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Introduction

Electrical vehicle (EV) adoption is currently growing exponentially.

Less carbon emissions, noise and other efficiency benefits.

Problems:

We need to build the charging infrastructure to replace gas stations.

Charging is power and energy intensive for the network, the grid must cope with
the enlarged demand.

We need good spatial estimates of energy demand!
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The Problem

We need an spatial estimate of energy demand in order to upgrade the distribution
network.

Currently, we do not have measurements of this demand due to low EV penetration.

Idea:
Use current gas consumption, measured at gas stations, converted to energy.

Challenge:

These measurements are concentrated at the gas stations. How to interpolate them?
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Energy density

We have an unkonwn energy density
g(x) (in energy/km2) over a region X .

Represents amount of energy demand
coming from a small ball around x.
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Measurement points

We cannot sample from this density!

All we have is some measurement
points distributed over X .

What we can measure is the total
demand coming from a cell around our
measurement point.
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Our dataset

Each demand is measured at sites si.

We have access to yi =
∫
Vi
g(x)dx,

where Vi is the Voronoi cell of site i.

The size of the circle represents
measured demand at the sites.
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Mathematical formulation

In a region of space X ⊂ Rd , we are given:

• A list of fixed sites {s1, . . . , sm}, si ∈ X .

• A list of measurements {y1, . . . , ym}, yi ⩾ 0.

Goal: construct an estimate ĝ(x; θ) of the spatial density such that:∫
Vi

g(x; θ) dx ≈ yi ∀i

where Vi is a cell associated with site si (e.g. the Voronoi cell).
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Non-parametric approach
Not very fun...and maybe useless

First approach: histogram counts.

Estimate

gH (x) =
∑
i

yi
m(Vi)

1Vi(x)

Non-smooth. Low interpolation
properties. Not suitable for
low-dimensional representation.
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Radial basis functions

To obtain a lower dimensional representation we use radial basis functions to estimate
g(x). Namely, our estimator has the form:

gRBF(x; θ) =
n∑

j=1
wje

− ||x−µj ||
2

2σ2
j

where θ = ({wj}, {µj}, {σ2
j }).

wj ∈ R+ are the weights,

µj ∈ Rd are the nodes and

σ2
j ∈ R+ the bandwidths.
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Least squares approach

Since we have access to the cell measurements, it makes sense to consider the loss
function:

L(θ) =
1
2

m∑
i=1

(∫
Vi

gRBF(x; θ)dx − yi

)2

Therefore, the least squares estimator becomes:

θ̂LS = argmin
θ

L(θ)

We now show an algorithm to compute this estimator.
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Computing the weights

Consider first given the nodes µj and the bandwidths σ2
j , we have:∫

Vi

gRBF(x, θ)dx =

n∑
j=1

wj

∫
Vi

e
− ||x−µj ||

2

2σ2
j dx =:

n∑
j=1

aijwj.

The loss becomes:

L(θ) =
1
2

m∑
i=1

(
n∑

j=1
aijwj − yi

)2

=
1
2
||Aw − y||2

And thus we have the linear least squares problem:

min
1
2
||Aw − y||2, s.t. w ⩾ 0.

It can be readily solved, typically the constraint is not active.
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Estimating nodes and bandwidths

To estimate µj and {σ2
j } we may use gradient descent. Note that:

∂L
∂θk

=

m∑
i=1

(∫
Vi

gRBF(x; θ)dx − yi

)(∫
Vi

∂

∂θk
gRBF(x; θ)dx

)

Moreover, due to the structure of the RBF functions:

∂

∂µj
gRBF(x; θ) =

[
x−µj
σ2
j

]
wje

− ||x−µj ||
2

2σ2
j

∂

∂σ2
j
gRBF(x; θ) =

[
||x−µj ||2
2(σ2

j )
2

]
wje

− ||x−µj ||
2

2σ2
j
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Computing the gradient

So in order to compute the gradient, we need to estimate the following moments of our
current density estiamte:

∫
Vi

gRBF(x, θ) dx,
∫
Vi

[
x − µj

σ2
j

]
gRBF(x, θ) dx,

∫
Vi

[
||x − µj||2

2(σ2
j )

2

]
gRBF(x, θ) dx.

for each cell i.
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Estimating the moment integrals
Monte Carlo approach

Sample N uniformly distributed points in the region X and estimate:∫
Vi

gRBF(x; θ)dx ≈
m(X )
N

N∑
k=1

gRBF(uk; θ)1Vi(uk)

Two possible variants:

Use a large N and fix the estimation points→ slightly more bias, less variance,
faster to compute.

Resample a relatively small N on each step→ less bias, high variance, amounts to
Stochastic Gradient Descent.
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Algorithm
Stochastic gradient descent version

Given a suitable initial condition θ(0) = ({w(0)
j }, {µ

(0)
j }, {σ2

j
(0)}), at each step k:

1. Sample N uniformly distributed random points in X .
2. Estimate the moment integrals and compute the gradient∇L(θ(k)).
3. Perform a gradient step:

µj ← µj − αk∇L(θ(k))µj , σ2
j ← σ2

j − αk∇L(θ(k))σ2
j
.

with step size αk ∼ O(1/k).
4. For the new nodes and bandwidths, recompute wj using linear least squares.

5. Update θ(k+1) and iterate until convergence.
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Choosing the initial condition

We need a good first estimate θ(0). We propose the following method:

Bootstrapping:
Fix the number of kernels n as an hyperparameter and do:

1. Given the sites {s1, . . . , sm} and the measurements {y1, . . . , ym}, run weighted
k−means with n clusters to optimize:

min
µj

n∑
j=1

∑
i closest to µj

yi||si − µj||2

2. Estimate the bandwidths σ2
j as the mean square distance of the allocated sites to

node j.

3. Compute a first estimate of wj by solving the linear least squares problem with the
above initial estimates.
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Example: reconstructing the original density
Initial condition
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Example: reconstructing the original density
Root mean square loss evolution:

Andres Ferragut, Universidad ORT Uruguay INFORMS APS 2023 19/31



Example: reconstructing the original density
Final estimate:
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Hidden Poisson process parametric model

Assume now that demands come from a marked Poisson process

Φ =
∑

δ(xk,vk)

with:

Spatial intensity Λ(dx), x ∈ X , modeled through an RBF density λ(x; θ)dx.

Individual marks (customer demands) exponentially distributed with rate ν.
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Hidden Poisson process parametric model
Example

A realization of the process Φ:
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Observation model

We observe the total cell demands:

Yi =
∫
Vi

vΦ(dx, dv) =
∑
k

vk1{xk∈Vi}

For each cell:

Ni ∼ Poisson(λi(θ))

Yi =
∑Ni

k=1 Vk

with Vk ∼ exp(ν) and cells are
independent.

Problem: the number of points acts as a hidden variable.
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Maximum likelihood approach

Ideally one would like to maximize p(y; θ). Difficult to compute.

Expectation-Maximization approaches fail (a posteriori distribution also difficult).

Consider maximizing the combined likelihood:

p(n, y) =
m∏
i=1

e−λi(θ)λi(θ)
ni

ni!
p(yi | ni), with λi(θ) =

∫
Vi

λ(x; θ)dx

Now, since given ni, the demands are independent exponentials we have:

p(yi | ni) =
1

(ni − 1)!
νniyni−1

i e−νyi .
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Maximizing the counts likelihood

Given an estimate of Λ(dx) and ν, we can maximize each term over ni, thus decoding
the hidden variable:

max
ni

e−λi(θ)λi(θ)
ni

ni!
1

(ni − 1)!
νniyni−1

i e−νyi .

The maximum is attained for:

n∗i (n
∗
i + 1) = λi(θ)νyi

That is:
n∗i ≈

√
λi(θ)νyi.
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Estimating the RBF parameters

With the hidden variables estimated, the joint likelihood as a function of θ is:

ℓ(θ; n, y) =
m∑
i=1
−λi(θ)+ni log(λi(θ))+ni log(ν)−νyi+(ni−1) log(yi)−log(ni!(ni−1)!).

The new estimate for ν follows immediately by differentiation:

ν̂ =

∑
i ni∑
i yi

.

As for the RBF parameters, we perform a gradient approach as before:

∂ℓ

∂θ
=

m∑
i=1

∂ℓ

∂λi

∂λi

∂θ
=

m∑
i=1

[
ni

λi(θ)
− 1
]
∂λi(θ)

∂θ
.

The derivatives of λi(θ) are similar to the preceding ones.
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Maximum likelihood algorithm

Given a suitable initial condition θ(0) = ({w(0)
j }, {µ

(0)
j }, {σ2

j
(0)}, ν(0)), at each step k,

iterate until convergence:

1. Sample N uniformly distributed random points in X .
2. Estimate λi(θ) ant the moment integrals to compute its gradient.

3. Decode the hidden variables ni =
√

λi(θ(k))ν(k)yi
4. Perform a gradient step on nodes and bandwidths:

w(k+1)
j = w(k+1)

j + αk∇ℓ(θ(k))wj ,

µ
(k+1)
j = µ

(k)
j + αk∇ℓ(θ(k))µj , (σ2

j )
(k+1) ← (σ2

j )
(k) + αk∇ℓ(θ(k))σ2

j
.

5. Update ν̂(k+1) =
∑

i ni∑
i yi

.

Andres Ferragut, Universidad ORT Uruguay INFORMS APS 2023 27/31



Example
Maximum likelihhod reconstruction
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Application
Gas sales data from California

Annual consumption of gas in LAX aggregated by ZIP code:
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Take home messages...

EVs are popping up, we have to prepare the infrastructure.

We can estimate spatial energy demand based on current gas consumption
measurements.

We analyzed two different approaches with different properties.

We would like to expand on the mathematical analysis, in particular the connection
with stochastic gradient descent and more general transport measures and
problems.
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Thank you!

Andres Ferragut
ferragut@ort.edu.uy
http://aferragu.github.io
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