
Improving performance of multiple-level cache
systems

Ismael Rodríguez
Universidad ORT Uruguay
rodriguez_i@ort.edu.uy

Andrés Ferragut
Universidad ORT Uruguay

ferragut@ort.edu.uy

Fernando Paganini
Universidad ORT Uruguay

paganini@ort.edu.uy ∗

ABSTRACT

Cache networks architectures have been widely deployed
as a response to the growth in content demand. This
topic has been widely studied through theoretical and
empirical approaches. In this paper we evaluate differ-
ent caching policies for an array of caches, and show that
performance can be improved by incorporating the idea
of pushing recently evicted content upstream. Both nu-
merical and analytical studies are provided, and these
show promising results for future lines of work.

1. INTRODUCTION

The explosive demand for certain files in the Internet
has led naturally to the deployment of cache systems,
which improve responsiveness by storing content closer
to clients. The main design issue is how to manage
which file to store, and which to evict, under limited
storage capacity.
Most of the strategies deployed for this purpose have

been conceived from the point of view of a single cache.
In particular, a popular algorithm is to cache the most
recent request and evict the Least Recently Used (LRU)
file. While the exact analysis of this policy is diffi-
cult, approximations [3] can be used to support its good
performance. An alternative approach, more amenable
to theoretical studies are Time To Live (TTL) caches,
where evictions are determined by a timer associated
with each stored content.
When networks of caches are considered, it is often

assumed that each cache makes decisions independently,
and the collective performance must then be assessed.

∗The authors were partially supported by AFOSR US
under grant FA 9550 15 1 0183.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

LANCOMM, August 22-26, 2016, Florianopolis , Brazil

c© 2016 ACM. ISBN 978–1–4503–4426–5/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940116.2940119

Here again the LRU policy is harder to analyze, with
more exact results available for the TTL case [2, 5].
However, performance gains could be obtained from al-
gorithms that couple decisions at different caches; a se-
ries of such alternatives are surveyed in [6].
In this paper we add to these choices the idea of not

discarding evicted files, but rather “pushing” them up-
stream in the cache hierarchy, since recently evicted files
may still be in demand. This leads us to the “Move to
Front - Push” and the “Pull-Push” algorithms, which
we describe in Section 2, and compare in Section 3 by
simulation experiments using LRU caches. In Section 4
we assume instead that caches follow a TTL policy, and
analyze their performance using Markov chain methods.
Conclusions are given in Section 5.

2. MODEL AND ALGORITHMS

A cache network is generally defined (see e.g. [9]) by
a set of cache/routers with the capacity of storing files
and also forwarding requests. The network has at least
one custodian which stores all files. File requests may
be received at different nodes; if the file is available
locally we have a hit, otherwise a miss occurs and the
request is forwarded to another cache. The topology
must guarantee that, under successive misses, requests
eventually reach the custodian.
Once a hit occurs, the file is returned to the client

along the exact same path through which requests were
forwarded. This fact permits the implementation of dif-
ferent inter-cache algorithms; we list here the main ones
from [6]:

• Leave Copy Everywhere (LCE): A copy of the
file is stored in each of the caches of the path.

• Move To Front (MTF): The content is only
stored in the cache where the client requested it.

• Move Copy Down (MCD) or “Pull”: In this
case the file is moved one cache closer to the client,
instead of moving it all the way down.

In all the above alternatives, it is generally assumed
that if any cache capacity is exceeded, the evicted file is
discarded. In this paper we explore a simple alternative:
instead of discarding, push the evicted file to the next

cache up the forwarding path1. The idea is that if the
file was cached until a moment ago, it is likely to still be
useful to local clients. Note that this procedure would
have limited impact in the LCE policy, since in that
case the file is likely to already be stored upstream; in
the other cases it is a more significant variation. Hence,
we define the following two policy variants:

• MTF-Push: Adds the push feature to MTF.

• Pull-Push: Adds the push feature to MCD (Pull).

In what follows we will analyze the performance of these
policies, in comparison with the standard ones.
For simplicity we will focus here on the case of a line

topology, with N caches. Cache k has storage capacity
Bk; this will be considered a hard bound in the case of
LRU policies, and a mean occupation bound for studies
with TTL caches. Client requests are assumed to ar-
rive at cache 0, and the custodian is located after cache
N . More general studies of these policies over other
topologies were carried out in [8].

3. EXPERIMENTS WITH PUSH/LRU

We carry out numerical comparisons by simulating
the different algorithms, using as metrics: (i) the mean
number of hops until the content is found (which is a
measure of delay in content retrieval); and (ii) the frac-
tion of time each content file is stored in each cache.
As a simple example to test performance, we use a

line topology composed by four buffers with capacity for
B = 10 files; there is a total of N = 100 files assumed
of equal size, with a popularity distribution following
Zipf’s Law: (pm = 1

mα
); this is commonly accepted [1]

for Web documents. For simplicity we assume requests
arrive according to a Poisson process while evictions
follow the LRU rule. In Table 1 we compare the mean
delay of each algorithm, varying the Zipf parameter α.

α LCE = MTF MCD MTF - Push Pull - Push

0.0 7.176 6.269 5.998 6.001
0.8 5.773 4.495 4.213 3.564
1.2 3.449 2.733 2.267 1.878
2.0 0.541 0.563 0.313 0.296

Table 1: Mean number of hops to retrieval.

Note that with requests arriving at a single node,
MTF performs equally to LCE: the first cache has iden-
tical behavior, and additional caches are not useful (in
MTF they are empty and in LCE they have the same
contents as the first). The remaining three policies dif-
ferentiate the content in the upstream caches: this is
one reason for their improved performance.
More importantly, we see a clear improvement due to

the push feature, across values of α. This validates the
heuristic of keeping recently evicted content close.
1Of course, this may trigger further evictions upstream.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

O
c
c
u
p
a
n
c
y
 P

ro
b
a
b
ili

ty

Popularity Rank (m)

Cache 0

Cache 1

Cache 2

Cache 3

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

O
c
c
u
p
a
n
c
y
 P

ro
b
a
b
ili

ty

Popularity Rank (m)

Cache 0

Cache 1

Cache 2

Cache 3

Figure 1: Storage probabilities per file and
cache. Top: MTF-Push, ‘×’ indicates Che’s gen-
eralization. Bottom: Pull-Push.

In fact for a hypothetical central planner who knows
file popularities, under exponential inter-request times,
the optimal storage policy is to statically store files with
distance to the clients a decreasing function of popular-
ity: namely, store the B0 most popular files in the first
cache, the next B1 in the second cache, and so on. This
property has been known since [7] for a single cache un-
der the so-called Independent Reference Model for re-
quests, which holds for Poisson arrivals; the extension
to a line of caches is straightforward. We note that this
optimality may not hold for general inter-request times,
as established in [4].
Does the push heuristic achieve (approximately) the

optimal file distribution? To understand this we turn to
the graphs in Figure 1. The horizontal axis indexes files
in decreasing popularity; the vertical axis is the fraction
of time the file is stored. The different caches in the line
are represented, separately for the MTF-Push and Pull-
Push policies.
The MTF-Push system achieves only a modest dif-

ferentiation between the occupancy distribution of the
different caches, noticeable mainly in the most popular
files. In this case we also validated the results with an
analytical model: Che’s approximation to LRU [3]. The
model can be applied to the first LRU cache on its own,
but also under MTF-Push the first two caches behave
collectively as an LRU cache, and so on, from where
individual occupancies are derived. We observe a close
match with experimental results.
On the other hand, the Pull-Push algorithm achieves

a closer to optimal distribution: the first cache stores
mainly the most popular contents, while the second

spreads the occupancy among the next most popular
contents. This is consistent with the better performance
of the Pull-Push algorithm; analytical models are not
available for this case.

4. ANALYSIS OF PUSH FOR TTL

We now turn our attention to TTL caches. Here,
when caching a file a timer is started, and the file is
evicted upon its expiration; if another request is re-
ceived before that, the timer is reset. Assuming evic-
tions only occur due to the timer, the occupation pro-
cess for each file can be analyzed in a decoupled way.
This premise implies that buffer bounds are not hard,
but instead can be imposed in an average sense, which
for large enough systems is well justified [4].
Suppose now that we have a line of caches as consid-

ered before, under the push strategy: evicted files from
one TTL cache are pushed upstream; both the Pull-
Push or MTF-Push alternatives will be considered. For
simplicity, assume the line of caches is infinite in length:
this means there is exactly one copy of each file m in the
cache system, whose location evolves over time driven
by the request and timer processes. If we can calculate
the probability (proportion of time) πk(m) that file m
is stored in cache k, then the mean number of hops to
find the file is2 cm =

∑∞
k=1

k.πk(m).
We now calculate πk(m) for both strategies assuming

timers are exponentially distributed with mean 1/µm,
which may be file dependent. The evolution of the file
location in the line of caches is then given by a contin-
uous time Markov chain, shown for each case in Figure
2. Analyzing them we find that the steady-state distri-
bution is in both cases geometric, of the form

πk(m) = (1− ρm) (ρm)
k
.

The only difference is in the expression for ρm, namely

ρP−P

m =
µm

λm

; ρM−P

m =
λm

λm + µm

.

We should note as well that the Pull-Push case has the
stability condition µm < λm (the timer must be on av-
erage slower that the inter-request rate), whereas MTF-
Push is always stable. The resulting expression for the
mean number of hops to reach the file is

cm =

∞∑

k=1

k.πk(m) =
ρm

1− ρm
.

Suppose one could choose the timer parameter µm for
each m; a natural optimization would be

min
∑

m

λm.cm s.t. :
∑

m

πk(m) ≤ Bk for each k.

As both policies’ occupancy probabilities are decreas-
ing in k, if all buffers have the same size B0 we may

2This assumes that requests find the system in a typical
state; this is the PASTA property of Poisson arrivals.

....
0 1 2....

0 1 2

λm λmλm

λm

λm

λm

µm µmµm
µm µmµm

Figure 2: Pull-Push (left) and MTF-Push
(right) associated Markov Chains

impose the above restriction only at k = 0. The main
observation is that for both policies above (indeed for
any policy that yields a geometric distribution) we have
π0(m) = 1

1+cm
; therefore our optimization can be re-

stated as the convex program:

min
∑

m

λm.cm s.t. :
∑

m

1

1 + cm
≤ B0, (1)

in particular having the same optimum. So both poli-
cies involving push can achieve the same performance
under TTL if the µm’s are optimized accordingly.

5. CONCLUSIONS

In this paper we studied multiple-level cache systems,
focusing on a line topology. Under LRU evictions, we
showed empirically that pushing content upstream im-
proves performance, in two versions (MTF-Push and
Pull-Push). We also showed analytically that for TTL
caches with exponential timers, the same performance
is achievable by both.
Since the optimization in (1) requires tailoring timers

to file demands, the equivalence will not hold for LRU,
where eviction times are approximately equal across
files [3]. Our experiments suggest a preference for Pull-
Push, but the question remains open for future research.

6. REFERENCES
[1] P. Barford, A. Bestavros, A. Bradley, and M. Crovella.

Changes in web client access patterns: Characteristics and
caching implications. World Wide Web, 2(1-2):15–28, 1999.

[2] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact
analysis of TTL cache networks. Performance Evaluation,
79:2–23, 2014.

[3] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching
systems: Modeling, design and experimental results. IEEE
J. on Selected Areas in Comm., 20(7):1305–1314, 2002.

[4] A. Ferragut, I. Rodriguez, and F. Paganini. Optimizing TTL
caches under heavy-tailed demands. In ACM/Sigmetrics,
2016.

[5] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley.
Performance evaluation of hierarchical TTL-based cache
networks. Computer Networks, 65:212–231, 2014.

[6] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms
for hierarchical web caches. In IEEE ICPCC, pages 445–452,
2004.

[7] Z. Liu, P. Nain, N. Niclausse, and D. Towsley. Static caching
of web servers. In Photonics West’98 Electronic Imaging,
pages 179–190, 1997.

[8] I. Rodŕıguez. Diseminacion de contenidos en redes de datos
distribuidas. Eng. Thesis, Universidad ORT Uruguay, 2015.

[9] E. J. Rosensweig, D. S. Menasche, and J. Kurose. On the
steady-state of cache networks. In IEEE/Infocom, pages
863–871, 2013.

