
Towards multi-timescale energy provisioning using
Stochastic Dual Dynamic Programming
Rodrigo Porteiro

Universidad ORT Uruguay
rporteiro@uni.ort.edu.uy

Andres Ferragut
Universidad ORT Uruguay

ferragut@ort.edu.uy

Fernando Paganini
Universidad ORT Uruguay

paganini@ort.edu.uy

Abstract—The operation of the electric grid in systems with
a large hydroelectric component is often cast as a dynamic
programming problem, in which state variables are reservoir
levels. To avoid the curse of dimensionality in discretizing
such states, the SDDP technique has been successfully applied.
However, new demands are being placed on the optimization,
with the penetration of renewable sources of faster variability,
and the possible incorporation of shorter term energy storage.

In this paper, we present preliminary work on extending the
SDDP framework to such two time-scale problems. We apply the
method to a stylized model of the Uruguayan system, relying
on new open source implementations of SDDP to carry out
the computations. Our results indicate that the method remains
tractable despite the increased problem dimension.

I. INTRODUCTION

The economic dispatch of electrical generation to cover
customer demand is a classical concern of vertically integrated
utilities, or more recently of system operators in charge
of energy pools. The problem has too many facets to be
summarized here; see e.g. [1], [2] for extensive treatments.

In systems with large hydroelectric dams, dispatch decisions
become coupled over very long time-scales (weeks, months)
since they depend on the availability of water in reservoirs,
itself dependent on slow patterns of rainfall. The natural
setting is then of Dynamic Programming [3], where the state
vector includes (at least) a variable for each reservoir level.
Computing the value function for a discretization of these
state variables suffers from the curse of dimensionality. In
[4], Pereira and Pinto introduced Stochastic Dual Dynamic
Programming (SDDP). an approximation strategy which has
led to successful industrial dispatch tools [5]. More recently,
this method has received wider academic attention [6], [7],
and new open source implementations have become available
[8]. The main elements of SDDP are summarized in Section
II.

Dispatching tools are always under pressure to incorporate
more features and details. In particular we highlight the
changes brought about by the large scale incorporation of
renewable sources like wind and solar power, which are non-
dispatchable and present variability at very short time-scales.
Their direct incorporation in dynamic programming would
imply reducing the time step to the order of an hour, coexisting
with the long horizons of the hydro component, a very high
dimensional problem. Moreover, if short term storage devices
(e.g. batteries) are introduced in the grid to mitigate this

variability, their extra state variables worsen the curse of
dimensionality. Reaching an adequate compromise between
model fidelity and computational cost is a non-trivial task.

In this paper we carry out a preliminary investigation of
this two-time scale problem, within the SDDP framework.
As described in Section III, we will maintain state variables
only for the slower time step (in this case one day), and
handle the hourly balance with additional linear constraints
within each stage. This implies a larger subproblem for each
step of SDDP, but within the realm of linear programming it
remains tractable. In Section IV we apply this decomposition
to the Uruguayan system. We use a Markov chain model
of a discrete “hydrologic state” to model inflows, and fit its
parameters to historical data from Uruguay, as is standard local
practice [9]. This state is added to reservoir levels for dynamic
programming. For the faster time-scale, for the moment we
are using empirical traces for demand and renewable sources,
the medium term goal is a more detailed accounting of their
stochasticity. In Section V we present our experimental results
with this method. Conclusions are given in Section VI.

II. STOCHASTIC DUAL DYNAMIC PROGRAMMING

Consider first the simplest model of operation of a hy-
drothermal system over a horizon T , with time steps indexed
by k = 0, . . . T − 1. It includes a state vector xk ∈ Rn
representing the current storage levels at n reservoirs; water
inflows are modeled as disturbances wk ∈ Rp which are
typically random and may have complex evolution patterns.
The control vector uk ∈ Rm models the actions that the system
operator may take: the amount of generation drawn from
hydro plants, the amount of spillage, and economic dispatch
decisions from the alternative thermoelectric generators in
order to provision the demand at each stage. We postpone other
aspects of the problem such as non-dispatchable renewables,
or energy exchanges with neighboring systems.

The running costs per stage are modeled through a function
gk(xk, uk, wk) (e.g. the cost of fuel in thermal plants). The
objective is to obtain a policy π = {µk}k=0,...,T−1 such that
the following optimum is attained:

min
π
Ew

[
T−1∑
k=0

gk(xk, µk(xk, wk), wk)

]
. (1)



The above problem is coupled by the dynamic constraints of
the system, namely:

xk+1 = fk(xk, µk(xk, wk), wk),

where fk(xk, uk, wk) is a function that maps the current state
to the future state based on the actions performed and the
disturbances realized. In particular it will include the water
balance equations at reservoirs. Note that we allow the policy
rule µk to depend on the current state and disturbance, i.e. the
inflows measured at stage k [10].

Dynamic Programming [3] allows the decoupling of the
optimization problem over the time axis, by computing re-
cursively the cost-to-go or value function:

Vk(xk) = min
π
Ew

T−1∑
j=k

gj(xj , µk(xj , wj), wj)

 . (2)

Since this is a function of the real-valued state, it is custom-
ary to compute it for a certain discretization. The curse of
dimensionality [10] is that the number of such evaluations
grows exponentially with the state dimension. In our context,
this restricts the scope of classical dynamic programming
techniques to a few lakes and coarse quantization patterns.

A powerful alternative with proven convergence guarantees
is Stochastic Dual Dynamic Programming, first proposed in
[4], but with roots going back to the work of Kelley on cutting-
plane methods [11] and Bender’s decomposition techniques
[12]. SDDP applies to the case where the costs gk are convex
functions and the dynamical constraints fk are affine; in this
case the value function (2) is convex, which ensures that
any supporting hyperplane of the value function constitutes
a global lower bound on the cost-to-go.

Based on this observation, the SDDP algorithm performs
a series of iterations or passes where at each step a new
supporting hyperplane for Vk is added. Therefore, on pass l
of the algorithm, we have a global lower bound V lk of the cost
to go as the maximum over all supporting hyperplanes, i.e. a
piecewise linear convex function. The computation of a new
supporting hyperplane is achieved by solving:

β̂
(l+1)
k (w) = min

x,u

{
gk(x, u, w) + V

(l+1)
k+1 (fk(x, u, w))

}
,

s.t. x = x
(l)
k [λ̂

(l+1)
k (w)].

i.e. one step of the Bellman iteration with input V (l+1)
k+1 , the

current value estimate. The added constraint generates an
objective value β̂(l+1)

k (w) and a dual variable λ̂(l+1)
k (w) for

each noise realization. Averaging over the noise yields

β
(l+1)
k = E[β̂

(l+1)
k (w)],

λ
(l+1)
k = E[λ̂

(l+1)
k (w)].

It follows from the optimization that

β
(l+1)
k + (λ

(l+1)
k )T (xk − x(l)k )

is a supporting hyperplane for Vk at x = x
(l)
k . This adds

a cut that refines the cost-to-go estimation on each pass.

Implementation details will be discussed when applying the
method in Section V. Convergence properties and a detailed
implementation are given in [7].

A. Adding memory to the hydrologic uncertainty

In the preceding discussion we assumed that the noise
realizations are independent and identically distributed. How-
ever, water inflows are typically correlated across stages. A
useful tool to model this time dependence is to consider a
Markov state hk that summarizes the current hydrological
environment. The dynamics of this state are governed by a
non-homogeneous Markov chain with transition probabilities:

P
(k)
hh′ = P (hk+1 = h′ | hk = h).

Transition probabilities may be estimated from historical data.
In [6] a model with two states (dry and wet) is introduced;
local practice in Uruguay (e.g., [9]) is to use a 5-level model
of the hydrologic state as described in Sec. IV-B. Given that
the hydrologic state is hk = h, the possible inflows are drawn
accordingly with some conditional distribution wk | h.

Incorporating the Markov transitions in dynamic program-
ming leads to enlarging the state to x̃k = (xk, hk) and a
generalized Bellman iteration, decomposed as:

V̂k((x, h), w) = min
u

{
gk(x, u, w) +

∑
h′

P
(k)
hh′Vk+1(x′, h′)

}
Vk(x, h) = E

[
V̂k((x, h), w) | hk = h

]
,

where x′ = fk(x, u, w) represents the next state. The first
equation computes an estimation of the cost-to-go for each
noise realization (note that w should be coherent with h)
and the second equation corresponds to averaging over noise
realizations, which is done using the current conditional dis-
tribution for the current hydro state h.

As before, the SDDP technique can be applied by substi-
tuting a current piecewise linear estimate of the cost to go
function and solving:

β̂
(l+1)
k (w) = min

x,u

{
gk(x, u, w) +

∑
h′

P
(k)
hh′V

(l+1)
k+1 (x′, h′)

}
,

s.t. x = x
(l)
k [λ̂

(l+1)
k (w)]. (3)

A suitable lower bound for the enriched cost to go Vk(x, h) is
then obtained by averaging as before, but using the conditional
distribution given h:

β
(l+1)
k = E[β̂

(l+1)
k (wk) | hk = h],

λ
(l+1)
k = E[λ̂

(l+1)
k (wk) | hk = h].

The above coefficients again define a supporting hyperplane
for the cost-to-go. In practice, this conditional distribution
is not known but empirically estimated from historical data:
the conditioning part then becomes simply averaging over
scenarios that belong to the current hydrologic state h (e.g.
wet realizations only), instead of the full set.



III. MULTI-TIMESCALE DECOMPOSITION

The above discussion applies in general to dynamic pro-
gramming formulations of the stochastic scheduling problem,
in particular applied to hydro-thermal systems. However, a
large share of the energy dispatch in current systems comes
from renewable energy sources such as wind and solar, varying
in a faster timescale than the classical dispatch of hydro
storage. It is thus necessary to include in the general hydro-
thermal scheduling this refined timescale to model fast varia-
tions and short-term storage (batteries). We now explain how
to introduce this multi-timescale decomposition in the SDDP
framework in a simple model to convey the main ideas, and
then describe our implementation for a real system.

To model this fast timescale, consider the state xk at stage k
as composed of the current level of the reservoirs and storage
facilities in the system. The basic dynamic equation for a
single reservoir is:

xk+1 = xk − uk − sk + wk, (4)

where uk is the amount of water drawn from the reservoir, sk
is the amount of spillage and wk is the (random) water inflow.

We propose to decompose uk into a finer timescale, that is:

uk =

t−1∑
i=0

uik,

where uik denotes the water used for generation at each step
of the detailed timescale (e.g hours instead of days or weeks).

If dik is the demand at the finer timescale and eik is the
energy available from renewables, the power balance equations
are given for each k by:

dik = eik + νuik + pik i = 0, . . . , t− 1. (5)

Here ν is an efficiency coefficient of the hydroelectric genera-
tor (for simplicity assumed independent of the reservoir level)
and pik is the thermal generation. Assuming the only running
cost is the price ck of the latter, the cost function at stage k
is:

gk(xk, (uik, sk, pik)) =

t−1∑
i=0

ckpik.

While this function does not depend explicitly on the storage
level and the power drawn from reservoirs and spillage, it does
so indirectly through constraint (5) since demand must be met.

We now enrich this model with a short-term storage battery.
Let bik denote the amount of stored energy at step i of stage
k. We denote by qdik ∈ [0, Q̄d] the energy drawn from the
battery for demand supply at a discharge efficiency ηd, and by
qcik ∈ [0, Q̄c] the energy injected into storage at an efficiency
ηc. The balance equations now become:

dik = eik + νuik + pik + qdik − qcik i = 0, . . . , t− 1. (6)

The battery dynamics can now be included as a constraint in
the fast timescale taking the efficiencies into account:

bi+1,k = bik + ηcq
c
ik −

1

ηd
qdik, i = 0, . . . , t− 1, (7)

with the identification b0k = bk, the storage level at the
beginning of the stage, and bt,k = bk+1, i.e. the final storage
in the short timescale becomes the initial storage for the next
stage. We should also add the battery capacity constraints

B ≤ bi,k ≤ B for each i, k.

Since all the storage dynamics are affine, we are still within
the domain of applicability of the SDDP technique.

This more detailed modeling comes at a computational cost:
instead of having a single control variable uk ∈ R for the water
usage, we expand it into (uik, i = 1, . . . , t) ∈ Rt. The same
applies to the thermal power and battery injection variables. In
Section V we investigate the impact of this enlarged problem
size on computation times.

IV. APPLICATION EXAMPLE: THE URUGUAYAN SYSTEM

In order to evaluate the performance of SDDP algorithm
with the extensions proposed in Sec. III, a model of an elec-
trical system inspired in the Uruguayan hydro-power operation
was developed and solved using the library [8]. In our model,
we take the time horizon to be one year with a daily stage step
(T = 365, k = 0, . . . , T −1). Power generation is provided by
four interconnected hydroelectric dams and a single thermal
power plant representing the aggregate thermal generation. The
hydroelectric dams included correspond to the 4 Uruguayan
plants: Bonete, Baygorria, Palmar in the Rio Negro and Salto
Grande in the Rio Uruguay.

To model renewables, we also include a single wind power
plant and a single solar power plant, again representing the
total renewable aggregates. Finally we include also control
variables to model energy export and import from nearby
systems, with its associated costs and utilities.

In each daily stage, we divide the control variables over
twenty-four detailed timesteps representing hourly behavior
(t = 24, i = 0, . . . , t− 1), and the detailed balance equations
(5) are considered for each hour.

To feed our model, we take the hourly demand (dik), and the
hourly solar and wind power generation (eik) corresponding
to the year 2017 [13], with demand scaled according to its
annual growth to represent the current situation.

The randomness in our model comes from the weekly inflow
realizations (wk) for the three largest reservoirs (Bonete,
Palmar and Salto Grande). A Markov model is estimated from
historical inflow data as discussed below in Sec. IV-B.

A. Detailed model

For each hydroelectric plant in the system we define the
hourly control variables for the amount of turbined water ujik,
and a daily control variable for spillage sjk. Here j = 1, . . . , 4
represents the four dams: Bonete, Baygorria, Palmar and Salto
respectively. We denote by ujk =

∑t−1
i=0 u

j
ik the total water

turbined for the stage k on dam j, and by yjk the total outflow
yjk = ujk + sjk.

The state in our model is the current water volume in
each reservoir, i.e. xk = (xjk, j = 1, . . . , 4). Recall that
each reservoir evolves according to eq. (4). However, since



reservoirs on the same river are interconnected, the state
dynamics can be represented in matrix form as:

xk+1 = Axk +Byk + wk. (8)

Here A is the 4 × 4 identity matrix, yk = (yjk, j = 1, . . . , 4)
is the vector of outflows, and the matrix B captures the river
network, which in our case is given by:

B =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 0 −1

 , (9)

which captures the fact that outflows from dams in the same
river flow into the next one downstream. Finally, the vector
wk = (wjk, j = 1, . . . , 4) are the random water inflows whose
dynamics are explained below.

The remaining control variables in our model are the
thermal power generation pik at each step and the energy
exchanges with nearby systems (exports and imports) pexpik

and pimpik . The power balance equations (5) in this setting thus
become:

dik + pexpik = eik +
∑
j

νju
j
ik + pik + pimpik , (10)

for i = 0, . . . , t − 1, k = 0, . . . , T − 1. The sum over
j represents the contribution of hydro plants and νj is the
efficiency coefficient of each one. Equations (10) operate as
constraints on the stage optimization problem (3).

For the stage cost, we take:

gk =

t∑
i=1

ckpik − cexpk pexpik + cimpk pimpik , (11)

where ck, c
exp
k , cimpk > 0 represent the thermal generation cost

and the exchange prices with neighbor systems at stage k.
Finally, all control variables are bounded by the correspond-

ing generation limits, and the state variables are bounded by
the corresponding maximum reservoir levels.

B. Markov Model Estimation

We now describe our model for the hydrologic state of the
system. As explained above, a method to incorporate time
correlation between water inflows amenable to treatment by
dynamic programming, is to use a Markov chain to model the
time evolution of the hydrologic state [6]. We use here a 5-
level Markov chain with state hk ∈ {1, . . . , 5}, representing
very dry, dry, normal, wet and very wet conditions.

To fit the Markov chain model we use the historical data
available since 1909, which records the average inflow for each
of the three larger reservoirs (Bonete, Palmar and Salto). hk
will be treated as a non-homogeneous Markov chain (reflecting
seasonal variations), so it is necessary to estimate transition
matrices for each stage k. The historical data is available on a
weekly timescale; to adapt it to a daily step, we will estimate a
transitions for each week of the year and assign these transition
probabilities to the first day of each week, keeping the state
constant afterwards during that week.

To keep our hydrologic state simple we first reduce the
historical series of three inflow values to a single scalar value
Wl for each week l; Wl is defined as a weighted average of the
3 inflows in proportion to the corresponding dam power. Next,
we quantize Wl to 5 levels, from very dry to very wet: this is
done from quantiles of the distribution of annual values of Wl

for each fixed week of the year. By repeating this procedure
for all weeks of the year, a weekly historical series is obtained,
where each week has a discrete state value hl. To estimate the
transition matrix associated to week l, we proceed as usual
by counting transitions between states: the entry P (l)

hh′ of that
matrix is calculated by counting in historical series how many
transitions exist between state h in week l and state h′ in week
l+ 1 and then dividing that value by the total visits to state h
in week l. Finally, the stage transition matrix P (k)

hh′ is taken as
P

(l)
hh′ when k corresponds to the beginning of week l and the

identity matrix otherwise.
This Markov chain is incorporated into our dynamic model

by considering the enlarged state x̃k = (xk, hk), where xk
follows (8) as before, and hk follows the Markov transitions.
In order to sample inflow realizations wjk for each reservoir
in the dynamics (8), given that the current hydrologic state is
hk, we use the empirical distribution of the historical water
inflows wjk for week k and reservoir j which are tagged with
state hk according to the previous thresholds. These are then
adjusted to represent daily inflows. Additionally, recall that
one of the reservoirs has negligible inflows, so in our model
we take w3

k = 0 for all k.

C. Incorporating short-term storage
One of the main benefits of the SDDP technique is that

incorporating extra states, while enlarging the computational
complexity, does not produce an exponential increase in com-
putation times. Moreover, our multi-timescale formulation can
also model short-term storage as discussed in Sec. III, while
keeping the long term dynamics of the water inflows and dams.
This has become important to model the interaction between
short and long term storage in the presence of renewable
sources, which are inherently non-dispatchable.

To explore this scalability when the state space dimension
increases, we now enrich our model with a short term storage
battery. The state of our system is now x̃k = ((xk, bk), hk),
where bk represents the energy stored in the battery at the
beginning of the stage (day). The reservoir dynamics are
the same as before for xk (eq. (8)), as well as the Markov
dynamics for the hydrologic state.

As for the control variables, apart from ujik and sjk for the
dams, the thermal generation pik and the energy exchanges
pexpik , pimpik with other systems, we have the amount of energy
that is injected or retrieved from the battery at each detailed
timestep, qcik and qdik respectively.

When faced with a demand dik and renewable generation
eik, the system with combined dams and energy storage must
satisfy the following modification of eq. (10):

dik + pexpik + qcik = eik +
∑
j

νju
j
ik + pik + pimpik + qdik, (12)



for i = 0, . . . , t − 1, k = 0, . . . , T − 1. The hourly battery
dynamics is captured by (7) which we reproduce here for easy
reference:

bi+1,k = bik + ηcq
c
ik −

1

ηd
qdik, i = 0, . . . , t− 1,

with the identifications b0k = bk and btk = bk+1. This
completes the definition of our model, in the next section we
discuss the optimization results.

V. IMPLEMENTATION AND SIMULATIONS

We now summarize the results obtained by applying the
SDDP technique to the stylized model of the Uruguayan
system we developed. Our main focus throughout this Section
is on performance considerations, and not explicitly cost
considerations. We aim to quantify the complexity and com-
putation time required to incorporate the detailed timescale, as
well as a larger number of state variables. The costs reported
below are just an indication and do not reflect real operation
costs.

All our model variants were implemented in Julia [14], a
new fast open source mathematical modeling language. In
particular, to model our problem we use the framework for
SDDP implemented by the package SDDP.jl [8].

In the following we discuss three modeling variants: the first
one (M1) constitutes a base model for benchmarking, incor-
porating only the slower (daily) time-scale and not including
short-term storage, so its state includes just the reservoir levels,
and energy balance is enforced on a daily scale. Note that this
however assumes in particular that the renewable input can be
fully utilized, an assumption that may not be valid due to the
inability to dispatch these sources.

In the second variant (M2) we incorporate the faster (hourly)
timescale to our base model, but we do not include short-term
storage. This second variant includes all the power constraints
of the short timescale, and in particular reflects that the
renewable sources cannot be dispatched at will. These two
variants without storage share a state space of four continuous
states (the reservoirs) and a discrete Markov hydrologic state.
However the model M2 incorporates a larger space of control
variables within the detailed timescale. This enables us to
evaluate the impact in execution time of incorporating the
detailed dispatch without enlarging the state space.

The third variant (M3) we consider adds a short term storage
(battery) to the model M2. In this case, a state variable is added
to keep track of the storage level at the slow timescale. So in
this case we are also enlarging the state space with respect
to M2. Here the main idea is to compare against classical
Stochastic Dynamic Programming (SDP) techniques (e.g. [9]).
In SDP adding a state variable typically requires quantization
of this extra state. The SDP recursion also requires the
enumeration of all combinations of initial state values for
all states. If the added variable is quantized in l levels, then
computational effort increased at least by a factor of l. In
SDDP the impact of adding a state variable does not produce
such an explosion in computational effort with the increased

TABLE I
DEMAND AND RENEWABLE POWER STATISTICS AND GENERATION COSTS

Averages and total demand and resources
Average demand 1334 MWh
Average renewable energy 570.4 MWh
Annual demand 11654 GWh
Annual renewable energy 4984 GWh

Costs
Thermal Cost 200 USD/MWh
Export 15 USD/MWh
Import 360 USD/Mwh

TABLE II
SHORT TERM STORAGE PARAMETERS FOR THE DETAILED MODEL (M3)

Storage Parameters
B 0 MWh
B 500 MWh
Q̄d 250 MW
Q̄c 250 MW
ηc = ηd 0.98

dimensionality, because states are not treated via quantization
but rather using cuts for a global approximation of the future
cost function. The real impact in execution time is determined
by the total number of iterations required by SDDP to reach
convergence, due to the richer state space which must be
explored. However, this increment in the number of iterations
is still less expensive than the quantization approach. Our case
studies just described aim to validate this behavior.

A. Model input data

All our models are fed with the following input parameters:
the overall demand, as well as solar and wind power gener-
ations are the taken from the corresponding ones of the year
2017 [13]. The generation costs, as well as the price of energy
exchanges are chosen to be similar to the average costs of
the current Uruguayan system in order to obtain a reasonable
approximation of current costs. However, we emphasize that
these costs should not be expected to reflect the operation cost
of the real system. In Table I we present summarize some of
these inputs.

Additionally, for the model M3 we use the parameters for
the short term storage summarized in Table II.

As a convergence criterion for the SDDP algorithm, we
choose the Bound Stalling stopping rule in all three models.
Under this rule, the SDDP algorithm will terminate after
the cost lower bound has failed to improve for a given
number of iterations (set to 5 in our case). After convergence,
the obtained policy is fed to a Monte Carlo simulation for
different random inflow data, performing 1000 repetitions.
The simulated average operation cost is then calculated by
averaging over all repetitions. All the computations presented
below were carried out on a 3.40 GHz Intel i7, 32GB RAM
computer.



TABLE III
EXPERIMENTAL RESULTS

Model Iterations Execution Cost Bound Simulated Avg.
Time (s) (MUSD) Cost (MUSD)

M1 29 318 52.25 54.91

M2 71 1611 79.33 85.79

M3 99 3127 73.73 78.58

B. Experimental results

The results for each of the three variants described are
presented in Table III. The iterations column shows how many
steps the SDDP algorithm takes to attain its bound, and the
time required to converge is reported in the execution time
column, Finally, we report the attained cost lower bound as
well as the average cost obtained by simulation using the
corresponding policy.

As a guideline to interpret the results, recall from Table
I that the annual energy that must be injected into the sys-
tem, assuming all renewable energy can be used, is about
6670GWh. From the obtained cost, we can infer that the
policy is covering this energy with approximately 96% hydro
power, and 4% thermal generation, aligned with the current
situation in Uruguay.

Comparing the three models, the first one obtains a lower
cost, which is expected since it only considers daily energy
balance and this implies that the entire renewable energy avail-
able can be exploited. In mathematical terms, the model M1
is a relaxation of M2, and hence it will always attain a lower
cost. The model M2 takes into account the detailed timescale,
and thus the fact that demand and renewable generation may
not be aligned during the day. The increase in cost is due to the
fact that energy shifting now cannot be achieved, and therefore
extra thermal energy must be introduced into the system. Some
of this cost is reclaimed by the model M3, which introduces
the short term storage battery, now allowing the system to
better exploit the renewable power.

More importantly, we discuss the convergence time and
performance of our implementation. The benchmark model
M1 converges in only 29 iterations and 318 seconds, despite
including all four reservoirs in the state, as well as the
Markovian description of inflow evolution. This illustrates the
power of the SDDP approach, which enables us to model
the complete system with a daily timescale and obtain fast
results. The second model incorporates the detailed timestep,
multiplying by 24 the number of control variables. However
this does not lead to a large increase in computation time.
The true power of the SDDP approach becomes evident in
the third model, where a new state and its associated control
variables are introduced, but the computation time is less
than doubled. The achieved performance shows that SDDP
constitutes a promising approach to model the system using
the multi-timescale decomposition we developed.

VI. CONCLUSION

In this paper we proposed an adaptation of the stochastic
dual dynamic programming technique to solve the optimal pro-
visioning problem in a combined hydro-thermal system. The
main contribution is to incorporate into the SDDP framework
a detailed timescale, enabling us to model short term effects,
which is needed to capture the variability of the renewable
sources and to better gauge the impact of incorporating short
term energy storage into the system. The results obtained show
promising computation times, particularly when the state space
is enlarged, which opens the door to incorporating further
details into the model.

Several lines of future work remain open: an important one
is to exploit the fact that the SDDP technique is amenable
to parallel computation, a feature that was not exploited in
our simulations. This will drastically improve the computa-
tion times involved. A second important line of work is to
include network considerations into the mix, by considering
the network constraints, which is typically left out due to
computational complexity, but with these techniques seems
now in reach.

ACKNOWLEDGMENT

This work was partially supported by ANII-Uruguay under
grant FSE 1 2016 1 131605.

REFERENCES

[1] C. Harris, Electricity markets: pricing, structures and economics. John
Wiley & Sons, 2011, vol. 565.

[2] A. J. Conejo, M. Carrión, J. M. Morales et al., Decision making under
uncertainty in electricity markets. Springer, 2010, vol. 1.

[3] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 2005, vol. 1, no. 3.

[4] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization
applied to energy planning,” Mathematical programming, vol. 52, no.
1-3, pp. 359–375, 1991.

[5] “PSR,” https://www.psr-inc.com/softwares-en/, 2018, [Online; accessed
Aug-2018].

[6] A. B. Philpott and V. L. De Matos, “Dynamic sampling algorithms for
multi-stage stochastic programs with risk aversion,” European Journal
of Operational Research, vol. 218, no. 2, pp. 470–483, 2012.

[7] P. Girardeau, V. Leclere, and A. B. Philpott, “On the convergence
of decomposition methods for multistage stochastic convex programs,”
Mathematics of Operations Research, vol. 40, no. 1, pp. 130–145, 2014.

[8] O. Dowson and L. Kapelevich, “SDDP.jl: a Julia package
for Stochastic Dual Dynamic Programming,” Optimization
Online, 2017. [Online]. Available: http://www.optimization-
online.org/DB HTML/2017/12/6388.html

[9] G. Casaravilla, R. Chaer, and P. Alfaro, “Simsee: Simulador de sis-
temas de energı́a eléctrica,” Proyecto PDT 47/12. Technical Report 7,
Universidad de la Repúlica (Uruguay). Facultad de Ingenierı́a. Instituto
de Ingenierı́a Elétrica, Number 7-Dec, Tech. Rep., 2008.

[10] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[11] J. E. Kelley, Jr, “The cutting-plane method for solving convex programs,”
Journal of the society for Industrial and Applied Mathematics, vol. 8,
no. 4, pp. 703–712, 1960.

[12] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische mathematik, vol. 4, no. 1, pp. 238–
252, 1962.

[13] “Administración del mercado eléctrico,” http://adme.com.uy, 2018, [On-
line; accessed Aug-2018].

[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017.


