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Motivation

I In the near future, electrical vehicles (EVs) will become an energy-intensive load to
the grid.

I We need to provision infrastructure to provide charging capacity.

I The power and energy requirements will be significant, but users may be flexible in
the charging time.

I Problem: how to make a smart use of available resources.
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In this talk

Main contribution: Mean field analysis of EV scheduling with deadlines.

Highlights:

I We formulate a queueing model for an EV parking lot.

I Analyze the behavior of typical policies through fluid limits (mean field).

I Discuss overload scenarios and the impact on fairness.

I Discuss non-deadline aware policies
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Parking lot model
With individual charging stations

λ

�

I λ = arrival rate of EVs.

I Tk = sojourn time (deadline).
I Sk = service time at nominal power.

I ρ = λS̄ is the load of the system.
I Interpretation: number of chargers

that must be working, or average
power requested.

I Remark: chargers may be individually
controlled at intermediate levels.
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Resource allocation problem

I Assume that parking space is unlimited...

I But we have a power budget C that we have to comply with.

I We may choose a charging rate rk(t) for each EV such that:

0 6 rk(t) 6 1 individual power constraint
N(t)∑
k=1

rk(t) 6 C system power constraint

I We call a policy e�icient if it does not loses charging opportunities (equality in at
least one of the above).

I Moreover, we want each user to receive a fair share of service.
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The service-sojourn time space

To visualize the problem, it is useful to consider the service-sojourn time space:

Remaining service σ

τ

R
em

ai
ni

ng
ti

m
e

(S, T )
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State descriptor

The state of the system is just the locations of points in this space:

σRemaining service

τ

R
em

ai
ni

ng
ti

m
e

State:
Point measure storing all
points.,

Φt =
∑
k

δ(σk(t)),τk(t)

Policy:
Vector field ~u = (−r,−1)
that tells how each point
moves.
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Fluid model
A large scale limit of the system

If the system scale is large (λ,C →∞), we can treat the population as a fluid quantity
g(σ, τ).

σ

τ

R
∂R

guλf
I λ = total arrival rate.
I f (σ, τ) joint density of (S, T).
I Charging policy:

~u(σ, τ, g) = −
[
r(σ, τ, g)

1

]
.

Master fluid equation (using flow balance in a region):

∂g
∂t

= λf +
∂(rg)

∂σ
+
∂g
∂τ
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Steady-state behavior of the fluid limit

I We are interested in the system equilibrium, i.e.:

λf +
∂(rg)

∂σ
+
∂g
∂τ

= 0.

I Fluid version of power constraints:

0 6 r 6 1;
x

rgdσdτ 6 C.

I E�icient policy: if charging opportunities are not wasted (equality in at least one of
the above).

Remark: we can solve this explicitly for several policies!
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The role of the load

Recall the load definition: ρ = λE[S].

Theorem
If ρ < C (underload), then all e�icient policies have the same fluid equilibrium with, r ≡ 1
(immediate service) and no reneged work.

Theorem
Si ρ > C (overload), then all e�icient policies have the same reneged work rate:

W =

∫ ∞
0

σg(σ, 0)dσ = ρ− C.

Remark: The distribution of this reneged work is highly dependent on the policy, and may
be unfair.
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Example: Earliest Deadline First

I Idea: Prioritize EVs closer to departure.
I Long story in the processor scheduling community.
I Example: N = 9,C = 3.

σ

τ
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Example: Earliest Deadline First
Large scale behavior

I ρ = 100.

I C = 60.

I λ = 100 ev/h.

I S̄ = 1h.

I T̄ = 4h.
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Earliest-Deadline-First (EDF)
Large scale performance

σ

τ

τ = τ∗

I The work received by each client is Sa = min{S, τ∗}.
I By imposing flow balance we can characterize τ∗:

λE[min{S, τ∗}] = C

I It’s unfair to large jobs.
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A fair policy: Least Laxity Ratio

I Idea: Prioritize EVs with greater relative urgency.
I Laxity ratio: Uk = Tk/Sk .
I Aims to balance between EDF and LLF.
I Example: N = 9,C = 3.

σ

τ

τ =
θ
∗ σ
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Least Laxity Ratio (LLR)
Example

I ρ = 100.

I C = 60.

I λ = 100 ev/h.

I S̄ = 1h.

I T̄ = 4h.
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Least Laxity Ratio (LLR)
Performance

σ

τ

τ =
θ
∗ σ

I In this case, the threshold is simply:

λE[θ∗S] = C ⇒ θ∗ = C/ρ.

I The work performed on each client is:

Sa = θ∗S

I In overload, every vehicle gets the
same relative service.
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Comparison
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Application: a parking lot from California

I We took data from a medium-sized employee parking lot in Silicon Valley.
I Tested the policies and computed Jain fairness index to measure fairness.
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I Our LLR algorithm preserves fairness even in time-varying conditions.
I The fluid model guide us in the algorithm design.
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Deadline oblivious policies

I In practice, remaining service is easy to gauge (chargers are smart).

I However, deadline information is not easily available.

I �estion: can we emulate the behavior of deadline based policies without deadline
information?

I Idea: use the mean-field reasoning to gauge policy behavior.
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Back to Earliest Deadline First
Mean field behavior

tak

Sk

Tk

ak + Tk
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A really simple policy: Last Come First Served

I Really simple: just serve the users immediately upon arrival.

I Preemptive LCFS: new users interrupt the oldest ones.

I In practice: the more recent C jobs are served at any point in time.
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A really simple policy: Last Come First Served
Mean field behavior

tak

Sk

Tk

ak + Tk

The threshold σ∗ is the amount of
time the load is served before being
preempted for good.
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LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF a�ain the same service.

tak

Sk

Tk

ak + Tk

→ EDF profileτ∗

Sr

tak

Sk

Tk

ak + Tk

→ LCFS profile

σ∗ Sr

Applying flow balance,
one should have σ∗ = τ∗

in overload.

SEDFa = SLLFa = min{S, σ∗}

The Proposition extends to the Least-a�ained-service.

Andres Ferragut, Univ. ORT Uruguay INFORMS APS – Brisbane – Jul 2019 28/34



LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF a�ain the same service.

tak

Sk

Tk

ak + Tk

→ EDF profileτ∗

Sr

tak

Sk

Tk

ak + Tk

→ LCFS profile

σ∗ Sr

Applying flow balance,
one should have σ∗ = τ∗

in overload.

SEDFa = SLLFa = min{S, σ∗}

The Proposition extends to the Least-a�ained-service.

Andres Ferragut, Univ. ORT Uruguay INFORMS APS – Brisbane – Jul 2019 28/34



LCFS vs EDF

Proposition

In the large scale limit, preemptive LCFS and EDF a�ain the same service.

tak

Sk

Tk

ak + Tk

→ EDF profileτ∗

Sr

tak

Sk

Tk

ak + Tk

→ LCFS profile

σ∗ Sr

Applying flow balance,
one should have σ∗ = τ∗

in overload.

SEDFa = SLLFa = min{S, σ∗}

The Proposition extends to the Least-a�ained-service.

Andres Ferragut, Univ. ORT Uruguay INFORMS APS – Brisbane – Jul 2019 28/34



Least-Laxity-First alternative

With the same mean-field ideas we can find a proper substitute for Least-laxity-first:

Longest remaining processing time (LRPT)

I Serve the jobs with longest remaining service times.
I Preempt if a job arrives larger than the current ones.
I In practice: always serve the least served cars.

Proposition

In the large scale limit, LLF and LRPT a�ain the same service:

Sa = max{S − σ∗, 0} where λE[(S − σ∗)+] = C.

If S < σ∗, the job sees no service.
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Even LLR can be substituted!

Consider the following policy

Least service ratio (LSR)

I Consider the jobs in increasing order of current σ/S.
I In practice: always serve the least served cars in proportion to their request.
I Non-local policy: depends on the original service time!

Proposition

In the large scale limit, LLR and LSR a�ain the same service:

Sa = θ∗S where θ∗ = C/ρ.
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Conclusions

I We provided an unified framework to model EV charging policies. The mean field
model yields insights on a�ained service for di�erent policies.

I We used it to derive a new policy (least-laxity-ratio) that preserves some notion of
fairness, even for time-varying scenarios.

I Using the mean-field paradigm, we analyzed non-deadline based policies, and
showed strong connections between deadline-aware and deadline-oblivious
equivalents.
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Future work
Let me show you some graphs....
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Future work: The key is the transition region where di�usion approximations are needed.
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Thank you!

Andrés Ferragut
ferragut@ort.edu.uy
h�p://fi.ort.edu.uy/mate
Paper: Proportional fairness for EV charging in overload, IEEE Trans. on Smart Grid, 2019.
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