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The caching problem

m Consider a cache system with a catalog of /v objects. oL
File 2
File 3

m Requests for objects arrive at random at rate ).

m The cache can locally store C' < N of them.

File N

m If item is in cache, we have a hit.

Objective: for a given arrival process, maximize the steady-state hit probability.
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Populating a cache: timer based policies

Timer based (TTL) policies:

m Upon request arrival for item <, check for presence.
m If new, store item and start a timer 7; to evict.
m [f present, reset timer to 7;.

m Keep timers 7; such that average cache occupation is C.

T

| || |

Tk Tk+1 Tk+2 eviction Tk+3
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Request arrival model

The classical arrival model is the independent reference model:

m Requests arrive as a Poisson process of intensity .
m Request is for item ¢ with probability p; (popularity).
m Poisson thinning: each request process is Poisson \p;.

m Succesive requests are independent with distribution (p; : i = 1,..., N).
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Request arrival model
Beyond the IRM...

m Problem: caches work best when requests are bursty, i.e. successive requests are correlated.
m However, under the IRM we have purely random requests.
Point process approach [Fofack et al. 2014]:

m Assume requests for item < come from a point process of intensity \; := A\p;.

m [f inter-request times are heavy tailed, this can model burstiness.
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Example: Pareto arrivals

Consider two items, with equal popularity...

m Poisson arrivals:

[} e o o oo [ ] [} e o [} [ ]
; Homogeneous
[ ] [ ] [ BN} [ ] [ ] [ X J [ ] o e
m Heavy tailed arrivals (Pareto o = 2):
[ ] @ o [ ] o0 0 ©o
Bursty!
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A bit of point process theory...

Let N = {7 : k € Z} be a stationary point process representing requests from an item:

X~F X~ F l
—
T-2 T-1 70 0 1 t
Inter-arrival distribution: Age distribution:

F(t) = P]%(Tl — 70 < t)
EX[n] =1/

Note: here P, is the Palm probability of the point process (conditioning on 7, = 0).
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Application: TTL policies

Consider a single item with a timer 7" and its request process:

Hit probability: next arrival occurs hefore timer Occupation probability: probability that timer

expires. hasn’t expired by 0 since last arrival.
/\ T /\ T
1 X ~ F(x) l leﬂ@
t : 0 t
Hit probability = F(T) Avg. occupation = £°(T)
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Choosing the optimal timers

Requests come from independent sources with intensities \; and inter-arrival distribution F;:

Problem (Optimal TTL policy)

Choose timers 7; > 0 such that:

subject to:

Remark: non-convex non-linear program.
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Choosing the optimal timers
Idea: Change of variables «; = F;(T;) (occupation).
Problem (Optimal TTL policy)

Choose timers 7; = £ * (u;) such that:

NF (B (g
ke i (F; (us))

subject to:
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The hazard rate function

Define G, (u) := A\ Fi(E; ! (u)), then:

: ; > (P
0 A ) 2B ) = )

Ou N(1 = F(F; ()

(2

= ni(T})

where »; (¢) is the hazard rate function of the inter-arrival distribution:

__fi@®
1 — Fi(t)

n; (t) :

Idea: the hazard rate measures the probability that we have a request at time ¢, given that the
current interval is larger than ¢.
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Increasing hazard rates

Poisson arrivals: constant hazard rate (memoryless property), »; () = \; — objective is linear.

Increasing hazard rates: 7, (¢) increasing (more regular traffic) — objective is convex!

Optimal TTL policy, constant or [HR, [F’,Rodriguez, Paganini 18].

In both cases, the optimal TTL policy is static:

T} =00, (u;=1) fortheC contents with higher )\,

K3 2
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Decreasing hazard rates

m The decreasing hazard rate case corresponds to heavy tails and thus more bursty traffic —
where caching is more useful!

m fn;(¢) is decreasing, objective is concave, we have a non-trivial optimum:
L(u, p) = Z NF(F~Yu)) — p <Z u; — C)

m KKT conditions:

ni(F7 ) =ni(T7) > p Vi, p (Z uy — C> =0
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Decreasing hazard rates

Optimal TTL policy, DHR, [F’ Rodriguez, Paganini 18].
The optimal TTL caching policy for DHR is such that:

ni(T7) > p*

for every stored content.

Idea: we have a fixed memory budget to allocate. ;(7;) is the marginal increase in hit rate (utility)
for enlarging the timer 7;.

Optimal allocation: equalize marginal utilities.
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Parametric heavy tailed case

m For Pareto arrivals and Zipf popularities you can obtain P
ice fluid limit. = o
a nice tiuid nmi F(t):l—(%)
t
m let V gotoocoand C = ¢/, then ) has a -
functional limit. IS
B n(t) = eiofrt
fm
m The hit probability is given by [FRP "18]: t
1 . 2|°
B ==p) [ L= @ @)e ] do, | ey pixi?icn
0 = .M
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Conclusions so far...

m The hazard rate function of £ plays a crucial role in determining the optimal TTL policy!

m For [HR: just store the most popular content.

m For DHR: proper optimization problem, equalize hazard rates.

m Asymptotic analysis has explicit expressions.
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Replacement policies

m Assume now that you have a fixed capacity C. We have to decide which contents to store.
m Naive idea: just keep the C most popular ones (higher \;). Can we do better?

m Another idea: Least-recently-used (discard from the cache the oldest request).
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Replacement policies

m Assume now that you have a fixed capacity C. We have to decide which contents to store.
m Naive idea: just keep the C most popular ones (higher \;). Can we do better?

m Another idea: Least-recently-used (discard from the cache the oldest request).

Problem
Given some independent stationary request processes with intensities )\;, what is the optimal causal
policy?

Idea: we should keep track of some local notion of intensity!
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Stochastic intensity

Consider a simple stationary point process IV with intensity )\, defined in some probability space
(2, F, P). Let some filtration {7; },cx be a history of the process.

Define the stochastic intensity X(¢) of V as:

1
}lllg% EE[N((t,t +h)) | F] =At) P—a.s.,

Idea: If the process is simple (isolated points), E[N((¢, ¢ + h]) = Ah + o(h), so the average
stochastic intensity is \. But given the history, the value of \(¢) may change.
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Stochastic intensity

A local notion of intensity...

If traffic is bursty, the stochastic intensity rises near arrivals:
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Stochastic intensity of a renewal process

m Let now NV be arenewal process — inter-request times are iid ~ F.

m Let 7, be the natural history of the process (i.e. the information of points up to ¢).

Theorem (cf. Brémaud 21)
Let (¢) :== f(¢)/(1 — F(t)) be the hazard rate function of F. Define:

A(t) = n(t —77),

where 7 is the last point before ¢. Then \(¢) is a stochastic intensity for (N, 7).
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Some examples...

Constant hazard rate — Poisson process.

At
/ /// // // / / ./A Increasing hazard rate — more periodic!
t

\\\\L\\K\& A Decreasing hazard rate — more bursty!

t
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Causal caching policies

m Consider a cache system fed by /v independent renewal processes.

mlet 7, = o({F; :i=1,...,N}) their aggregate history.

Definition
A causal caching policy is an 7; predictable stochastic process

C:Q xR — 2tL-N}

i.e.C(t) = {i1,...,ic} is the subset cached at time ¢, and only depends on the past history of
item requests.
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The hit process

Stochastic intensity

Focus now on a particular content 4, its hit process is the point process given by:

H;(B) = Z 1iemyliicerin NPV -

nel

Since 1;c¢ () is F¢ predictable, its stochastic intensity is:

hi(t) = Xi(t)1giecryy
.8, hi(t) = \;(t) while i € C(t) and otherwise 0.
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The hit process
The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

N
H = ZH
=1

And its stochastic intensity is just:

N N
h(t) = hi(t) =Y Mi(H)1gecw)
=1 =1

The hit rate and hit probabilities of the policies are given by:

hit rate = Ay := E[h(t)], hit probability := )\TH
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Maximizing the hit rate
In order to maximize )z, consider the policy:

C*(t) = {i1,...,ic} suchthat Z i (t) is maximized.

Then, for any non-anticipative policy and for each realization:

Z Ait) < )0 () = hE(L).

ieC(t i€C* (t)
Theorem (Towsley et al. 22)
The optimal causal policy is to keep in the cache the C objects with the highest stochastic intensity

at any time.
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The threshold process
We can rewrite this optimal policy as a threshold policy:
i € C*(t) & \(t) = 6(t) := the C largest stochastic intensity

Example: Pareto requests, Zipf popularities, N = 20, C = 4.

We want to understand 6(¢).
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Asymptotic equivalence result

Theorem [F’, Carrasco, Paganini, three weeks ago...]

Consider a cache system fed by v independent renewal processes with DHR inter-arrival times, and
the optimal non-anticipative policy. Let N — oo with C = cV. Then, in steady state:

m The (appropriately scaled) threshold 6 (¢) converges almost surely to a constant 6*.
m 0* is the dual value of the optimal TTL policy, i.e. the value that equalizes hazard rates.

m If popularities are slowly decaying (i.e. 3 < 1) then the hit probability of the optimal policy
converges to 77+, the hit probability of the optimal TTL policy.
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Simulation example

Andres Ferragut, Univ. ORT Uruguay

Threshold evolution
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N = 1000, C = 100. Pareto oo = 2 requests, Zipf 3 = 0.5 popularities.

SPOR Seminar 33/44






Why this happens?

Because, for decreasing hazard rates, the TTL policy is also a threshold policy!
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Why this happens?

Because, for decreasing hazard rates, the TTL policy is also a threshold policy!

7o

Lin(s)>63

Key idea: replace the timer 7; by 6, = ; (), the corresponding hazard rate at the timer.
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Back to increasing hazard rates...

m Recall the increasing hazard rate behavior:

e e

m Once you have seen a request, it’s less likely to see another one for a while.
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Back to increasing hazard rates...

m Recall the increasing hazard rate behavior:

e e

m Once you have seen a request, it’s less likely to see another one for a while.

What is the timer based equivalent of this case?
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Timer based pre-fetching policies

Key insight

The question now is not how long we should remember something, but instead how long we should
forget about it!
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Timer based pre-fetching policies

Key insight

The question now is not how long we should remember something, but instead how long we should
forget about it!

Timer based pre-fetching policy:

| L l

Tk Tk+1 Tk+2 pre-fetching Tk+3 t
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Timer based pre-fetching

Consider a single item with a timer 7" and its request process:

Hit probability: next arrival occurs after timer Occupation probability: probability that timer

expires. has expired by 0 since last arrival.
1 X ~ F(x) l l X ~ F(x)
t : 0 t
Hit probability = 1 — F/(T) Avg. occupation = 1 — £°(T)
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Choosing the optimal timers

Requests come from independent sources with intensities \; and inter-arrival distribution £;:

Problem (Optimal pre-fetching policy)

Choose timers 7; > 0 such that:

subject to:
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Choosing the optimal timers

Requests come from independent sources with intensities \; and inter-arrival distribution F;:

Problem (Optimal pre-fetching policy)

Choose timers 7; > 0 such that:

subject to:

Remark: we can use the same change of variables again!
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Pre-fetching for increasing hazard rates

Optimal pre-fetching policy, IHR, [F’,Carrasco, Paganini, last week...].
The optimal timer based pre-fetching policy for IHR is such that:

mi(T77) 2w
for every stored content.
Remark: Again we have to equalize hazard-rates. The policy is a threshold policy.

Ongoing work: use this pre-fetching threshold policy to prove that in the fluid limit, the optimal
causal policy is a timer-based pre-fetching policy.
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Key takeaways...

m We analyzed two types of caching policies: TTL and replacement.
m We identified the hazard rate function as a crucial component of optimal policies.

m Using the point process framework, we can model burstiness and exactly compute asymptotics
for TTL policies.

m We provide a large scale equivalence result for the optimal causal policy and the optimal TTL
policy, enabling us to compute universal bounds on asymptotic performance!
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Key takeways...

m For IHR (more regular) traffic, caching is not a good idea!

m Instead, in order to use the information about arrivals, it is better to pre-fetch the content after
some time.

m We derived the optimal timer based pre-fetching policy and expect to prove a similar
equivalence result with the optimal causal policy!
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Thank you!

Andres Ferragut
ferragut@ort.edu.uy
http://aferragu.github.io
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