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Abstract—We consider an EV charging infrastructure where
scheduling algorithms determine the service priority, based on the
departure deadline. The focus is on the Earliest Deadline First
algorithm, and the impact on its performance stemming from
uncertainty in the deadlines. Through numerical simulations we
evaluate the resource allocation achieved by the algorithm in
two versions, depending on whether or not vehicles are curtailed
after their declared deadline expires. Results are compared with a
theoretical analysis of the idealized EDF algorithm. Experiments
with real-world traces are also included.

Index Terms—EV charging, scheduling, deadlines.

I. INTRODUCTION AND BACKGROUND

This paper concerns charging infrastructures for Electrical
Vehicles (EVs) which are increasingly being deployed to
support and promote this alternative mode of transportation.
The scenario is a parking lot at a certain corporate or school
site, where EVs stay for a considerable time and may thus
be conveniently recharged. While individual chargers may
be provided across the facility, power provisioning need not
cover the peak load, due to its expense and the possible
disruption to the grid. Rather, it appears sensible to dimension
the installation for a fraction of peak load, and use the time
flexibility to schedule the sharing of this limited capacity.

The performance of such installations for a stream of
arriving EVs, each with service requirement and departure
deadline, was analyzed in [1], for various scheduling policies.
In particular the Earliest-Deadline-First (EDF) policy was
considered, which fills the capacity with EVs closest to their
departure. For brevity we focus on this particular policy for
the present paper, but several of the considerations discussed
here can be extended to other scheduling policies.

The analytical model in [1] represents individual vehicles
as particles in the space of residual service-sojourn times,
and uses a fluid approximation to understand the resource
allocation attained by the scheduling policy. This fluid approx-
imation is suitable to model the behavior of a large system.
In particular it was found that the attained service for EDF is
approximated by Sa = min{S, τ∗}, where S is the requested
service (in units of time to fully charge the vehicle) and τ∗ is a
threshold, essentially the remaining time to deadline expiration
when a vehicle acquires priority. The value of τ∗ emerges

This work was partially funded by ANII-Uruguay under grant
FSE 1 2019 1 159457

from a fixed point equation that involves the system load.
In particular, if the load is below the system capacity, the
threshold τ∗ → ∞ and every vehicle gets fully served. In
the more interesting case where the system is in overload,
the EDF policy truncates the largest jobs. We expand on this
explanation in Section II.

The EDF policy is based on the assumption that the system
operator knows the vehicle’s departure time in advance; in
practice, this requires that users declare their length of stay
upon arrival. However, users may not be aware of their exact
departure times, or can mislead the system with their reports.
This brings up the question: what is the effect on uncertainty
in the deadline information on the resulting allocation of re-
sources? In this paper we explore this issue through modeling
and numerical experiments.

In Section II we consider the effect of purely random devia-
tions, attributed to users’ own uncertainty about their departure
time. For an EDF policy that schedules based on the reported
deadline taken at face value, we find under homogeneous
arrivals that the mean behavior of the assigned service still
follows the theoretical result even under uncertainty; however
there is an increased variance in the assigned service. A closer
look reveals a correlation between assignment and uncertainty:
vehicles under-reporting their deadline tend to be favored
because they are prioritized by the EDF algorithm.

There is thus an incentive to deliberate misrepresent one’s
urgency to obtain priority service. Given this fact, we consider
in Section III a curtailing variant to the EDF policy: when
the reported deadline expires, so does the vehicle’s priority.
Experiments with this version show an aggregate behavior
similar to the previous case, but individual EV performance is
affected. Indeed, now the optimal strategy for an arriving EV
is to report an unbiased estimate of the departure time. We also
outline an analytical argument that explains these observations
from the point of view of the model in [1].

In Section IV we compare the results obtained with ho-
mogeneous synthetic traffic with those obtained from real-
world data on EV charging demand, obtained from the Cal-
tech Adaptive Charging Newtork (ACN) [2]. To represent
interesting conditions we consider a charging installation of
reduced capacity. We find that the qualitative conclusions of
the preceding study remain valid for this real world situation.
Conclusions are given in Section V.



A. Related work
The analysis and design of charging policies for EV fleets

is an active research topic. In the scheduling domain, [3] pro-
poses an algorithm that estimates future demands to maximize
the state of charge of vehicles upon departure. In [4] the
authors obtain competitive-ratio bounds for several scheduling
policies with deadline constraints, in particular EDF. Another
relevant reference is [5], where the scheduling of a large
aggregate of deferrable loads is studied, and many of the
relevant policies such as earliest-deadline or least-laxity-first
are brought into the smart grid context.

Our line of work is based on a queueing approach and its
fluid limits: for instance [6], [7] use such methods for a simple
equal sharing policy. In comparison, [1], [8], [9] cover more
general scheduling policies when subject to deadlines, such as
EDF and the ones introduced in [5]. We consider the fluid scale
as an idealized reference model from which deviations can be
studied, in particular the uncertainty on reported deadlines.
We refer to [10], [11] for a comprehensive analysis of fluid
limits for earliest deadline policies and many server queues.
Empirical studies of EV charging with real-world date are
presented in [2], [12].

II. EDF UNDER UNCERTAINTY

We focus on the analysis of an EV charging lot with limited
capacity, under the EDF policy and uncertain deadlines. We
begin by briefly recalling how EDF works and the attained
service obtained by vehicles, following [1].

Assume vehicles arrive into the parking lot at rate λ
(vehicles/hour) as a Poisson process. Each vehicle k has
two random characteristics: a required service time Sk (i.e.
the energy requested divided by the charging power), and a
sojourn time Tk, which is the time until the car leaves the
parking lot. We use S, T for a generic vehicle; these random
quantities follow general distributions, and we assume that
T > S with probability 1, i.e. the demand of each EV is a
priori feasible at the charging station.

The garage operator must assign to each EV a charging
rate rk(t), interpreted as a fraction of nominal power. Since
capacity is finite, the charging rate should verify:

0 6 rk(t) 6 1 for every k, t, and
n(t)∑
k=1

rk(t) 6 C,

where n(t) is the number of EVs present in the garage which
still require service. C can be interpreted as the maximum
number of chargers that could be simultaneously turned on at
full power.

The EDF policy assumes that the system operator has full
knowledge of Tk for every vehicle present, and chooses to
serve at full power the C vehicles closer to their deadlines:
the rate is given by the indicator function

rk(t) = 1{Tk−t6τ∗(t)}, (1)

with τ∗(t) is such that the number of vehicles simultaneously
served is 6 C to satisfy the system constraint. A simple
example is given in Fig. 1.
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Fig. 1. EDF policy behavior for n(t) = 9 and C = 3. Vehicles in service
reduce their remaining service and deadline. Those that are not served are
only consuming their remaining deadline.

The system load is defined as:

ρ := λE[S], (2)

i.e. the average service time of the typical vehicle multiplied
the arrival rate. The interpretation of the load is the number of
chargers active on average when there is infinite capacity. If
the real system capacity is C < ρ the system is in overload.
In that case, we have the following:

Proposition 1 ( [1], Prop. 3): Under the EDF policy
in overload, the attained service Sa per user is given by
min{S, τ∗}, where the threshold τ∗ satisfies

λE[min{S, τ∗}] = C. (3)

The above proposition is better understood by following
the trajectory of a typical vehicle, as depicted in Fig. 2. A
typical vehicle does not get any service until its remaining
deadline is equal to τ∗, the threshold value. Once it reaches
this value, it gets priority and begins service, but only receives
charge for a period of τ∗ units, and therefore Sa = τ∗, and the
vehicle leaves the system with unfinished demand. If instead
the requested service is less than τ∗, then the vehicle can be
fully served and Sa = S.

We now turn our attention to a more realistic scenario
where the system operator does not know Tk in advance for
every vehicle. Instead, the owner of an EV will estimate its
own departure time and report a perturbed deadline T ′k. If
the system operator takes this at face value, and applies EDF
scheduling, we have an Uncertain EDF scenario.

To analyze the performance of such a system, we create a
Poisson stream of EVs with a defined arrival, departure and
workload, as specified by equations (4). Charging times are
assumed to be exponentially distributed. For this stream of
arrivals we perform two simulations: the first one considers
the real deadlines and will be our benchmark. The second
one adds uncertainty in the deadlines by adding an error in
the departure time, modeled as a Gaussian distribution with
standard deviation σ. All simulations were performed in Julia
1.6 using the library EVQueues [13], that we developed.

For our simulations we chose the the following parameters:

λ = 60; E[S] = 1; E[T ] = 2; C = 40 (4)
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Fig. 2. Typical vehicle trajectories under EDF: large demand (above) and
small demand (below).

The system is in overload, since ρ = λE[S] = 60 > C.
First, we analyze the overall performance of the algorithm.

In Fig. 3 we show the ratio between average charge delivered
and requested energy as a function of σ. As a reference, we
show the benchmark performance for EDF when considering
the real deadlines, which is very close1 to the expected C/ρ =
66.6%. As the reporting error increases, the overall energy
delivered worsens, but the loss is small.

Fig. 3. Average Work vs Standard deviation

We now analyze individual vehicle performance: Fig. 4
shows the energy received as a function of the energy re-
quested for an uncertainty parameter σ = 0.2. In this case (3)
can be solved and the threshold satisfies τ∗ = 1.1. Adding
uncertainty does not affect the threshold value, meaning that
on average the vehicles receive the same service even under

1Differences are attributed to transient effects.

uncertain conditions. The only effect is an increased variability
on individual performance around the threshold.

Fig. 4. Energy Requested and received for EDF, σ = 0.2.

Since both simulations are fed with the same arrival process,
it is interesting to compare how each individual EV fares in
both cases. Fig. 5 plots the energy received for each individual
EV, in both simulations. Black dots represent vehicles that
were completely charged with both algorithms, red dots were
only completely charged when using the real deadlines, yellow
dots when using the reported deadlines and blue dots are EVs
that were not fully charged independently of the deadline con-
sidered. Again, while each vehicle receives different service,
the overall performance of the system is robust to uncertainty.

Fig. 5. Energy Received considering real and reported deadlines, σ = 0.2.

We now take a closer look at the relationship between
individual EV performance and its own error in deadline
declaration. Fig. 6 reveals an unsurprising correlation between
assignment and uncertainty: vehicles under-reporting their
deadline tend to be favored because they get priority in the
EDF algorithm. Since the scheduling continues to charge
vehicles after their reported deadline has expired, there is an
incentive to deliberate misrepresent one’s urgency to obtain
priority service. We analyze how to correct this issue in the
next Section.

III. ENFORCING INCENTIVES IN DEADLINE REPORTING

The main conclusion of the preceding analysis is that the
overall performance of the EDF algorithm is robust under



Fig. 6. Received energy vs. difference in reported deadline Tk − T ′k . A
positive value means that the vehicle under-reported their departure time.
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Fig. 7. Typical vehicle trajectory under the curtailed version of EDF. The
green arrow represents an under-reported deadline.

deadline uncertainty, but an incentive for under-reporting de-
velops. Therefore, it is also of interest to consider an algorithm
that, while keeping the average performance of EDF, rewards
users that report their true deadlines.

We thus propose to use the following curtailed EDF algo-
rithm: the system operator at any point in time t computes the
remaining estimated deadlines:

τ ′k(t) = T ′k − t,

for all vehicles present in the system. The EVs where τ ′k(t) is
positive are served in EDF fashion using τ ′k as an estimation
of their remaining sojourn time. Those EVs that have negative
τ ′k have exceeded their estimated time in the system, and thus
are moved to the back of the priority queue and only charged
when there are less than C vehicles with positive τ ′k(t). In
practice, in an overload scenario, vehicles that under-report
their deadline are effectively curtailed when they reach their
estimated deadline.

In Fig. 7 we show the typical service trajectory of an
EV that under-reports its deadline. The net effect of this
under-reporting is that the vehicle gets priority sooner (their
remaining estimated deadline reaches the threshold before).
However, since it gets curtailed at the end of its reported
sojourn time, the overall service received does not increase.

For vehicles that over-report their length of stay, the situa-
tion is more complicated, and indeed they can incur some loss

in service due to the fact that they lose priority. However, this
is not an issue since the strategic behavior we are trying to
curb is to avoid under-reporting. Over-reporting would never
be strategically beneficial.

From this discussion, we conclude that the average perfor-
mance of the curtailed EDF policy should be near that of EDF
in overload, but should curb the incentive to under-report. We
now validate this through simulation. In Fig. 8 we plot the
energy delivered using the same conditions than in Section
II adding the curtailed version. The added curtailment indeed
does not incur a large penalty in terms of overall efficiency.

Fig. 8. Average Work vs Standard deviation - Curtail

As for the received energy, in Fig. 9 we compare the attained
charge obtained by each EV under perfect information EDF
and the curtailed version. We see than in this case, a similar
threshold is attained and thus the average overall performance
per vehicle presents no significant departures from the full
information case.

Fig. 9. Energy Requested and received - Curtail

Finally, we turn our attention to the incentives. In Fig.
10 we plot the difference in energy received as a function
of the deadline under-reporting Tk − T ′k; large values of
this difference means larger under-reporting. As compared
to Fig. 6, we have reduced the correlation between under-
reporting and received energy. In fact, the peak is attained
when T ′k ≈ Tk, meaning that the incentive for users is to
declare their true deadlines upon arrival, since doing this
maximizes the energy they receive.



Fig. 10. Comparison between EDF with and without uncertainty - Curtail

IV. PERFORMANCE IN A REAL WORLD SCENARIO

In this Section we evaluate our algorithms using a real
world scenario. We use data from Caltech’s ACN Portal [2],
with information from the 5th of September to the 12th of
September of 2018 in a Caltech parking lot. We focus on the
performance of the curtailed version of the EDF algorithm.

We obtain 578 entries which we run into our algorithms,
reducing the site’s capacity to two EVs in order to analyze the
system in an overload condition. The average work requested
for EVs is 8.7 kWh and the average sojourn time is 5.3 hours.

In Fig. 11 we plot the amount of energy received when
running the Uncertain EDF algorithm using both the reported
and real departure time. We observe the same trends as before:
some EVs might receive considerable more energy depending
on the reported departure.

Fig. 11. Energy Received - Real world traces

Furthermore, we plot in Figure 12 which vehicles receive
more energy as a function on the error in their reported
deadlines. The pattern looks similar to the one in Fig. 10,
where the peak received energy is attained by vehicles that
report their true departure times. Since the parking lot is small,
more variability is observed due to the fact that the fluid limit
approximation is not as good in this case. However, we expect
the algorithm to perform better in larger systems.

Fig. 12. Comparison between algorithms - Real world traces

V. CONCLUSIONS

We studied EV scheduling algorithms for a centralized
charging facility, focusing on the EDF policy, building on
analytical models of attained service from [1]. We showed
overall performance is robust against random errors in the
deadline declaration, but may generate improper incentives.
An alternative that removes these incentives was proposed and
demonstrated to perform appropriately, in both synthetic data
and real-world data.
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