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Motivation

» In the near future, electrical vehicles (EVs) will become an energy-intensive load to
the grid.

> We need to provision infrastructure to provide charging capacity.

» The power and energy requirements will be significant, but users may be flexible in
the charging time.

» Problem: how to make a smart use of available resources.

Andres Ferragut, Univ. ORT Uruguay INFORMS APS — Brisbane - Jul 2019 3/34



In this talk

Main contribution: Mean field analysis of EV scheduling with deadlines.

Highlights:

> We formulate a queueing model for an EV parking lot.

» Analyze the behavior of typical policies through fluid limits (mean field).

» Discuss overload scenarios and the impact on fairness.

» Discuss non-deadline aware policies
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Outline

Queueing model of an EV recharge system
A comprehensive fluid model for scheduling policies
Deadline oblivious policies

Conclusions and future work
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Parking lot model

With individual charging stations

» )\ = arrival rate of EVs.

LYY
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Parking lot model

With individual charging stations

o’

Andres Ferragut, Univ. ORT Uruguay

> )\ = arrival rate of EVs.
» T = sojourn time (deadline).
Sk = service time at nominal power.

» p = ASis the load of the system.
P Interpretation: number of chargers
that must be working, or average
. power requested.

o U
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Parking lot model

With individual charging stations

o’

Andres Ferragut, Univ. ORT Uruguay

> )\ = arrival rate of EVs.
» T = sojourn time (deadline).
Sk = service time at nominal power.

» p = ASis the load of the system.
P Interpretation: number of chargers
that must be working, or average
. power requested.

P99

Remark: chargers may be individually
controlled at intermediate levels.

v
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Resource allocation problem

> Assume that parking space is unlimited...
> But we have a power budget C that we have to comply with.

» We may choose a charging rate ri(t) for each EV such that:

0<r(t) <1 individual power constraint
N(t)

n(t) < C system power constraint
k=1

> We call a policy efficient if it does not loses charging opportunities (equality in at
least one of the above).

» Moreover, we want each user to receive a fair share of service.
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The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:

(S, T)

Remaining time

Remaining service o

Andres Ferragut, Univ. ORT Uruguay INFORMS APS — Brisbane - Jul 2019 10/34



The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:

~

Remaining time

Remaining service o

Andres Ferragut, Univ. ORT Uruguay INFORMS APS — Brisbane - Jul 2019 10/34



The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:

Andres Ferragut, Univ. ORT Uruguay

Remaining time

~

Remaining service

INFORMS APS — Brisbane - Jul 2019

10/34



The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:

T
]
g r (57 T)
+ <
o0
£
£
T v
£ 1
]
[
Remaining service o

Andres Ferragut, Univ. ORT Uruguay INFORMS APS — Brisbane - Jul 2019 10/34



The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:
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The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:
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State descriptor

The state of the system is just the locations of points in this space:

T State:
Point measure storing all
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State descriptor

The state of the system is just the locations of points in this space:
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Point measure storing all
points.,
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Policy:
Vector field 4 = (—r,—1)
that tells how each point
moves.
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Fluid model

A large scale limit of the system

If the system scale is large (A, C — 00), we can treat the population as a fluid quantity
glo, 7).

T > )\ = total arrival rate.
Af \/gu » f(o,7) joint density of (S, T).
» Charging policy:

(0,7, g) = — [ r(o.7.8) } |

4 OR
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Fluid model

A large scale limit of the system

If the system scale is large (A, C — 00), we can treat the population as a fluid quantity
glo, 7).

T > )\ = total arrival rate.
Af \/gu » f(o,7) joint density of (S, T).
» Charging policy:

J—0R dorg) — [ .78 } |

g

Master fluid equation (using flow balance in a region):

0
7g_ f+

a(rg) ag
Oo 87’
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Steady-state behavior of the fluid limit

P> We are interested in the system equilibrium, i.e.:

» Fluid version of power constraints:
0<r<i; ff rgdodr < C.

» Efficient policy: if charging opportunities are not wasted (equality in at least one of
the above).

Remark: we can solve this explicitly for several policies!
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The role of the load

Recall the load definition: p = AE[S].

Theorem

If p < C (underload), then all efficient policies have the same fluid equilibrium with, r = 1
(immediate service) and no reneged work.
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The role of the load

Recall the load definition: p = AE[S].

Theorem

If p < C (underload), then all efficient policies have the same fluid equilibrium with, r = 1
(immediate service) and no reneged work.

Theorem
Si p > C (overload), then all efficient policies have the same reneged work rate:

W:/ og(o,0)do = p — C.
0

Remark: The distribution of this reneged work is highly dependent on the policy, and may
be unfair.
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Example: Earliest Deadline First

> Idea: Prioritize EVs closer to departure.
P Long story in the processor scheduling community.
» Example: N =9,C = 3.

T
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Example: Earliest Deadline First

Large scale behavior

Poblacién EV - Algoritmo EDF
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Carga remanente
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p = 100.
C = 60.
A = 100 ev/h.
S = 1h.
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Earliest-Deadline-First (EDF)

Large scale performance

T Tka\,‘

Sk ﬁ._) EDF profile, small job

g (43 ar + Ty t
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Earliest-Deadline-First (EDF)

Large scale performance

T Tkz\,‘

Sk 4 — EDF profile, large job
T
Sy
g Ak ar + Ti t

» The work received by each client is S, = min{S, 7*}.
» By imposing flow balance we can characterize 7*:

AE[min{S,7*}] = C

P It’s unfair to large jobs.
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A fair policy: Least Laxity Ratio

» Idea: Prioritize EVs with greater relative urgency.
» Laxity ratio: Uy = T/ Sk.

P> Aims to balance between EDF and LLF.

» Example: N =9,C = 3.

T
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Least Laxity Ratio (LLR)

Example

Poblacién EV - Algoritmo LLR
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Carga remanente
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Least Laxity Ratio (LLR)

Performance
» In this case, the threshold is simply:
.
o »fﬁ_éw AE[0*S] = C = 0" = C/p.
. e
[ ] (]
e . » The work performed on each client is:
L&
o S, = 0%S
o
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Least Laxity Ratio (LLR)

Performance
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» In this case, the threshold is simply:

\E[0*S] = C = 6" = C/p.

» The work performed on each client is:

S, =06"S
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Least Laxity Ratio (LLR)

Performance

» In this case, the threshold is simply:

g0 AE[0*S] = C = 0" = C/p.

e\

» The work performed on each client is:

S, =06"S

P In overload, every vehicle gets the
same relative service.
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Comparison

Attained service (S,)
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Comparison

1.5 -
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The LLR policy achieves a fair distribution of reneging
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Application: a parking lot from California

> We took data from a medium-sized employee parking lot in Silicon Valley.

P Tested the policies and computed Jain fairness index to measure fairness.

x
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8 2 075} -
© -
S g 05 — LLR [}
. = LLF
++= = N
S 0.25| A
w —— EDF
0 | | | | T
0 4 8 12 16 20 24
Time (h) Tiempo (h)
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Application: a parking lot from California

> We took data from a medium-sized employee parking lot in Silicon Valley.

P Tested the policies and computed Jain fairness index to measure fairness.
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» Our LLR algorithm preserves fairness even in time-varying conditions.

» The fluid model guide us in the algorithm design.
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Deadline oblivious policies

P In practice, remaining service is easy to gauge (chargers are smart).

> However, deadline information is not easily available.
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Deadline oblivious policies

P In practice, remaining service is easy to gauge (chargers are smart).
> However, deadline information is not easily available.

» Question: can we emulate the behavior of deadline based policies without deadline
information?

» Idea: use the mean-field reasoning to gauge policy behavior.
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Back to Earliest Deadline First

Mean field behavior

Tka\‘

Sk/

Gk ar + Tk t
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A really simple policy: Last Come First Served

P Really simple: just serve the users immediately upon arrival.

» Preemptive LCFS: new users interrupt the oldest ones.

» In practice: the more recent C jobs are served at any point in time.
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A really simple policy: Last Come First Served

Mean field behavior

Tkz\‘

Skz.

ik ar + Tk ¢
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A really simple policy: Last Come First Served

Mean field behavior

Tka\‘

Sk 4 The threshold o* is the amount of
time the load is served before being

_ LCFS profile preempted for good.

ik ar + Tk ¢
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LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF attain the same service.

Andres Ferragut, Univ. ORT Urugua: INFORMS APS — Brisbane - Jul 2019 28/34
g guay



LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF attain the same service.

Tka\,“ Tk .

Sk 4 Sk

— LCFS profile

Ak Ak ar + Tk
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LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF attain the same service.

Tka\,‘

Sk/\

— EDF profile

o

Ak a+ T T

Tia

Sk
— LCFS profile
—. Sy

Ak ar + Tx

The Proposition extends to the Least-attained-service.

Andres Ferragut, Univ. ORT Uruguay

INFORMS APS — Brisbane - Jul 2019

Applying flow balance,
one should have o* = 1
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Least-Laxity-First alternative
With the same mean-field ideas we can find a proper substitute for Least-laxity-first:
Longest remaining processing time (LRPT)
> Serve the jobs with longest remaining service times.

» Preempt if a job arrives larger than the current ones.
» In practice: always serve the least served cars.
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Least-Laxity-First alternative
With the same mean-field ideas we can find a proper substitute for Least-laxity-first:
Longest remaining processing time (LRPT)

> Serve the jobs with longest remaining service times.
» Preempt if a job arrives larger than the current ones.
» In practice: always serve the least served cars.

Proposition
In the large scale limit, LLF and LRPT attain the same service:

S, = max{S — o*,0} where \E[(S — ¢*)*] = C.
If S < 0¥, the job sees no service.
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Even LLR can be substituted!

Consider the following policy

Least service ratio (LSR)

» Consider the jobs in increasing order of current o/S.
» In practice: always serve the least served cars in proportion to their request.
» Non-local policy: depends on the original service time!
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Even LLR can be substituted!

Consider the following policy

Least service ratio (LSR)

» Consider the jobs in increasing order of current o/S.
» In practice: always serve the least served cars in proportion to their request.
» Non-local policy: depends on the original service time!

Proposition

In the large scale limit, LLR and LSR attain the same service:

Sqa = 0*S where 0" = C/p.
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Conclusions

» We provided an unified framework to model EV charging policies. The mean field
model yields insights on attained service for different policies.

> We used it to derive a new policy (least-laxity-ratio) that preserves some notion of
fairness, even for time-varying scenarios.

» Using the mean-field paradigm, we analyzed non-deadline based policies, and
showed strong connections between deadline-aware and deadline-oblivious
equivalents.

Andres Ferragut, Univ. ORT Uruguay INFORMS APS — Brisbane - Jul 2019 32/34






Future work

Let me show you some graphs....
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Future work

Let me show you some graphs....

0.1

Fraction of reneged work

0.9

Future work: The key is the transition region where diffusion approximations are needed.
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Thank you!

Andrés Ferragut

ferragut@ort.edu.uy

http://fi.ort.edu.uy/mate

Paper: Proportional fairness for EV charging in overload, IEEE Trans. on Smart Grid, 2019.
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