initial analysis, the vast design space of partially-centralized algorithms
may have great potential in balancing performance versus scalability.

Acknowledgments
The authors would like to thank John C. Doyle and Steven Low for their support and insightful discussion.
This work was supported by JST, PRESTO Grant Number JPMJPR2136, Japan, and ANII–Uruguay, Grant
Number FSE 1 2018 1 153050, Uruguay.

References
[1] John A Stankovic and Krithi Ramamritham. What is predictability for real-time systems? Real-Time Systems,

2(4):247–254, 1990.

[2] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment, 3(1-2):330–
339, 2010.

[3] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and applications, vol-
ume 24. Springer Science & Business Media, 2011.

[4] Kathleen Spees and Lester B Lave. Demand response and electricity market efficiency. The Electricity Journal,
20(3):69–85, 2007.

[5] Mahdi Behrangrad. A review of demand side management business models in the electricity market. Renewable
and Sustainable Energy Reviews, 47:270–283, 2015.

[6] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temperature. Journal of the
ACM (JACM), 54(1):3, 2007.

[7] Shivendra S Panwar, Don Towsley, and Jack K Wolf. Optimal scheduling policies for a class of queues with
customer deadlines to the beginning of service. Journal of the ACM (JACM), 35(4):832–844, 1988.

[8] Shivendra S Panwar and Don Towsley. On the optimality of the ste rule for multiple server queues that serve
customers with deadlines. Technical report, University of Massachusetts, 1988.

[9] Partha P Bhattacharya and Anthony Ephremides. Optimal scheduling with strict deadlines. IEEE Transactions
on Automatic Control, 34(7):721–728, 1989.

[10] John P Lehoczky. Using real-time queueing theory to control lateness in real-time systems. ACM SIGMETRICS
Performance Evaluation Review, 25(1):158–168, 1997.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
42

[11] H Christian Gromoll and  Lukasz Kruk. Heavy traffic limit for a processor sharing queue with soft deadlines. The
Annals of Applied Probability, 17(3):1049–1101, 2007.

[12] Andres Ferragut, Fernando Paganini, and Adam Wierman. Controlling the variability of capacity allocations
using service deferrals. ACM Transactions on Modeling and Performance Evaluation of Computing Systems
(TOMPECS), 2(3):15, 2017.

[13] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[14] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu energy. In Foundations of
Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 374–382. IEEE, 1995.

[15] George Lee, Ted Lee, Zhi Low, Steven H Low, and Christine Ortega. Adaptive charging network for electric
vehicles. In Signal and Information Processing (GlobalSIP), 2016 IEEE Global Conference on, pages 891–895.
IEEE, 2016.

[16] John A Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C Buttazzo. Deadline scheduling for real-time
systems: EDF and related algorithms, volume 460. Springer Science & Business Media, 2012.

[17] Jiawei Hong, Xiaonan Tan, and Don Towsley. A performance analysis of minimum laxity and earliest deadline
scheduling in a real-time system. IEEE Transactions on Computers, 38(12):1736–1744, 1989.

[18] Michael Pinedo. Stochastic scheduling with release dates and due dates. Operations Research, 31(3):559–572,
1983.

[19] John P Lehoczky. Real-time queueing network theory. In Proc of the 18th IEEE Real-Time Systems Symposium,
pages 58–67, 1997.

[20] Martin Zeballos, Andres Ferragut, and Fernando Paganini. Proportional fairness for ev charging in overload.
IEEE Transactions on Smart Grid, 10(6):6792–6801, 2019.

[21] Richard L Daniels, Barbara J Hoopes, and Joseph B Mazzola. Scheduling parallel manufacturing cells with
resource flexibility. Management science, 42(9):1260–1276, 1996.

[22] C-Y Lee and V Jorge Leon. Machine scheduling with a rate-modifying activity. European Journal of Operational
Research, 128(1):119–128, 2001.

[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74–80, 2013.

[24] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou.
Apollo: Scalable and coordinated scheduling for cloud-scale computing. In OSDI, volume 14, pages 285–300,
2014.

[25] Xiaorui Wang and Ming Chen. Cluster-level feedback power control for performance optimization. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on, pages 101–110.
IEEE, 2008.

[26] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dynamic right-sizing for power-
proportional data centers. IEEE/ACM Transactions on Networking, 21(5):1378–1391, 2013.

[27] Dara Kusic, Jeffrey O Kephart, James E Hanson, Nagarajan Kandasamy, and Guofei Jiang. Power and perfor-
mance management of virtualized computing environments via lookahead control. Cluster computing, 12(1):1–15,
2009.

[28] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH Andrew. Greening geographical
load balancing. In Proceedings of the ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, pages 233–244. ACM, 2011.

[29] Anshul Gandhi. Dynamic server provisioning for data center power management. PhD thesis, Carnegie Mellon
University, 2013.

[30] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal power allocation in server
farms. In ACM SIGMETRICS Performance Evaluation Review, volume 37(1), pages 157–168. ACM, 2009.

[31] Ashutosh Nayyar, Josh Taylor, Anand Subramanian, Kameshwar Poolla, and Pravin Varaiya. Aggregate flexi-
bility of a collection of loadsπ. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pages
5600–5607. IEEE, 2013.

[32] Anand Subramanian, Manuel J Garcia, Duncan S Callaway, Kameshwar Poolla, and Pravin Varaiya. Real-time
scheduling of distributed resources. IEEE Transactions on Smart Grid, 4(4):2122–2130, 2013.

[33] Lingwen Gan, Ufuk Topcu, and Steven H Low. Optimal decentralized protocol for electric vehicle charging. IEEE
Transactions on Power Systems, 28(2):940–951, 2013.

[34] Niangjun Chen, Lingwen Gan, Steven H Low, and Adam Wierman. Distributional analysis for model predictive
deferrable load control. In Proc. of the IEEE 53rd annual Conference on Decision and Control, 2014.

[35] François Baccelli and Bartlomiej B laszczyszyn. Stochastic Geometry and Wireless Networks, Volume I - Theory.
Now Publishers, 2009.

[36] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The cost of a cloud: research problems
in data center networks. ACM SIGCOMM computer communication review, 39(1):68–73, 2008.

[37] Peter Brucker and P Brucker. Scheduling algorithms, volume 3. Springer, 2007.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
43

[38] Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online scheduling for deadline-
sensitive jobs. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures, pages 305–314, 2013.

[39] Joseph Pedlosky. Geophysical fluid dynamics. Springer Science & Business Media, 2013.

[40] Francois Baccelli and Pierre Brémaud. Elements of queueing theory: Palm Martingale calculus and stochastic
recurrences, volume 26. Springer Science & Business Media, 2013.

[41] John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm: Exact characterization and
average case behavior. In Real Time Systems Symposium, 1989., Proceedings., pages 166–171. IEEE, 1989.

[42] Shelby L Brumelle. On the relation between customer and time averages in queues. Journal of Applied Probability,
8(3):508–520, 1971.

[43] Jianzhong Du and Joseph Y-T Leung. Minimizing total tardiness on one machine is np-hard. Mathematics of
operations research, 15(3):483–495, 1990.

[44] Kenneth R Baker and Gary D Scudder. Sequencing with earliness and tardiness penalties: a review. Operations
research, 38(1):22–36, 1990.

[45] Wanrong Tang and Ying Jun Zhang. A model predictive control approach for low-complexity electric vehicle
charging scheduling: Optimality and scalability. IEEE transactions on power systems, 32(2):1050–1063, 2016.

[46] HS Das, MM Rahman, S Li, and CW Tan. Electric vehicles standards, charging infrastructure, and impact on
grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120:109618, 2020.

[47] Lingwen Gan, Adam Wierman, Ufuk Topcu, Niangjun Chen, and Steven H Low. Real-time deferrable load
control: handling the uncertainties of renewable generation. In Proceedings of eEnergy, 2013.

[48] Thomas M Cover and Joy A Thomas. Elements of information theory. Wiley-Interscience, 2nd edition edition,
July 18 2006.

[49] J. Yang and S. Ulukus. Optimal packet scheduling in a multiple access channel with energy harvesting transmit-
ters. Journal of Communications and Networks, 14(2):140–150, April 2012.

[50] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 2. Athena scientific Belmont, MA, 1995.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
44

Appendix A: Proof of Lemma 2

In this section, we present results that are useful for proving our main theorems. First, we restate one part
of the Campbell’s theorem, which is relevant to our proofs.

Theorem 7 (Campbell formula for marked Poisson processes [40]). Consider an independently
marked Poisson point process {xk} ⊂Rd with intensity measure Λ : Rd→R+ and marks in Rp with distribu-
tion F (dz). Let g :Rd×Rp→R be a measurable function satisfying∫

Rd

∫
Rp

g(x, z)2Λ(dx)F (dz)<∞.

Then, the random sum

G=
∑
k∈Z

g(xk, zk)

is absolutely convergent with probability one and satisfies

E[G] =

∫
Rd

∫
Rp

g(x, z)Λ(dx)F (dz)

Var(G) =

∫
Rd

∫
Rp

g(x, z)2Λ(dx)F (dz).

Throughout, we consider a scheduling policy (14), which is defined by a function v : S×R→R+ as follows:

rk(t) = v(σk, τk, yk(t)) k ∈ V.

The function v satisfies ∫ ∞
ak

v(σk, τk, ak + τk− t)2dt=

∫ ∞
ak

rk(t)
2dt≤ σk

where the maximum value of the integral is attained by Immediate Scheduling rk(t) = 1{t ∈ [ak, ak + σk)}
subject to constraint (1). Therefore, we have∫

(σ,τ)∈S

∫
R
v(σ, τ, y)2dyΛf(σ, τ)dσdτ ≤Λ

∫
(σ,τ)∈S

σf(σ, τ)dσdτ =E[σ]Λ<∞ (106)

Combining (106) and Theorem 7, we obtain (62) and (63):

E[P (t)] =

∫
(σ,τ)∈S

∫ τ

0

v(σ, τ, y)Λf(σ, τ)dydσdτ

Var(P (t)) =

∫
(σ,τ)∈S

∫ τ

0

v(σ, τ, y)2Λf(σ, τ)dydσdτ,

which yields Lemma 2.

Appendix B: Proof of Proposition 1

We observe that ∫ ∞
−∞

∫ ∞
0

∂

dy
λ(x, y)xdxdy=

∫ ∞
0

x

{∫ ∞
−∞

∂

dy
λ(x, y)dy

}
dx (107)

=−
∫ ∞
0

x lim
L→∞

λ(x,L)dx

=−ΛE[σ− σ̂(σ, τ)] (108)

where (107) holds because bounded S implies that λ(x,∞) = 0. Therefore, the stationary mean of the service
capacity satisfies

E[P (t)] = E

[∑
k∈V

u(xk(t), yk(t))

]



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
45

=

∫ ∞
−∞

∫ ∞
0

λ(x, y)u(x, y)dxdy

=−
∫ ∞
−∞

∫ ∞
0

d

dx
(λ(x, y)u(x, y))xdxdy (109)

=

∫ ∞
−∞

∫ ∞
0

(
∂

dy
λ(x, y) + Λf(x, y)

)
xdxdy (110)

=−ΛE[σ− σ̂(σ, τ)] + ΛE[σ] (111)

= ΛE[σ̂(σ, τ)]

Here, (109) is due to Integration by Parts, (110) is due to (5), (111) is due to (107)–(108).

Appendix C: Proof of Theorem 2

Since the constraints of (7) is hard to solve, we first consider providing a lower bound on its optimal solution.
Again, we consider the class of control policies representable by (14) and the optimization problem

minimize
v:(1)(3)(14)

Var(P ) +E[U ]. (112)

Because the constraint set of (112) contains that of (7), the optimal value of (112) lower-bounds the optimal
value of (7). Therefore, to prove Theorem 2, it suffices to solve (112) (in the next lemma) and observe that
its optimal solution is representable by a control policy of the form (4).

Lemma 7. The optimal solution of (112) is

v(σ, τ, y) = min

{
δ

2
,
σ

τ

}
1{y > 0} , (113)

and it achieves the optimal value (22).

Proof. First, we derive an analytical formula for E[U ] as a function of the scheduling policy v. Let

σ̂(σ, τ) =

∫ τ

−∞
v(σ, τ, y)dy, (114)

be the actual amount of service received by a job with demand σ and sojourn time τ . The amount of
unsatisfied demand for this job is σ− σ̂(σ, τ). Additionally, σ̂(σ, τ) satisfies

0≤ σ̂(σ, τ)≤ σ, ∀(σ, τ)∈ S. (115)

Consequently, the stationary mean of U satisfies

E[U ] = lim
t→∞

E

[ ∑
k∈V:ak+τk=t

(σk− σ̂(σk, τk))

]

=

∫
(σ,τ)∈S

(σ− σ̂(σ, τ))Λf(σ, τ)dσdτ (116)

Then, we use (116) to rewrite (112) as follows

inf
v:(1)(3)(14)

Var(P ) + E[U ]

= inf
σ̂:(115)

[
inf

v:(1)(3)(14)(114)
Var(P ) + δ

∫
(σ,τ)∈S

(σ− σ̂(σ, τ))Λf(σ, τ)dσdτ

]
(117)

= inf
σ̂:(115)

[{
inf

v:(1)(3)(14)(114)
Var(P )

}
+ δ

∫
(σ,τ)∈S

(σ− σ̂(σ, τ))Λf(σ, τ)dσdτ

]
. (118)

Equality (118) holds because, constrained on σ̂(σ, τ) =
∫ τ
0
v(σ, y, τ)dy for some fixed σ̂, the second term of

(117) is not a function of v. From Lemma 1, the first term of (118) admits the closed-form expression

inf
v:(1)(3)(14)

Var(P ) =

∫
(σ,s)∈S

σ̂(σ, τ)2

τ
Λf(σ, τ)dσdτ, (119)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
46

which is attained by

v(σ, τ, y) =
σ̂(σ, τ)

τ
. (120)

Substitute (119) into (118) yields

inf
σ̂:(115)

∫
(σ,τ)∈S

{
σ̂(σ, τ)2

τ
+ δ(σ− σ̂(σ, τ))

}
Λf(σ, τ)dσdτ, (121)

where the optimization variable is now σ̂ instead of v. To derive a closed-form solution of (112), we can
minimize the integrand of (121) point-wisely. By doing so, we observe that, for each (σ, τ) ∈ S, a necessary
and sufficient condition for optimality is

σ̂(σ, τ) = arg inf
σ̂:(115)

σ̂(σ, τ)2

τ
+ δ(σ− σ̂(σ, τ)) = min

{
δτ

2
, σ

}
. (122)

Combining (120) and (122), we obtain that (113) is the optimal solution of (112). Substitute (113) into (121),
we obtain its optimal value (22). Q.E.D.

Given Lemma 7, Theorem 2 can be derived as follows. It can be verified that scheduler (113) can be
realized as (21) using a scheduling policy of the form (21). This implies that the optimal solution of problem
(112) also lies within the constraint set of problem (7). Because the cost attained by scheduler (113) is a
lower bound on the optimal value of problem (7), the optimal solution of problem (7) is scheduler (21).

Appendix D: Proof of Theorem 3

Since the constraints of (8) is hard to solve, we first consider providing a lower bound on its optimal solution.
Again, we consider the class of control policies representable by (14) and the optimization problem

minimize
v:(1)(2)(14)

Var(P ) +E[W ]. (123)

Because the optimal value of (123) lower-bounds that of (7), to prove Theorem 3, we can solve (123) (in the
next lemma) and observe that its optimal solution is representable by a control policy of the form (4).

Lemma 8. The optimal solution of (123) is

v(σ, τ, y) =


σ

τ
1{y > 0} if

σ

τ
≤
√
ε

√
ε 1

{
y > τ − σ√

ε

}
otherwise

. (124)

and it achieves the optimal value (24).

Proof. With a slight abuse of notation, let

τ̂(σ, τ) =

{
τ if v(σ, τ, y) = 0, ∀y < 0

τ −min{ȳ : v(σ, τ, y) = 0,∀y≤ ȳ} otherwise
(125)

denote the actual sojourn time for jobs having a service demand σ and a sojourn time τ . Then, the stationary
mean of W satisfies

E[W ] = ε

∫
(σ,τ)∈S

(τ̂(σ, τ)− τ)Λf(σ, τ)dσdτ.

The optimization problem (123) can then be written into

inf
v:(1)(2)(14)

Var(P ) +E[εW ]

= inf
τ̂≥τ

[{
inf

v:(1)(2)(14)
Var(P )

}
+ ε

∫
(σ,τ)∈S

(τ̂(σ, τ)− τ)Λf(σ, τ)dσdτ

]
(126)

= inf
τ̂≥τ

∫
(σ,τ)∈S

{
σ2

τ̂
+ ε(τ̂(σ, τ)− τ)

}
Λf(σ, τ)dσdτ, (127)



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
47

where infv:(1)(2)(14) Var(P ) in (126) is attained by

v(σ, τ, y) =
σ

τ̂(σ, τ)
. (128)

The optimal choice of deadline extensions τ̂?(σ, τ) is the point-wise maximum of the integrand of (127), i.e.

τ̂?(σ, τ) = arg inf
σ̂:(115)

σ2

τ̂
+ ε(τ̂(σ, τ)− τ) =

{
σ√
ε
, τ

}
. (129)

Combining (128) and (129), we obtain (124) as the closed-form solution of (123). Q.E.D.
Given Lemma 8, we are now ready to prove Theorem 3.
Proof (Theorem 3) Recall that the optimal value of problem (123) lower-bounds the optimal value of

problem (8). Therefore, if there is a policy of the form (4) that produces identical service rates to (124), it
is also optimal for problem (8). Next, we show that the policy (23) satisfies the above description.

Given any job k ∈ V with σ ≤ τ
√
ε, both (23) and (124) produce the service rates rk(t) = σk/τk if t ∈

[ak, ak + τk] and rk(t) = 0 otherwise. Given any job k ∈ V with σ >
√
ετ , (124) produces the service rates

rk(t) =
√
ε if t∈ [ak, ak +σ/

√
ε ] and rk(t) = 0 otherwise. Observe that under the policy (23), for any y(t)> 0,

we have

x(t)

y(t)
− σ

τ
=
σ−
√
ε(t− a)

τ − (t− a)
− σ

τ
≥ (σ/τ −

√
ε)(t− a)

τ − (t− a)
≥ 0,

where the third inequality is due to τ ≥
√
ε. Thus, the policy (124) also produce the service rates rk(t) =

√
ε

if t∈ [ak, ak +σ/
√
ε ] and rk(t) = 0 otherwise. Q.E.D.

Appendix E: Proof of Theorem 4

We first consider providing a lower bound of problem (9) by solving the optimization problem

minimize
v:(1)(14)

Var(P ) +E[U ] +E[W ]. (130)

The solution of problem (130) is given in the next lemma, which is also a feasible policy for the constraint
set of problem (9).

Lemma 9. The optimal solution of problem (130) is

v(σ, τ, y) =



σ

τ
1{y > 0} if

σ

τ
≤min

{
δ

2
,
√
ε

}
δ

2
1{y > 0} if

σ

τ
>
δ

2
and

δ

2
≤
√
ε

√
ε1

{
y > τ − σ√

ε

}
otherwise

. (131)

and it achieves the optimal value (26).

Proof. Recall that σ̂(σ, τ) in (114) denotes the actual service supply for jobs having a service demand σ
and a sojourn time τ , and τ̂(σ, τ) in (125) denote the actual sojourn time for such jobs. The optimization
problem (130) can be written into

inf
v:(1)(14)

Var(P (t)) +E[δU ] +E[εW ]

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

[
inf

v:(1)(14)
Var(P ) +

∫
(σ,τ)∈S

{δ(σ− σ̂(σ, τ)) + ε(τ̂(σ, τ)− τ)}Λf(σ, τ)dσdτ

]

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

∫
(σ,τ)∈S

[
σ̂(σ, τ)2

τ̂(σ, τ)
+ δ(σ− σ̂(σ, τ)) + ε(τ̂(σ, τ)− τ)

]
Λf(σ, τ)dσdτ (132)

= inf
σ̂(σ,τ)≥σ
τ̂(σ,τ)≥τ

∫
(σ,τ)∈S

C(σ, τ̂)Λf(σ, τ)dσdτ,



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
48

where C(σ, τ̂) is defined to be

C(σ, τ̂) :=
σ̂(σ, τ)2

τ̂(σ, τ)
+ δ(σ− σ̂(σ, τ)) + ε(τ̂(σ, τ)− τ)

=



σ2

τ
if τ̂ = τ and

σ

τ
≤ δ

2

δ

(
σ− δτ

4

)
if τ̂ = τ and

σ

τ
>
δ

2

σ2

τ̂
+ ε(τ̂ − τ) if τ̂ > τ and

σ

τ̂
≤ δ

2

δ

(
σ− δτ̂

4

)
+ ε(τ̂ − τ) if τ̂ > τ and

σ

τ̂
>
δ

2

.

Relation (132) holds because infv:(1)(14) Var(P ) is attained by

v(σ, τ, y) =
σ̂(σ, τ)

τ̂(σ, τ)
.

The optimal σ̂∗(σ, τ) and τ̂∗(σ, τ) is the point-wise maximum of the integrand of (132).
To derive a closed form expression for σ̂∗(σ, τ) and τ̂∗(σ, τ), we first show that in the case of δ2/4≤ ε, we

have τ̂∗(σ, τ) = τ . Suppose not and τ̂(σ, τ) = τ̂ ≥ τ . Then, if σ≤ δτ/2, we have

C(σ, τ̂)−C(σ, τ) =
σ2

τ̂
+ ε(τ̂ − τ)− σ2

τ

= (τ̂ − τ)

(
ε− σ2

τ τ̂

)
≥ (τ̂ − τ)

{
ε−
(
δτ

2

)2
1

τ τ̂

}
(133)

≥ (τ̂ − τ)

{
ε− δ2

4

}
(134)

≥ 0, (135)

where (133) is due to σ ≤ δτ/2; (134) is due to τ̂ > τ ; and (135) is due to δ2/4≤ ε. When σ ∈ (δτ/2, δτ̂/2],
we have

C(σ, τ̂)−C(σ, τ) =
σ2

τ̂
+ ε(τ̂ − τ)− δ

(
σ− δτ

4

)
≥ ε(τ̂ − τ) +

(
δτ

2

)2
1

τ̂
− δ δτ̂

2
+
δ2τ̂

4
(136)

≥ ε(τ̂ − τ) +
1

2
δ2(τ − τ̂) (137)

= (τ̂ − τ)

{
ε− δ2

4

}
≥ 0, (138)

where (136) is due to σ≤ δτ/2; (137) is due to τ̂ > τ ; and (138) is due to δ2/4≤ ε. When σ > δτ̂/2, we have

C(σ, τ̂)−C(σ, τ) = δ

(
σ− δτ̂

4

)
+ ε(τ̂ − τ)− δ

(
σ− δτ

4

)
= (τ̂ − τ)

(
ε− δ2

4

)
≥ 0 (139)

where (139) is due to δ2/4≤ ε. Since (135), (138), and (139) contradict the supposition that τ̂(σ, τ) = τ̂ > τ
is optimal, we have τ̂∗(σ, τ) = τ . Then, given τ̂∗(σ, τ) = τ , the optimal σ̂∗(σ, τ) follows from Lemma 7. In a
similar manner, we can show that, in the case of δ2/4> ε, the optimal service supply is σ̂∗(σ, τ) = σ. Then,
given σ̂∗(σ, τ) = σ, the optimal τ∗(σ, τ) follows from Lemma 8. Finally, combining above, we obtain (131) as
the closed-form solution of (130). Q.E.D.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
49

Theorem 4 is an immediate consequence of Lemma 9. To see it, recall that the optimal value of prob-
lem (130) lower-bounds that of problem (9). Moreover, scheduler (25) of the form (4) can produce identical
service rates to (131), so it is also optimal for problem (9).

Appendix F: Proof of Lemma 4

To solve infc:(29)L(c;γ), we first observe that

inf
c:(29)

L(c;γ) = inf
c:(29)

lim
T→∞

1

T

∫ T

0

Var(P (t)) + γ(Var(X(t))−D)dt (140)

≥ inf
c:(29)

lim
T→∞

inf
c:(29)

1

T

∫ T

0

Var(P (t)) + γ(Var(X(t))−D)dt (141)

= lim
T→∞

inf
c:(29)

1

T

∫ T

0

Var(P (t)) + γ(Var(X(t))−D)dt, (142)

where equality (140) holds by the definition of L(c;γ), inequality (141) holds because (1/T )
∫ T
0

Var(P (t)) +

γ(Var(X(t))−D)dt is always less than (1/T ) infc:(29)
∫ T
0

Var(P (t)) + γ(Var(X(t))−D)dt.
Now we consider representing the integral of (142) as the sum of E[(P (tn) − P̄ )2 + γ(X(tn) − X̄)2] at

discrete points in time, where {tn} have a fixed sampling interval h= tn+1− tn,∀n ∈ Z+. So, the dynamics
of X(tn) satisfies

X(tn+1) =X(tn) +A(tn, h)−hP (tn), (143)

where A(tn, h) is the demand added to X due to new arrivals in the time interval [tn, tn+1) (the total demands
of jobs arriving at this interval), hP (tn) is the total service provided during [tn, tn+1). Here, the service policy
c is assumed to produce constant values during each sampling intervals, i.e. c(k, t1,At) = c(k, t2,At) for any
t1, t2 ∈ [tn, tn+1),19 so the service capacity takes the constant value P (tn) during this interval.

Let Lh,N(u;γ) is defined by20

Lh,N(c;γ) :=E
[
γ(X(tN)− X̄)2

]
+

N−1∑
k=0

E
[
(P (tk)− P̄ )2 + γ(X(tk)− X̄)2

]
.

Observe that (142) satisfies

lim
T→∞

inf
c:(29)

1

T

∫ T

0

E[(P (t)− P̄ )2 + γ((X(t)− X̄)2−D)]dt

= lim
T→∞

inf
c:(29)

lim
h→0

1

T
Lh,dT/he(c;γ)h− γD

= lim
T→∞

lim
h→0

inf
c:(29)

1

T
Lh,dT/he(c;γ)h− γD. (144)

To solve (144), we first consider the cost-to-go Jn(X(tn)) for some h> 0 and N ∈Z+, i.e.

Jn(X(tn)) :=E
[
γ(X(tN)− X̄)2

]
+

N−1∑
k=n

E
[
(P (tk)− P̄ )2 + γ(X(tk)− X̄)2

]
. (145)

Using mathematical induction, we show below that, at the optimal solution c∗, the cost-to-go takes the form

Jn(X(tn)) = E
[
pn(X(tn)− X̄)2

]
+

N−1∑
k=n

E[pk+1(A(tn, h)− Āh)2], (146)

where {pk} satisfies the Riccati difference equation

pk = pk+1−
h2p2k+1

h2pk+1 + 1
+ γ, pN = γ. (147)

19 As the sampling interval goes to zero, c can realize any continuous function c(k, t,At) of t.

20 Here, X̄ and P̄ is the expected value of X(t) and P (t), which is not related with the sampling interval. It shall also
be noted that the subsequent analysis assumes a fixed sampling interval h, which is sufficiently small.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
50

First, condition (146) holds for n = N by the construction of (145). Second, assume that condition (146)
holds for n+ 1. Let Āh be the stationary mean of A(tn, h). Recall from (145) that Jn(X(tn)) is the sum of
term n to term N . Thus, it can be decomposed into the term of n and the sum of n+ 1 term to N term,
which is Jn+1(X(tn+1)). So, we have

Jn(X(tn))

= inf
P (tn)

E[(P (tn)− P̄ )2 + γ(X(tn)− X̄)2 + Jn+1(X(tn+1))] (148)

= inf
P (tn)

E[(P (tn)− P̄ )2 + γ(X(tn)− X̄)2 + Jn+1(X(tn) +A(tn, h)−hP (tn)] (149)

= inf
P (tn)

E[(P (tn)− P̄ )2 + γ(X(tn)− X̄)2 + Jn+1(X(tn) + (A(tn, h)− Āh)−h(P (tn− P̄ ))] (150)

= inf
P (tn)

E[(P (tn)− P̄ )2 + γ(X(tn)− X̄)2 + pn+1(X(tn) + (A(tn, h)− Āh)−h(P (tn)− P̄ ))2] (151)

+

N−1∑
k=n+1

E[pk+1(A(tk, h)− Āh)2]

where (149) uses relation (143); (150) relies on Āh = hP̄ from Brumelle’s formula; (151) uses the induction
hypothesis that the cost-to-go at n+ 1 satisfies (146). Note that

E[(A(tn, h)− Āh)X(tn)] = E[A(tn, h)− Āh]E[X(tn)] = 0, (152)

where the first equality holds because future arrivals in interval [tn, tn+1) does not depend on past arrivals
in interval [0, tn), and the second equality is due to E[A(tn, h)− Āh] = 0. Expanding the last quadratic term
in (148) and applying E[(A(tn, h)− Āh)X(tn)] = 0, we can rewrite (152) into

Jn(X(tn)) =(pn+1 + γ)(X(tn)− X̄)2 +

N∑
k=n

pk+1E(A(tk, h)− Āh)2]

+ inf
P (tn)
{(1 +h2pn+1)(P (tn)− P̄ )2− 2hγpn+1(X(tn)− X̄)(P (tn)− P̄ )]. (153)

The minimum value of (153) is attained by

P (tn, h)− P̄h =
hpn

1 +h2pn
(X(tn)− X̄), (154)

and the optimal cost-to-go becomes (146), where pn is defined by (147). As N →∞, pk converges to a unique
positive scalar

p := lim
N→∞

pk =
h2γ+h

√
γ
√
h2γ+ 4

2h2
, (155)

which is also a fixed point of (147) [50]. Taking the limit of N →∞ and h→ 0 for (154) and (155), the
infimum of (144) is attained when

P (t)− P̄ =
√
γ (X(t)− X̄).

Finally, the infimum value of (144) is computed as

lim
T→∞

inf
c:(29)

1

T

∫ T

0

Var(P (t)) + γ(Var(X(t))−D)dt

= lim
T→∞

lim
h→0

h

T

N−1∑
k=0

E[pk+1(A(tk, h)− Āh)2]− γD (156)

=
√
γΛE[σ2]− γD (157)

=
√
γΛE[σ2]− γVar(X). (158)

where equality (156) is due to (146); and equality (157) is derived from (155), and equality (158) is derived
from the complementary slackness condition of

γ(Var(X)−D) = 0.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
51

Appendix G: Proof of Corollary 2

Recall from Lemma 3 that X(t) is the total remaining demands of jobs arriving before t. For any time
interval h> 0, X(t) satisfies the following dynamics:

X(t+h) =X(t) +A(t, h)−P (t, h),

where A(t, h) is the total demand of jobs arriving during time interval [t, t + h), and P (t, h) is the total
amount served during this interval, i.e.

A(t, h) :=
∑

{k∈V:ak∈[t,t+h)}

σk,

P (t, h) :=

∫ t+h

t

P (τ)dτ.

let Dt = {k ∈ V : ak + τk ≤ t} be the set of jobs that departs by time t. As no job receives more service than
its demand, X(t) is bounded from above by

X(t) =
∑
k∈At

σk−
∫
τ≥t

P (τ)dτ

≤
∑
k∈At

σk−
∑
i∈Dt

σk

≤
∑

k∈At\Dt

σk (159)

where Dt = {k ∈ V : ak + τk ≤ t} is the set of jobs that departs by time t. From (159) and X(t) ≥ 0, the
variance of X(t) is upper-bounded by

Var(X(t))≤E[X(t)2] (160)

≤E

 ∑
k∈At\Dt

σk

2
= Var

 ∑
k∈At\Dt

σk

+E

 ∑
k∈At\Dt

σk

2

=

∫
(σ,τ)∈S

τσ2Λf(σ, τ)dσdτ +

(∫
(σ,τ)∈S

τσΛf(σ, τ)dσdτ

)2

= ΛE
(
τσ2

)
+ (ΛE [τσ])

2
(161)

Applying D= ΛE (τσ2) + (ΛE [τσ])
2

to Lemma 3, we obtain (39).

Appendix H: Additional performance bound.

Lemma 3 characterizes the tradeoff between achieving a small variance of X(t) and achieving a small variance
of P (t). Plugging in Exact Scheduling’s stationary variance of X,

Var(X) = ΛE
[

1

3
σ2τ

]
,

we obtain a performance bound for Exact Scheduling (13).

Corollary 7. Let Var(P ) be the stationary variance of P (t) that is attained by Exact Scheduling (13). Let
Var(P †) be the minimum stationary variance attainable by any centralized algorithm (29) with the same level
of Var(X) as Exact Scheduling. Then, the following condition holds:

Var(P )≤ 4

3

E[σ2/τ ]E[σ2τ ]

E[σ2]2
Var(P †),

where the expectations on the right hand side are taken over the arrival distribution.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
52

In the setting of soft service requirements, Generalized Exact Scheduling attains

Var(X) =ΛE
[
σ2τ

3
1

{
σ

τ
≤min

{
δ

2
,
√
ε

}}]
+ ΛE

[(
δ2τ3

12
− 1

2
δστ2 +σ2τ

)
1

{
σ

τ
>
δ

2
≥
√
ε

}]
+ ΛE

[(
σ3

3
√
ε

)
1

{
σ

τ
>
√
ε >

δ

2

}]
.

Combining above and Lemma 3, we obtain the following corollary.

Corollary 8. Let Var(P ) be the stationary variance of P (t) that is attained by Generalized Exact Schedul-
ing (25). Let Var(P ∗) be the minimum stationary variance attainable by any centralized algorithm of the form
(29) with the same level of Var(X) as Generalized Exact Scheduling. Then, the following condition holds:

Var(P )≤ αβ

E[σ2]2
Var(P ∗),

where

α=E
[
σ2

τ
1

{
σ

τ
≤min

{
δ

2
,
√
ε

}}
+ δ

(√
ε− δτ

4

)
1

{
σ

τ
>
δ

2
≥
√
ε

}
+
(
2
√
εσ− ετ

)
1

{
σ

τ
>
√
ε >

δ

2

}]
β =E

[
σ2τ

3
1

{
σ

τ
≤min

{
δ

2
,
√
ε

}}
+

(
δ2τ3

12
− 1

2
δστ2 +σ2τ

)
1

{
σ

τ
>
δ

2
≥
√
ε

}
+

(
σ3

3
√
ε

)
1

{
σ

τ
>
√
ε >

δ

2

}]
.

Corollary 8 bounds the ratio of Var(P ) achievable by Generalized Exact Scheduling (the optimal distributed
algorithm) to Var(P ∗) achievable by any centralized algorithms. Here, the optimal distributed algorithm is
subject to soft service constraints, while the optimal centralized algorithm is subject to the same Var(X)
with Generalized Exact Scheduling.

Appendix I: Additional numerical results

Section 4.1 shows the empirical performance of different algorithms for typical cases. In this section, we
provide more detailed experimental data to support the results in Section 4.1. Figure 10 compares how Exact
Scheduling and Offline Optimal schedule jobs in two instances: one instance in which Exact Scheduling per-
formed competitively, and another instance in which Exact Scheduling performed poorly. Figure 11 provide
a more comprehensive view of Figure 5 by comparing the algorithms’ performance for the arrival distribution
of a broader range of parameters.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
53

(a) Example case when Exact Scheduling performed competitively to Offline Optimal

0 100 200 300 400 500 600 700 800

0

5

10

15

0 100 200 300 400 500 600 700 800

0

10

20

(b) Example case when Exact Scheduling performed poorly to Offline Optimal

0 100 200 300 400 500 600 700 800

0

5

10

0 100 200 300 400 500 600 700 800

0

5

10

15

Figure 10 Example cases when Exact Scheduling performs competitively or poorly in comparison to Offline
Optimal. Each colored region represents the service rate for one job over its sojourn time, and the
height of the colored region (by any color) shows the sum of service rate, i.e. the service capacity, at
each time. The sum of all service rates at time t is the service capacity P (t). The top plot (a) shows
a case when Exact Scheduling performs competitively to Offline Optimal, while the bottom plot (b)
shows a case when the Offline Optimal has much better performance than Exact Scheduling.



Nakahira, Ferragut, and Wierman: Minimal-Variance Distributed Deadline Scheduling
54

(a) Performance in synthetic data generated from arrival distribution I.

10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Mean laxity (¯̀)

E
m

p
ir

ic
al

co
m

p
et

it
iv

e-
ra

ti
o

Immediate Scheduling
Equal Service
Exact Scheduling
Exact Scheduling PC

Online Optimization (MPC)

(b) Performance in synthetic data generated from arrival distribution II.

0 1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Maximum ratio of laxity to demand (γ̄− 1)

E
m

p
ir

ic
al

co
m

p
et

it
iv

e-
ra

ti
o

Immediate Scheduling
Equal Service
Exact Scheduling
Exact Scheduling PC

Online Optimization (MPC)

Figure 11 Performance comparison of algorithms under strict service (demand and deadline) constraints for
varying parameters of arrival distribution. The ratio of each algorithm’s empirical variance to the
Offline Optimal is averaged over all scheduling instances. The number of instances averaged are 500
for both plots. In plot (a), the mean laxity refers to parameter ¯̀ in distribution I, and the empirical
competitive-ratio for ¯̀= 25 is shown in Figure 5b. In plot (b), the maximum ratio of laxity to demand
refers to γ̄− 1 in distribution II, and the empirical competitive-ratio (the realized cost (6) divided the
cost of the optimal offline algorithm) for varying γ̄− 1 = 1 is shown in Figure 5c.


