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Abstract—This paper concerns facilities for charging Electrical
Vehicles at parking lots. We work under the assumption that
power capacity may be insufficient to simultaneously charge all
stations, and thus some scheduling must be performed. In previ-
ous work we analyzed the case of a stationary customer demand,
developing a fluid model which characterizes the performance of
different scheduling policies in overload. A new policy termed
Least Laxity Ratio was proposed to improve fairness in service.

In this paper we wish to incorporate the fact that congestion
levels are not stationary in practice, rather they obey daily use
cycles. We study the behavior of the different policies with load
obtained from a real set of parking lot data. Empirical results
show that the conclusions of the stationary analysis remain valid.
In particular, during intervals of congestion, LLR achieves the
best results in terms of proportional fairness.

I. INTRODUCTION

The increasing penetration of Electrical Vehicles (EVs) must
be accompanied by an adequate expansion in the charging
infrastructure [1], [2]. While home charging will cover some
of the demand, another attractive option is to provide charging
stations at parking lots; for instance, a large corporation may
provide this service to employee-owned EVs.

When dimensioning the power capacity of such a facility, it
may not be practical to provision for the peak load (all chargers
operating at full power). Instead, some scheduling/curtailment
policy can be put in place to manage the available capacity,
exploiting users’ statistical multiplexing and their deferability
of service. In this context, overload situations will occur, where
users only obtain partial charge; the fairness in such resource
allocation is the topic of this paper.

In previous work [3], we analyzed this problem mathemati-
cally under the assumption of a stationary load on the parking
lot. A fluid model was developed that allows the analysis of
reneged service for different scheduling policies; these results
are reviewed in Section II. In particular, with fairness in mind
we introduced the Least Laxity Ratio (LLR) policy, which
achieves proportionality in reneged work at the fluid scale.

In this paper we wish to validate the analysis under more
realistic conditions, in particular the non-stationarity which
would be typical of the daily use of a real parking lot. For
this purpose, we have obtained a data set from the parking lots
of a major tech company, which describe arrivals, departures
and charge amounts. Assuming now a facility with restricted
capacity, we apply the different scheduling algorithms to these
input traces; results are reported in Section III. We verify the
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Fig. 1. Dynamics for each job.

same qualitative behavior of the stationary analysis, in partic-
ular LLR achieves the best fairness results. We also develop
a quantitative index for comparison purposes. Conclusions are
given in Section IV.

A. Related work
The study of charging policies for fleets of EVs is a very

active topic. We mention the work of [4], where future demand
estimation is used to maximize the state of charge of vehicles
upon departure. References [5], [6], [7] use dynamic pro-
gramming to minimize reneged service, establishing properties
of the optimal algorithm. Our work is closest to [8], where
policies based on receding horizon optimization are proposed
and tested with real data.

II. STATIONARY ANALYSIS OF EV CHARGING POLICIES

In this section we summarize the results of [3], where a
fluid model for the car population in an EV parking lot was
introduced, and used to characterize efficiency and fairness of
different charge scheduling policies.

The starting point is a discrete queueing model in which
each car in service is characterized by a point in the space
(σ, τ) of service time - sojourn time, as depicted in Figure 1.

The residual sojourn time τ (time left before departure) is
consumed at unit rate while the car is in the charging station.
The residual service time σ will vary according to the charge
received: we denote by r(t) the power received relative to
the maximum charging rate (0 ≤ r ≤ 1); this implies σ is
consumed at rate r, as depicted in Figure 1.

As cars arrive at the parking lot, new points will appear in
the (σ, τ) plane, at locations depending on their initial service
requests and sojourn times. Similarly, when cars complete
service or reach their deadline, they abandon the system1.

1Charged cars that remain at the spot are no longer counted, we assume
the number of parking spots is not the bottleneck.



The garage operator’s decision is expressed in the choice of
rk(t) for each car k = 1, . . . n(t) present and still requiring
service, subject to the capacity constraint

n(t)∑
k=1

rk(t) 6 C. (1)

C is the maximum number of chargers that could be simul-
taneously turned on at full rate; it is also possible to activate
more than C chargers at a reduced rate.

We consider scheduling policies which discriminate cars
only by their location (σk, τk) in the service-sojourn space.
In particular, we analyzed in [3] the following policies:
• Processor Sharing (PS): all cars present in the system are

charged at rate rk(t) = min(1, C
n(t) ).

• Earliest Deadline First (EDF): the C cars with smallest
τk are charged at full rate rk = 1.

• Least Laxity First (LLF): the C cars with smallest laxity
(spare time) `k := τk − σk are charged at full rate.

• Least Laxity Ratio (LLR): the C cars with smallest laxity
ratio θk := τk

σk
= 1 + `k

σk
are charged at full rate.

A discrete stochastic model of the system can be obtained
by characterizing the arrival process and choosing one of
the above service disciplines. In [3] we worked under the
stationary assumption that cars arrive at the system as a
Poisson process of intensity λ, with service and sojourn times
(S, T ) being random variables of joint density f(σ, τ). The
system load was defined as

ρ = λE[S] = λ

∫ ∞
0

∫ ∞
0

σf(σ, τ)dσdτ.

For analytical tractability it is, however, more convenient to
work instead with a fluid version of the dynamics.

A. Fluid model

The mathematical analysis of [3] applies to a scale where
the number of points is large and characterized by a time-
dependent density function g(t, σ, τ). New mass arrives into
the system at rate λf(σ, τ). Mass is transported along the
vector field

u = −
[
r(σ, τ, g)

1

]
of Figure 1, with r defined by the scheduling policy. The
resulting dynamics of the population density g is the advection
equation:

∂g

∂t
+∇ · (gu) = λf, (2)

where ∇ · (·) is the divergence operator on R2
+, i.e. on

the variables σ, τ . This tool was used in [3] to study the
equilibrium (steady state) configurations. In particular, we
proved the following results:
• In underload ρ < C, all the above policies (indeed, any

policy that is efficient in the sense of not wasting charging
opportunities) has the same equilibrium, with r = 1
for all vehicles present in the system. In particular, all
vehicles receive full service.

TABLE I
SUMMARY OF PERFORMANCE METRICS FOR THE DIFFERENT POLICIES.

Policy Threshold Reneged Attained service
equation work (Sr) (Sa = S − Sr)

EDF λE[min{S, τ∗}] = C (S − τ∗)+ min{S, τ∗}
LLF λE[(S − σ∗)+] = C min{S, σ∗} (S − σ∗)+

PS λE[min{S, r∗T}] = C (S − r∗T )+ min{S, r∗T}
LLR λθ∗E[S] = C (1− θ∗)S θ∗S

• In overload ρ > C, all efficient policies result in the same
overall reneged work W = ρ− C.

• The distribution of reneged work among users depends
on the policy. We elaborate on this next.

B. Fairness in reneged service

It is shown in [3] that in overload, each of the four policies
listed above is characterized in equilibrium by a threshold
condition in the distribution of (S, T ) (arriving service and
sojourn times). The position of an arriving EV relative to this
threshold determines the attained (and reneged) service upon
departure, as summarized in Table I. In particular:
• In EDF, a maximum service τ∗ is provided to all EVs.

Those with smaller service requests receive full service,
the rest are truncated to this level.

• In PS, the thresholding condition is in S/T ; the policy
still favors smaller jobs, but now attained service is
proportional to sojourn time.

• In LLF, a service amount σ∗ is reneged to all EVs.
Only those with larger service requests receive (reduced)
service.

• In LLR, attained service is distributed proportionally to
the service request. That is, all EVs leave the system with
the same fraction θ∗ of their required service.

We believe the proportional fairness of LLR is an attractive
feature: when in overload, the system serves all users in the
proportion allowed by the installed capacity.

C. Simulation results

In addition to the mathematical results, in [3], we simulated
the discrete system under the different policies, to validate the
predictions of our fluid model. For this purpose we developed
a discrete-event simulator over Julia [9].

We reproduce some of the results here, focusing on EDF,
LLF and LLR. The arrival rate is λ = 120 and sets the scale
of the system. The job size Sk is exponentially distributed
with rate µ = 1. Each job arrives with an initial laxity Lk
also exponentially distributed with rate γ = 0.5, independent
of Sk, and we set Tk = Sk + Lk. The load of the system is
thus ρ = λ/µ = 120 > C (C = 80). In Figure 2 we plot
a snapshot of the system in steady-state for each policy, and
the thresholds computed using the fluid model. It can be seen
that the model predicts correctly the transition for all three
policies.

Figure 3 shows the initial demand S and final reneged
work Sr achieved by the jobs under the three policies, as
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Fig. 2. Steady-state snapshot of a system under EDF (above), LLF (center)
and LLR (below), with in service and not in service loads. The dotted line
indicates the corresponding thresholds predicted by the fluid model.

well as the fluid model predictions. As we can see, the
simulated observations follow the predicted behavior closely,
and the EDF and LLF policies discriminate against large and
small jobs respectively. In contrast, our proposed LLR policy
achieves the desired linear relationship, imposing proportional
fairness across jobs.

III. REAL TIME-VARYING CONGESTION LEVELS

The main limitation of the preceding results is the sta-
tionarity assumption in the parking lot load, which appears
unrealistic. In practice, arrival patterns and charging requests
reflect daily use cycles. And, since sojourn times are long
with respect to these variations, we cannot assume that each
EV sees an approximately steady situation.

Ideally, in a typical day with varying levels of congestion,
the scheduling policy should only play a major rule during
the intervals of overload, and impose during those times the
appropriate fairness in the curtailed service.
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Fig. 3. Requested and reneged work for each job under the different policies
and fluid prediction.

Establishing this property mathematically is, however, very
challenging, even with the fluid approximation (2). For this
reason we turn to an experimental evaluation of our policies
under time-varying conditions, using real EV charging data.

A. Data set and its characteristics

A dataset of about 100 EV parking lots of a major tech
company was obtained, where each parking lot has a capacity
between 10 and 70 vehicles. The data contains the values
of: arrival times, sojourn times, consumed energy and the
maximum charging power rate for each car, during a period
of about 50 days. We carried out the following adjustments.
The consumed energy was normalized, dividing by the charge
power rate so as to be measured in time, providing the values
of the requested service time S for this study. We filtered out
the few cars (52 out of more than 25000) which presented
unfeasible data: i.e., S larger than the sojourn time T .

In order to recreate a large scale parking lot, for example
an office building, a shopping mall or a supermarket, data
from 20 of these parking lots was merged creating a dataset
of about 500 cars arriving through the day and reaching a
maximum of 170 cars parked at the same time. Figure 4 shows
the number of cars in the parking lot within 48 hours and
shows the variability of congestion levels through this period.

As expected there are more cars in the system in working
hours, while there is almost no car during the night. This is in
line with what Figure 5 shows where the histogram of arrival
time for all the entire dataset is presented. There is a peak at 8
AM and a relatively homogeneous distribution during the rest
of the working hours.

The data clearly presents a time-varying arrival rate and
thus, a time-varying requested work and power levels. We will
assume that this load is applied to a parking lot with individual
charging stations, but where the maximum number of chargers
that can be simultaneously turned on at full rate is C = 30.

To simulate the system with this real data, our simulator
was adapted to include the exogenous event data.

B. Results and comparison

In Figure 6 we plot a snapshot of the system in a condition
of high congestion (with more than 100 cars in the parking
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Fig. 4. Number of cars in the system within two typical days. The dotted
line indicates the maximum capacity.

0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

Arrival time (hours)

Pr
ob

ab
ili

ty

Fig. 5. Histogram of arrival time of the cars to the system.

lot), for each of the three policies, EDF, LLF and LLR.
We classify cars according to whether they are in service,
and for illustration we mark the empirical threshold between
the two classes. As we can see, the transition has the same
characteristics of that showed in the stationary simulated
system (Figure 2).

In Figure 7 we plot the initial demand and final reneged
work achieved by the jobs under the three policies. It is seen
that the empirical time-varying observations present the same
trend as the simulated stationary system. EDF and LLF poli-
cies discriminate against large and small jobs respectively, but
with variable thresholds due to the time-varying congestions
levels. On the other hand, while the slope of the threshold
varies, the LLR policy achieves a linear relationship, appearing
to impose the same proportional fairness across jobs as in the
fluid limit and stationary simulations.

C. Proportional fairness measurement

While empirical results show graphically a qualitative match
with our theoretical predictions on fairness, we would like to
have a more quantitative validation and comparison between
the different policies.

For this purpose, we resort to the classical Jain’s fairness
index [10], developed originally in the context of bandwidth
sharing in congested telecom networks. Given n users, each
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Fig. 6. Snapshot of the system under EDF (above), LLF (center) and LLR
(below), with in service and not in service loads. The dotted line indicates
the corresponding empirical threshold between the two classes.

assigned a quantity xi, i = 1, . . . n of a shared resource, Jain’s
index is defined by:

J(x1, x2, ..., xn) =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

. (3)

This quantity J ∈ [0, 1] reaches unity under an egalitarian
distribution. In our case, to measure proportional fairness, we
will apply the index to the ratio xi =

Sai

Si
between the attained

and requested service. Since by definition this quantity can
only be evaluated at the end of service, to obtain a time-varying
measurement of fairness we will compute Jain’s index at time
t between the set of cars which have finished service in a
window of time [t− t0, t].

In Figure 8 we plot the Jain fairness index computed across
a typical day considering a half-hour window, i.e. with t0 equal
to half an hour. As expected the index is 1 when there is no
congestion in the system, where xi = 1 for all EVs.
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Fig. 7. Requested and reneged work for each job under EDF (above), LLF
(center) and LLR (below) under time-varying congestion levels.
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Fig. 8. Jain fairness index computed across a typical day considering a half-
hour window.

During busy hours (see Figure 4) the fairness index de-
creases, with different behavior across policies. EDF shows a
sudden drop in the fairness index but recovers to values near
1 quickly. In the case of LLF, the fairness index suffers the
most, staying near 0.5 for several hours. On the other hand,
for LLR the fairness index stays close to unity at all times,
with far less variability, evidence of the desired proportional
fairness behavior.

IV. CONCLUSION

In this work, we analyzed the performance of different
scheduling policies for EV charging with load obtained from
a real set of parking lot data that presents time-varying con-
gestion levels. We show that the conclusions of the stationary
analysis remain valid in the empirical case in terms of fairness
in the distribution of service. We introduce a method for
measuring proportional fairness in attained service, based on
the Jain’s fairness index; experiments show that the Least
Laxity Ratio policy preserves fairness across jobs under time-
varying congestion levels.

In future work, we plan a more extensive analysis of the
fairness index for different scenarios. We are also interested
analyzing the decision of when the garage operator should
seek for more power in the electricity market.
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