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Abstract—Providing frequency regulation services in power
networks has become an important part of network operation,
traditionally carried out by fast responding generators. In this
paper we consider regulation services from the demand side,
through a new actor in the power market: a demand aggregator
that manages a large number of consumer loads. The aggre-
gator exploits the deferability of certain loads to control the
consumption profile and thus reduce regulation needs, or even
provide regulation services to others. We analyze this control
through macroscopic ODE models inspired by queueing systems,
where a fluid state represents load quantities. Two versions are
considered: a one-state model that tracks the entire load popu-
lation, and a two-state version that separately tracks quantities
of currently deferrable and non-deferrable loads. The control
input is the fraction of deferrable loads that are active, and is

controlled using a combination of feedforward for tracking of a
reference signal, and feedback to reduce the impact of random
fluctuations. The performance of such controllers is evaluated by
simulation using regulation signals from real networks.

I. INTRODUCTION

Due to limitations in storage, demand and supply must

always match in an electric power system. This task is carried

out by system operators (SO) with the aid of markets involving

different time scales, from long-term contracts to real-time.

Market transactions involve energy and ancillary services

(reserves and regulation, see [9]), the latter being summoned

close to real-time. Of these services, frequency regulation

occurs at the shorter time scale, its objective being to keep

the frequency as close to nominal as possible (50Hz or 60Hz),

as a consequence of matching demand and supply. Providers

of this service must respond to a signal sent by the operator

every few seconds and adapt their generation output to the

reference. Certain fast responding generators like gas or hydro

turbines which are already providing nominal power to the

system usually perform frequency regulation.

Regulation needs, which traditionally came from fluctua-

tions in demand, are now increased by the rise of renewable

energy sources. Energy coming from wind or sun is non-

dispatchable and the operators must cope with sudden changes

in its energy output. This tendency is making regulation more

expensive and it may even complicate operation in systems

where wind energy moves above the 20% share [7]. An alter-

native to such supply-side regulation is to use the flexibility of

the loads for this task, which are becoming controllable with

the deployment of smart-grid technologies [14]. For this to
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become feasible, a large number of loads must be controlled to

make a significant effect in the grid. Under this scenario a new

actor comes into play, a load aggregator (e.g. [3], [4]). The

function of the aggregator is to manage a cluster of loads from

its clients and use them to provide services such as frequency

regulation to the grid.

We briefly survey some related work in this area. The

control of the ON-OFF cycle in Thermostatically Controlled

Loads (TCLs) to provide ancillary services is investigated in

[5], [6], [10]. In particular, [6] shows this approach can provide

significant regulation capability in a practical situation with

real data from California. More relevant to this paper is another

line of work [11], [15] that exploits the time deferability of

generic loads, characterized by arrival times, deadlines, and

power and energy requirements. In particular [15] investigates

different options for scheduling such deferrable loads, compar-

ing classical approaches from processor scheduling (earliest

deadline first, least laxity first [8]) with a model predictive

control proposal tailored to the power setting.

In this paper we build upon our previous work [1], where

we introduced a fluid model of a cluster of loads and stud-

ied its frequency regulation capabilities. This method gives

excellent regulation tracking; now, as reviewed in Section

II, to guarantee load deadlines it must be combined with a

sophisticated scheduling algorithm. In Section III we introduce

an alternative fluid model, which isolates the population of

loads with expired laxity, guaranteeing them service and only

deferring the remaining loads. Although this is found to

slightly reduce our regulation impact, it provides a far simpler

means to keep strong load deadlines, amenable to decen-

tralized implementation. Incorporating a feedforward/feedback

control in Section IV, the capability of the system to track

real-world regulation signals is investigated by simulation. In

Section V we analyze the performance of the system.

II. FLUID MODELS OF LOAD AGGREGATION

Consider a load aggregator that manages a large set of loads

from its customers. Each load is characterized by a certain

amount of required energy and a given power consumption. As

discussed before, we assume that loads need not be serviced

immediately, but instead they have a certain amount of laxity

in time to complete the request. We now propose a model

for this load aggregator and analyze how deferring service of

requests may be used to reduce frequency regulation demand,

or even become a provider of ancillary services.



Since we aim to analyze the macroscopic behavior of the

system, we characterize loads by their average parameters: let

Q0 denote the average energy request and p0 the requested

power. Service requests arrive into the system at a given rate

λ (in requests per time unit), which we assume constant for

the period of interest: as regulation happens at a very fast time

scale we can consider that the demand does not change in the

time-window we study. The load aggregator may estimate the

value of λ and Q0 and therefore its average required power

p∗ = λQ0 and purchase it in the day-ahead market. The actual

demand will differ from the purchased power, so regulation

services must be procured. If the aggregator could control user

demands to match the power profile purchased in advance,

it could avoid paying for regulation services. It could even

receive a payment for regulation services if loads could be

controlled to follow a regulation signal sent from the SO.

Let τ := Q0

p0

denote the average time required to service a

request. To characterize the deferability of loads we introduce

a time-window parameter h that represents the mean deadline

for service. If h ≥ τ it means that loads are deferrable. In

such a situation, the load aggregator may choose to serve only

a fraction u ∈ [0, 1] (which we will call service level) of the

loads at a given time, deferring the service of the remaining

ones. Finally, let n(t) denote the number of requests at disposal

of the load aggregator at a given time. Its evolution can be

traced by the following dynamic state space model from [1]:

ṅ(t) = λ− 1

τ
n(t)u(t), (1a)

p(t) = p0n(t)u(t). (1b)

The above fluid model, although quite simple, captures the

essential dynamics of a cluster of loads, suitable for predicting

the average power the cluster of clients will consume. How-

ever, since regulation services rely of fine-grained matching

of supply and demand, it is important to also characterize

deviations from this average. Deviations arise because of the

randomness in load arrivals and departures, and can be accom-

modated in the preceding model through a noise disturbance.

A detailed stochastic model of the load queue would involve

a random process of arrivals, e.g. Poisson of intensity λ, and a

model of randomness in load sizes, for instance an exponential

distribution of mean Q0. The latter would introduce random

variations in departure times. Consistently with our fluid

differential equation model we will represent both arrival and

departure variations by a white noise signal v injected in

(1a), with power spectral density Sv(ω) ≡ 2λ (see [1] for

background on justifying this modeling step).

To analyze the effect of such noise on the power output,

which determines the regulation requirements, we will lin-

earize the dynamics around the operating point for u(t) ≡ u∗;

the linear model with injected noise is:

˙δn = − 1

τ
u∗δn+ v, (2a)

δp = p0u
∗δn; (2b)
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Fig. 1. Fraction of jobs completed after the deadline with varying u
∗, and

different scheduling policies.

Calculations carried out in [1] show that the variance of the

consumed power is given by the expression

E
[
(δp)2

]
= p∗p0u

∗. (3)

From (3) we see that we could potentially reduce the output

variability as much as we want, eliminating the need for

acquiring regulation to serve these random loads. This comes

at the cost of further deferring loads (u∗ → 0), which may not

meet their deadlines. This issue does not appear transparently

in the previous model, which only specified the fraction of

loads being served, but does not provide information on the

specific scheduling algorithm used by the aggregator. To get

more insight into this question, in [1] we studied by simulation

the effect of three scheduling algorithms on keeping deadlines:

• Equal sharing: The load aggregator chooses to serve all

present jobs with power p0u
∗. While some loads may not

allow this kind of service, it serves as a reference point

for analysis. It corresponds to the Processor Sharing (PS)

discipline of queueing theory.

• Random: The load aggregator chooses a fraction u∗ of the

available jobs at random. This policy is easy to implement

in a decentralized environment, by distributing the value

of u∗ and having the loads choose whether to become

active or not based on a local random variable.

• Least-Laxity-First (LLF) [8]: Here, the load aggregator

chooses a fraction u∗ of the loads ordered by decreasing

laxity, i.e. the remaining amount of time before the job

needs to become active in order to meet its deadline. This

requires a centralized scheduling at the aggregator level.

In Fig. 1 we compare the fraction of loads that miss their

deadlines as a function of the fixed service level u∗. As

we can see, egalitarian policies show a smooth decrease of

missed deadlines as service level increases, whereas laxity-

based mechanisms show a sharp decrease in missed deadlines

as soon as the service level satisfies u∗ ≥ τ
h
=: η.

Fig. 2 shows the power output variability for the three

algorithms and different values of u. The main conclusion

here is that power regulation requirements are agnostic to

the individual scheduling, and fall well within the predictions
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Fig. 2. Variability of power output as a function of u∗, for different scheduling
policies, for model (1).

of the simple dynamical model (2). We could potentially

reduce the consumed power variability down to
√
p∗p0η, if

we are able to implement LLF which implies knowing detailed

information and taking actions on individual loads.

III. SEPARATING THE CRITICAL POPULATION

Since scheduling loads in real time may be difficult to

achieve in practice, we now propose a second approach to this

problem, based on a more detailed classification of the set of

loads. Let n(t) denote now the number of loads that at time t
may still be deferred, i.e. those that still have remaining laxity

(spare-time). A fraction u(t) of these loads are assumed active.

Loads not being served consume their laxity, and may reach a

point when meeting the deadline requires turning on the load

immediately. We propose this course of action, which can be

implemented in a decentralized fashion (e.g. a thermal load

which decides to start consuming power since the temperature

has become too low), and denote by m(t) the number of loads

active because of expired laxity. Setting L = h− τ the mean

laxity, a dynamic model for this new system is:

ṅ(t) = λ− 1

τ
n(t)u(t)− 1

L
n(t)(1 − u(t)), (4a)

ṁ(t) =
1

L
n(t)(1 − u(t))− 1

τ
m(t), (4b)

p(t) = p0(n(t)u(t) +m(t)). (4c)

Now u(t) represents the fraction of loads with positive laxity

that are being served. Loads can exit the first queue in

two ways: a fraction of the loads, represented by the term
1

τ
n(t)u(t) get completely served before their deadline; the

rest, represented by 1

L
n(t)(1−u(t)), are automatically turned

on when they run out of laxity and move from n to m. The

departure rate from the second queue is represented by 1

τ
m(t).

Analyzing consumed power variability in this model is

somewhat more complicated. We will again linearize the

model for a fixed u ≡ u∗ and add the noise sources with the

same assumptions as in (2). The linear model is the following:

˙δn = − 1

τ
u∗δn− 1

L
(1 − u∗)δn+ v1 − v2 − v3, (5a)

˙δm =
1

L
(1 − u∗)δn− 1

τ
δm+ v3 − v4, (5b)

δp = p0(u
∗δn+ δm). (5c)

Now v1 stands for the arrival noise in n, v2 and v3 for the

two departure noises. v3 is also the arrival noise for m, and

v4 the departure noise for m.

To calculate the variability in the consumed power we will

resort to the state space representation of the system:

[
˙δn
˙δm

]

=

A
︷ ︸︸ ︷
[
−u∗

τ
− 1−u∗

L
0

1−u∗

L
− 1

τ

] [
δn
δm

]

+B







w1

w2

w3

w4






; (6a)

δp =
[
p0u

∗ p0
]

︸ ︷︷ ︸

C

[
δn
δm

]

. (6b)

Here u(t) ≡ u∗ is fixed again and the inputs (wi) are i.i.d.

white noises of unit power spectral density. To map these

normalized processes to the corresponding vi we invoke the

variance growth of a Poisson process, which is equal to its

intensity. For noises v2, v3 which represent departures from the

n queue, the relative intensity is “thinned” by the probability of

departing from the system (denoted by α), or respectively the

probability 1− α of moving to the second queue. Departures

of the latter queue also must occur at a rate λ(1 − α), fixing

the scaling for v4. The resulting B matrix is:

B =

[√
λ −

√
αλ −

√

(1 − α)λ 0

0 0
√

(1− α)λ −
√

(1 − α)λ

]

.

To calculate α explicitly we compute the probability that the

job is served (at level u∗) before the laxity expires:

α = P

[
τk
u∗

≤ Lk

1− u∗

]

=
u∗

τ
u∗

τ
+ 1−u∗

L

,

where we invoked the exponential distribution of τk, Lk with

respective means τ , L.

We have now a stable state-space system driven by vector

valued white noise. In steady-state, the covariance matrix Q of

the state is (see e.g. [2]) the solution to the Lyapunov equation

AQ+QAT +BBT = 0,

and the resulting variance of the output p is E
[
(δp)2

]
=

CQCT . Carrying out the calculations for the given matrices

results in a final result for the variance of consumed power:

E
[
(δp)2

]
= p∗p0

[

1− 1
1

1−u∗
+ τ

Lu∗

]

. (7)

This model behaves in a different way to the one in Section

II: only the deferrable portion of the load population is within

the scope of the service level u∗, hence this parameter can take
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Fig. 3. Variability of power output as a function of u∗ for model (4).

any value in [0, 1], without violating job deadlines, In fact we

find from (7) that both extremes 0 or 1 have the same effect on

the output variance, which becomes E
[
(δp)2

]
= p∗p0. This

makes sense because the only difference between both cases is

that for u∗ = 1 loads are turned on when they arrive, whereas

for u∗ = 0 they do after their laxity expires, but in any case

the time in service is the same, hence the steady-state output

variability is the same.

Choosing an intermediate value of u∗ allows us to lower the

variance but with a lower bound, which is the price to pay for

keeping all deadlines. The optimal value of u∗ that minimizes

the variance can be calculated to be:

u∗

opt =

√
τ√

L+
√
τ
. (8)

We show in Fig. 3 the power variability of the loads predicted

by the model for the case η = 1/3 , and simulation results for

the randomly varying system (PS). The main conclusion of

this analysis is that, with a simpler mechanism that does not

resort to scheduling, we can nevertheless reduce the regulation

requirements. By comparing the results of Figs. 2 and 3, we

can see that although we cannot reduce the power variability

as much as in the one state model with u∗ = η, by carefully

choosing the service level u∗ of the second system, we can

still achieve a significant reduction in the power variability,

but now with deadlines automatically attained.

IV. PROVIDING REGULATION BY ADAPTING DEFERABILITY

In this section we would like to go one step further and

design a controller that will allow the aggregator not only to

reduce its regulation requirements, but also to provide this

service to the grid. This is done by actuating on the control

variable u(t), in response to a command signal r(t) sent by

the system operator. Such a control for model (1) was already

designed in [1], we now present a similar controller for the

two state model.
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Fig. 4. Tracking a real life reference signal.

The transfer function of the linearized version of the plant

(4) is:

Gup(s) :=
δ̂p

δ̂u
=

p0n
∗s

s+ u∗

τ
+ 1−u∗

L

. (9)

Note that despite this being a second order state-space system,

the result has first order reflecting a non-minimal realization.

As a first solution to our tracking requirement we used the

inverse of this plant as a feedforward controller. We tested the

tracking capability of the loads with this controller simulating

the response of the system to a real life regulation signal

taken from the PJM Interconnection, a Regional Transmission

Organization in the United States [12]. We compare the

reference signal against the prediction of model (4) and a

discrete system simulation which better represents the real

system. In the latter loads arrive at random times and we

schedule them in a random way according to the signal u,

until they are served or they run out of laxity and are turned

on automatically. The results of this simulation in Fig.4 show

that the system is able to set the consumed power very close

to the reference.

Still, there are some differences between the reference and

the output, which may not be tolerable if we want to be

regulation providers. To improve tracking we consider adding

feedback to the design, to compensate for the deviations

introduced by randomness in arrivals and departures. In Fig.

5 we depict such a controller, using state feedback of the

variables δn and δm.

C(s) Gup(s)
δr δu δp

−
δn, δm

Fig. 5. Controller design for tracking the regulation signal

Now the controller is the sum of two terms, one that tracks



0 0.2 0.4 0.6 0.8 1
120

140

160

180

200

220

240

260

280

300

320

P
o

w
e

r(
k
w

)

Time(h)

 

 

Reference signal

Non−linear model

Discrete system

Fig. 6. Tracking a reference signal for the system with noise rejection.

r(t), plus a noise reducing term with inputs n(t) and m(t). The

final form of the controller is, in Laplace transform notation:

δu =
s+

(
u∗

τ
+ 1−u∗

L

)

(1− a)

p0n∗s
δr − u∗

n∗
a

(

δn+
δm

u∗

)

.

(10)

The parameter a fixes the feedback term for noise reduction,

being 0 for no feedback. Setting a = 1 would make the system

internally unstable, so we choose a strictly less than 1. In our

simulation experiments we used a = 0.7.

The last simulation we present, shown in Fig. 6, illustrates

how the system is capable of tracking the same signal we used

before. We see there is a notorious improvement in tracking

after we add the noise reducing feedback.

V. PERFORMANCE ANALYSIS

As mentioned in the beginning of this paper, the SO must

ensure enough regulation resources at every time. In order for

a generator, an aggregator, or other actor in the system to

provide this service they must demonstrate their capability to

follow a signal, which usually consists of a test that measures

their accuracy and delay when performing this task. This

qualification test sets a minimum threshold for being able to

provide frequency regulation, but, from the operator point of

view, the higher the score the better.

It is of our interest to analyze how our system performs

in different conditions and compared to other regulating re-

sources. For this purpose we will use the performance score

used by PJM [13], which depends on the delay, the correlation

and the precision of the response compared to the reference

signal.

Performance

Score
=

1

3

(
Delay

Score
+

Correlation

Score
+

Precision

Score

)

.

Delay and correlation scores are calculated together at the

point where the response has maximum correlation with the
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Fig. 7. Performance for different values of feedback.

time-shifted reference. The correlation value is the correspond-

ing score and the delay score is a linear function of the time

shift, scoring 1 if the time shift is 0 and scoring 0 when the

time shift is 5 minutes. Precision score is calculated based on

the relative error in the signal 1-norm:

1− ‖error‖1
‖reference‖1

.

The minimum score for qualifying to participate in the

regulation market is 0.75. As a reference we have that the

average score for steam generators is slightly above 0.75,

hydro generators score slightly higher around 0.8, batteries

are one of the best resources scoring over 0.9, whereas other

demand response resources score over all the range from 0.7

upwards.

A. Results

In Fig.7 we evaluate the performance and control effort

of our system for different values of the feedback gain a.

We plot the PJM performance score, along with the RMS

value of the error (reference-output), a simpler measure of

performance; and also the RMS value of δu, a measure of the

control effort. We see that the performance increases and the

error decreases as we increase the amount of feedback, as we

would expect. This has a limit, around a = 0.85, given mainly

because of the saturation of u. This saturation effect means the

response cannot follow the reference signal and hence the error

increases.

Another parameter that may affect the performance score

is the amount of regulation provided. By this we mean the

maximum absolute value the regulation signal can take, and

we express it in terms of the nominal power. On one hand we

would expect the performance to worsen as we provide more

regulation because we move away farther from equilibrium, so

the non-linearities get larger. On the other hand we have the

intrinsic noise at the output that we study in section II. This

noise is present independently of the amount of regulation

offered, so in relative terms it gets smaller as we offer more
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regulation. Since the precision term in the performance score

is inversely proportional to the amount of regulation provided,

the effect of this noise in the score diminishes as we increase

the regulation offered.

In Table I we present the performance score of the system

(for a = 0.7) along with the RMS value of the error, and

the relative error, for different values of offered regulation.

For most of the range, as the amount of offered regulation

increases we see that the RMS value of the total error in-

creases, but in relative terms it becomes smaller; consistently,

the performance score increases with the offered regulation,

up to a certain point.

When the amount of offered regulation is equal to the

nominal power of the system, the performance score begins to

degrade, and so does the relative error. This can be explained

by noting that the control variable is reaching its saturation

limits. Consider for example the case when the regulation

signal takes the extreme value δr(t1) = −p∗ for a certain

time t1, so the power output should be 0 at that moment.

Our system cannot track that reference, because even setting

u(t1) = 0, this does not control the loads with expired laxity.

So if m(t1) > 0 at that time, the power output will be positive.

TABLE I
PERFORMANCE FOR DIFFERENT VALUES OF OFFERED REGULATION.

Regulation
offered (p.u)

Performance
Score

RMS(error)
kW

RMS(rel. err.)

0.2 0.875 16.3 0.339
0.4 0.937 18.1 0.188
0.6 0.957 18.9 0.131
0.8 0.964 23.7 0.123
1 0.961 37.4 0.155

To finish the performance analysis we show in Fig. 8 a

breakdown of the performance score. We can see that the

system has an excellent delay and correlation scores but is not

so good at precision. This can be explained by the fact that

loads respond almost immediately as they have no inertia, but

the uncertainty in the number of loads makes it hard to exactly

follow the reference.

VI. CONCLUSIONS

In this paper we analyzed a new model for a load demand

aggregator operating in the regulation market. We built over a

previous model [1], seeking to improve its behavior in regard

to load deadlines. We proposed a modification that takes into

account this issue without resorting to complex scheduling

algorithms. We showed that with this approach it is possible

to reduce the amount of regulation required by the network,

and further to become a regulation provider by adapting the

service level of loads in real time.

Several lines of future work remain open: a more thorough

controller design to take into account the constraints in the

input signal, as well as to cope with the nonlinearities in the

system can be performed. From the queueing perspective, it

would be interesting to analyze more precise fluid models for

the different scheduling mechanisms involved.
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