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Abstract

This paper analyzes reciprocation strategies in peer-to-peer networks from the point of view of the resulting resource

allocation. Our stated aim is to achieve through decentralized interactions a weighted proportionally fair allocation.

We analyze the desirable properties of such allocation, as well as an ideal proportional reciprocity algorithm to achieve

it, using tools of convex optimization. We then seek suitable approximations to the ideal allocation which impose

practical constraints on the problem: numbers of open connections per peer, with transport layer-induced bandwidth

sharing, and the need of random exploration of the peer-to-peer swarm. Our solution in terms of a Gibbs sampler

dynamics characterized by a suitable energy function is implemented in simulation, comparing favorably with a

number of alternatives.
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1. Introduction

Peer-to-peer (P2P) file sharing networks constitute a

popular alternative to distribute content over the Inter-

net. The main principle behind these networks is that

participating peers, which are downloading some con-

tent, also contribute their upload bandwidth to simulta-

neously serve other peers. Thus service capacity scales

with demand, a valuable self-scaling property.

The allocation of such capacity is however a

non-trivial issue, particularly when peers have non-

homogeneous parameters. Assume that µi, i = 1, . . . ,N

are the maximum upload capacities of a set of peers, and

that there are no other bottlenecks in the network. For

efficiency purposes we want the entire
∑

i µi distributed

among downloaders, but fairness is also important: if

a specific peer is not getting a fair share it may have

incentives to reduce its contribution µi.

These questions have been analyzed by many re-

searchers in the past, often combined with efforts to

characterize the behavior of prevailing P2P protocols

∗Corresponding Author

Email address: ferragut@ort.edu.uy

Postal address: Cuareim 1451, 11100

Tel./Fax: (+598) 29021505 / 29081370

such as BitTorrent [1]. In [2], the authors explore the

design space of possible resource allocations, showing

relevant tradeoffs between efficiency and fairness in the

allocation rule. From an efficiency perspective, [3, 4, 5]

seek to minimize the content distribution time, assum-

ing a fixed number of participants in the network. How-

ever, when incentives come into play, minimizing the

average download time may not be a good objective,

since peers with above average bandwidth are equalized

with the rest of the system. From the point of view of

incentives, it is worth noting that BitTorrent has a reci-

procity mechanism similar to tit-for-tat procedures from

game theory. In this system, each peer allocates its up-

link bandwidth to those from which it received the most

in the previous exchanges, thus incentives for coopera-

tion are provided (see [6]).

In this paper we adopt the position that, whenever

feasible, a peer should receive from fellow peers as

much as it gives (in line with the notion of fairness in

[2]), because it provides the most direct, transparent in-

centives. If such perfect reciprocation is not feasible,

the most natural approximation is a proportional fair-

ness criterion (as advocated in [7] for Internet band-

width sharing), but with weights corresponding to the

bandwidths µi. This turns out to be equivalent to hav-
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ing the download and upload rate vectors be close in the

sense of Kullback-Leibler divergence [8].

The subject of proportional fairness in P2P reci-

procity was first discussed in [9] and further developed

in [6, 10]. A natural proposal in this regard is a decen-

tralized proportional reciprocity algorithm, where peers

allocate upload resources in proportion to bandwidth re-

ceived. Mathematically this algorithm is very closely

related to a matrix renormalization technique studied

classically by Sinkhorn [11, 12], and by many others

since (see e.g. [13]). From this literature convergence

results for this iteration follow [10], with economic in-

terpretations. Indeed this path is further extended in

[14] to more general economic markets [15]. In this

regard, a first objective of this paper is to provide a

self-contained treatment of the properties of this ideal

reciprocity mechanism in peer-to-peer networks, and its

relationship with the desired proportional fairness, us-

ing techniques of convex optimization. While some of

the results we present could be traced to this rich liter-

ature, our contribution is to give a detailed account of

how these results are applicable to peer-to-peer systems

while also highlighting additional facts about this pow-

erful method. These aspects are covered in Section 2.

These ideal reciprocity schemes are not easily taken

into practice, since they require a large number of open

connections and fine-grained control of connection rates

which in typical scenarios are governed by the trans-

port layer, not under control of the application. To im-

pose such practical design constraints (number of con-

nections, transport layer bandwidth sharing) an energy

function is introduced in Section 3, which is zero under

ideal reciprocity, and which a practical scheme should

try to minimize. Although optimizing this energy under

the aforementioned limitations has combinatoric com-

plexity, we identify cases where the minimum is indeed

achievable. We further show that if each peer seeks to

myopically reduce its portion of the energy, a tit-for-tat

structure similar to BitTorrent’s comes out naturally.

The final step is to devise an algorithm that intro-

duces randomness in peer selection, to allow the system

to explore the set of peers which will in practice vary

with time. For this task we introduce in Section 4 a

Gibbs sampler dynamics [16] designing a Markov pro-

cess guided by a potential related to the energy function.

In this regard, it is worth noting that [17, 18] have intro-

duced this technique in the study of P2P systems. As we

will explain, there are differences between the two pro-

posals reflected in the potential function used and the

optimization objective.

In Section 5, we analyze the convergence speeds of

the proposed algorithms, establishing bounds on the

mixing times of the underlying Markov processes. The

resulting neighbor selection algorithm was also tested

in simulation and compared to other existing protocols,

such as standard BitTorrent, the PropShare algorithm

from [6] as well as the proposal in [17], performing well

against the alternatives in terms of reciprocity and fair-

ness. These results are reported in Section 6.

Conclusions and given in Section 7, and some proofs

are relayed to Appendices. Partial results leading up to

this paper were presented in [19].

2. Proportional fairness in P2P systems

We begin by defining some notation. A set of N peers

share information through a connectivity graph G: two

peers are neighbors in this graph if they can exchange

information. Let A = (ai j) denote the adjacency matrix

of this graph, which we assume symmetric, with aii = 0

for every i, and with no rows of zeros (each peer can

exchange with at least one other). Assume also that ev-

ery peer has an offered uplink capacity µi to share with

other peers.

Define a resource sharing matrix Z ∈ RN×N
+ in which

zi j represents the offered throughput from peer i to peer

j. Z should satisfy the following restrictions:

zi j ≥ 0, zi j = 0 if ai j = 0, (1a)
∑

j

zi j = µi ∀i. (1b)

This states that peers do not exchange information when

not connected, and that each peer contributes its entire

upload capacity. The second condition assumes there

are no other network constraints (internal network ca-

pacity, download capacity), and therefore we are seek-

ing an efficient allocation where all upload bandwidth

is used. This is common in practice, where the main

constraint is in the access capacity of peers.

The resource sharing matrix determines the amount

of information received by each peer from fellow peers,

given by the following expression:

r j(Z) =
∑

i

zi j ∀ j. (2)

Equivalently, in matrix form, equations (1) and (2)

can be summarized as:

Z1 = µ, 1T Z = rT ,

where µ, r, 1 ∈ RN are interpreted as column vectors, the

latter being the vector of ones, and T denotes transpose.

The questions of interest are:
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(i) What is a suitable resource allocation Z?

(ii) Can it be found through decentralized peer interac-

tions?

2.1. Proportionally fair allocation

We now consider the first of the preceding issues by

stating our allocation objective. As analyzed in [2],

there is a fundamental tradeoff between efficiency and

fairness. A maximum throughput allocation (i.e. one

that minimizes the mean download time) can punish

peers that contribute a high upload rate, giving an in-

centive to reduce the offered µi. The alternative advo-

cated in [2] is an allocation in which each peer receives

as much as it contributes, thus providing a transparent

incentive for peers to fully cooperate. This fairness ob-

jective however is not always feasible within the con-

straints, so we choose to state our objective in terms of

the following convex optimization problem:

Problem 1 (Proportionally fair allocation). Given A

and µ, choose Z as a solution of

max
Z

∑

j

µ j log
(

r j(Z)
)

, subject to (1).

The above criterion is an instance of (weighted) pro-

portional fairness, extensively studied in the realm of

Internet resource allocation [7]. Here, we choose each

node’s weight as its own contribution to the network,

in order to reward those peers contributing more band-

width1.

An alternative way of expressing the above objective

is to consider the Kullback-Leibler divergence (see e.g.

[8]):

D(µ||r) :=
∑

j

µ j log

(

µ j

r j

)

. (3)

As long as both vectors have the same sum (which hap-

pens in this case since
∑

j r j =
∑

i, j zi j =
∑

i µi), the

K-L divergence is always non-negative and only zero if

r = µ.

Our proportional allocation is equivalent to minimiz-

ing D(µ||r(Z)) among feasible Z; thus, if feasible, each

peer will receive as much as it contributes to the net-

work, which creates a strong cooperation incentive. In

case of infeasibility an approximation is sought in the

sense of minimal K-L divergence between download

and upload vectors.

1Proportional fairness can also be interpreted in terms of bargain-

ing theory [20]. The weighted case corresponds to an asymmetric

Nash solution [21] where the µi’s represent bargaining powers.

Example 1. Consider a full-mesh network where ai j =

1 whenever i , j, and assume a descending order for

upload capacities (µ1 ≥ µ2 ≥ . . . µN). In this case, a

necessary and sufficient condition obtained in [9] for

feasibility of r(Z) = µ is that µ1 ≤
∑N

i=2 µi, i.e. no peer’s

capacity is greater than the sum of the remaining ones.

This is arguably a typical scenario under a relatively

homogeneous population of peers.

We now characterize the proportionally fair alloca-

tion by writing the Lagrangian with respect to the up-

load capacity constraints,

L(Z, p) =
∑

j

µ j log















∑

i
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N
∑
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∑

j
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.

(4)

At optimality, all multipliers (prices) p∗
i

must be strictly

positive. This is because the objective is strictly increas-

ing in the free variables zi j, which are independent per

row (constraint); so if we were to relax (1b) to an in-

equality version, all constraints would be strictly active.

Given such price vector p∗ = (p∗
i
) > 0, let us character-

ize the optimality conditions for Z∗ = arg max L(Z, p∗)

over Z satisfying (1a). Noting that

∂L

∂zi j

=
µ j

r j(Z)
− p∗i ,

we must have for any pair of neighbors (i, j):

either z∗i j = 0,
µ j

r∗
j

≤ p∗i ; (5a)

or z∗i j > 0,
µ j

r∗
j

= p∗i . (5b)

Since for each j, r∗
j
=

∑

i z∗
i j
> 0, case (5b) must hold

in at least one entry per column; at optimality peer j is

served only from connected peers of minimum price. If

ideal reciprocity r = µ is feasible, then all prices must

be equal to one. More generally let

π∗j :=
1

min{p∗
i

: ai j = 1}
, (6)

then we have r j/µ j = π
∗
j
, i.e. π∗

j
determines the level of

reciprocation that peer j is obtaining from the network.

Remark 1. The objective of Problem 1 is not strictly

concave in the variable Z, so it need not have a unique

optimum. However it is strictly concave in r(Z), so

the optimum column sums r∗ are uniquely determined.

From (5b) it follows that optimal prices are uniquely de-

termined as well.
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Example 2. Return to the previous example but assume

that µ1 >
∑N

i=2 µi, so that it is infeasible to perfectly

reciprocate. Define κ =
µ1

∑N
i=2 µi
> 1; it is easily checked

that

Z∗ =



































0 κµ2 . . . κµN

µ2 0 . . . 0
...

...
. . .

...

µN 0 . . . 0



































, p∗ =



































1/κ

κ
...

κ



































(7)

satisfies the conditions (5) and thus is the proportionally

fair solution. The best approximation to perfect recip-

rocation is to have peers 2, . . .N give the most possible

rate to peer 1, who reciprocates with a factor κ of in-

crease.

Remark 2. Note that in the example r∗
j
= p∗

j
µ j for ev-

ery j, or equivalently π∗
j
= p∗

j
. This implies from (6) that

there is an inverse relation between a peer’s own price

and the prices of those peers with which it interacts at

optimality. As we will see below in Proposition 2, this

a general result and is a consequence of the uniqueness

stated in Remark 1.

What happens with the feasibility of perfect recipro-

cation when a graph structure A is given? This ques-

tion amounts to finding a matrix Z of structure A whose

rows and columns have sum µ, and as such has been

studied in the literature of matrix renormalization since

Sinkhorn [11, 12]. We extract from it (see [13] and ref-

erences therein) the following characterization, which

generalizes the case of the example.

Proposition 1. Given an adjacency matrix A and a vec-

tor of capacities µ, there exists a matrix Z satisfying (1)

and r(Z) = µ, if and only if for every zero minor of A, i.e

every (I, J) ⊂ {1, . . . ,N}2 such that ai j = 0 ∀i ∈ I, j ∈ J,

the following inequality holds:

µJ :=
∑

j∈J

µ j ≤
∑

i<I

µi =: µIc . (8)

In words: whenever a set of peers J is not allowed to

receive data from another set I, J’s total capacity should

not exceed the total capacity of the complement of I. It

is not difficult to see the necessity of the condition for

perfect reciprocation. A proof of sufficiency based on

optimization arguments is given in the Appendix.

2.2. Proportional reciprocity algorithm

We now turn to the question of achieving the propor-

tionally fair allocation through a decentralized, iterative

algorithm. At each iteration, each peer chooses how to

split its bandwidth among neighbors, only using as in-

formation the rate from prior exchanges.

A natural proposal [6, 9, 10] is to reciprocate other

peers in proportion to bandwidth received in the previ-

ous step, as follows:

zi j(t + 1) = µi

z ji(t)

ri(t)
; (9)

we call this the proportional reciprocity algorithm. It

says that in the next step, peer i allocates to peer j a

fraction of its bandwidth µi equal to the proportion of

bandwidth received from peer j in the previous step.

In matrix form we have Z(t + 1) = R[Z(t)] where the

reciprocity mapping is defined by

R[Z] := diag

(

µi

ri(Z)

)

· ZT . (10)

This is also equivalent to first re-normalizing the

columns of Z to have sum µ, and subsequently transpos-

ing. Thus except for this transpose, the preceding itera-

tion amounts to one step in the Sinkhorn algorithm [12]

of alternating row and column renormalization, whose

convergence has been extensively studied. This obser-

vation was already made in [10], and used to establish

convergence of the even and odd subsequences of the

above iteration, with a rather technical proof. In sub-

sequent work [14], the author extended the above kind

of proportional response dynamics to the more general

context of Fisher market from economics [15]. Here

the market has two sets of variables, bids and quanti-

ties, which are successively updated in what would cor-

respond to two steps of the previous algorithm.

Our aim in this section is to extract from the above lit-

erature a streamlined account of the convergence prop-

erties of the proportional reciprocity iteration as applied

to the peer-to-peer problem. The main result is Theo-

rem 4 which states that the rate received by each peer

converges to the optimum of Problem 1. In this sense,

Theorem 4 is an adaptation of the main result in [14] to

the case of bandwidth exchanges, and the proof is di-

rectly inspired by this paper.

We begin by characterizing the following property of

the optima of Problem 1.

Proposition 2. For a given A and µ, let Z∗ denote any

solution of Problem 1. Then Z∗ is a fixed point of R2,

square of the reciprocity iteration (10). Furthermore

Z+ := R[Z∗] is also a solution of Problem 1.

Proof. Let p∗ be the unique dual optimal multiplier vec-

tor associated with Problem 1; (5) implies

µ j

r∗
j

z∗i j = p∗i z∗i j ∀i, j. (11)
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Now according to (9) the left-hand side of (11) is z+
ji
, the

( j, i)-entry of Z+ := R(Z∗). Adding over j we obtain

r+i =
∑

j

z+ji = p∗i

∑

j

z∗i j = p∗i µi. (12)

Now apply the reciprocity mapping again, Z++ = R[Z+],

writing

z++i j = µi

z+
ji

r+
i

=
z+

ji

p∗
i

= z∗i j. (13)

Here the second equality uses (12) and the last (11).

Therefore Z++ = Z∗, a fixed point of R2.

Consider now a fixed index j, and the set

I j =
{

i : z+ji > 0
}

=
{

i : z∗i j > 0
}

;

all i ∈ I j must have minimum price p∗
i

among neighbors

of j, so defining π∗
j

as in (6) we conclude from (12) that

π∗j =
µi

r+
i

∀i : z+ji > 0;

π∗j ≥
µi

r+
i

∀i : z+ji = 0, a ji = 1;

These are precisely the optimality conditions (5) for the

pair (Z+, π∗), therefore Z+ is also an optimal point. Note

finally that by uniqueness of optimal prices we must

have π∗ = p∗.

Remark 3. A consequence of the above is that r∗
j
=

p jµ j for every peer. At the same time recall from (5b)

that r∗
j
= µ j

1
pi

whenever z∗
i j
> 0, so at optimality a peer

can only receive/send rate to another of inverse price.

In general, Z+ need not be equal to Z∗, i.e. Z∗ need

not be a fixed point of the map R itself (in Example

2 it is actually the same point). However we have the

following:

Corollary 3. If Z∗ is an optimum of Problem 1, and

Z+ := R[Z∗]. Then Z̃ = Z∗+Z+

2
is another optimum and

fixed point of R. In the special case where r = µ is fea-

sible, then there is always a symmetric optimal solution.

Proof. Z∗, Z+, both satisfy the conditions

Z1 = µ, 1T Z = (r∗)T

for the same (unique) optimal rate vector r∗. Hence by

linearity Z̃ satisfies the same, and is thus an optimal al-

location. Also (10) gives

R[Z̃] = diag

(

µi

r∗
i

)

· Z̃T = diag

(

µi

r∗
i

)

·
[Z∗]T + [Z+]T

2

=
1

2
R[Z∗] +

1

2
R[Z+] =

1

2
(Z+ + Z++) = Z̃.

Finally note that for the case r∗ = µ, Z+ = [Z∗]T there-

fore Z̃ is a symmetric matrix.

The final result is that repeated application of the pro-

portional reciprocity map converges to the set of optimal

proportionally fair allocations, under the only require-

ment that the initial condition must enable all allowable

exchange options.

Theorem 4. Consider a trajectory of the proportional

reciprocity iteration Z(t + 1) = R[Z(t)] starting from an

initial condition Z(0) satisfying (1), with also zi j(0) > 0

whenever ai j = 1. Then

lim
k→∞

Z(2k) = Z∗, lim
k→∞

Z(2k + 1) = Z+,

where both Z∗ and Z+ are optimal points of Problem 1.

In particular, the rate sequence r(Z(t)) converges to the

(unique) proportionally fair allocation.

Proof is given in the Appendix.

3. Approximating proportional reciprocity by

neighbor selection

The proportional response is a decentralized algo-

rithm that achieves our target bandwidth allocation in a

P2P network. However, some features of this algorithm

are not adapted to practical network scenarios.

A first difficulty is that in order to have a diverse set

of exchange opportunities, peers are typically in contact

with a moderately large number of neighbors. Assign-

ing a positive rate zi j > 0 to each such neighbor on a

permanent basis requires maintaining a large number of

open connections, with its associated overhead. Sec-

ondly, if the underlying transport protocol is TCP, the

application layer does not have a simple way to con-

trol its rate to each of its neighbors. Instead, under

normal circumstances (bottleneck in the upload) TCP

will split the upload bandwidth uniformly between ac-

tive outgoing connections2. Finally, we have given a

completely deterministic algorithm in which exchange

partners remain fixed throughout; as such it lacks the

ability to explore the different peering options as the net-

work evolves.

Before moving on to incorporate such restrictions in

the analysis, we briefly review how things are handled

in BitTorrent [1], the most popular P2P protocol. Bit-

Torrent peers open a maximum amount (usually four)

of connections to other peers. The neighbor selection

algorithm has essentially two parts:

2The main source of (uncontrolled) differences between TCP rates

would be round-trip-times; we will ignore this issue in what follows.
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• The tit-for-tat part: each peer, every 10sec, chooses

to upload to the three peers which, in the preceding

20sec, have given it the most data.

• The optimistic unchoke: each peer, every 30sec,

opens a connection to a random peer for 30sec.

Thus at any time every peer is uploading to 4 peers at

most, 3 of them chosen based on a ranking of the re-

ceived bandwidths and the other one at random. We

see that this protocol has incorporated the implementa-

tion restrictions discussed above (small number of con-

nections, random exploration), and also some notion

of reciprocity, but in principle not the proportional re-

sponse we were seeking. In this regard, [6] argues that

tit-for-tat behaves like a bandwidth auction, with weaker

incentives to contribute than perfect reciprocity (r = µ).

Nevertheless such result has been approximately ob-

served in empirical studies [22], which reveal that tit-

for-tat tends to form cliques of peers with similar band-

width parameters. Now the optimistic unchoke portion

of the protocol, which is essentially egalitarian in its dis-

tribution, departs completely from proportionality and

even introduces the possibility of free-riding by peers

that live from these optimistic connections.

There is thus room left for exploring alternatives to

the BitTorrent neighbor selection, that will more closely

reflect our design objective of proportional allocation,

within the practical constraints that have been identified.

In this Section we will address two of these constraints:

1. Each peer can only open a maximum amount of N0

connections.

2. The upload capacity µi of each peer is equally dis-

tributed between all outbound connections.

We postpone to the following section the issue of in-

corporating randomness in peer selection. We will also

restrict our attention to the case of feasible perfect reci-

procity. As argued before, this is not a very restrictive

assumption for peers with similar capacities and degrees

of connectivity:

Assumption 1. The connectivity graph A and the up-

load bandwidths µ1 ≥ µ2 ≥ · · · ≥ µN satisfy the condi-

tions of Proposition 1. There are no other bottlenecks in

the network.

Under this assumption, we have seen in the previous

Section that not only is perfect reciprocity r = µ feasi-

ble, but that it can be achieved with a symmetric matrix

Z, as shown in Corollary 3. This means that there is bal-

ance of bandwidth not only in the global outcomes but

also in peerwise interactions.

We now begin to incorporate the discrete restrictions

imposed by the number N0 of peer connections, and the

equal bandwidth between them. At this point it is con-

venient to factor out the peer bandwidths and introduce

a matrix X with coefficients in {0, 1
N0
} that stores the

neighboring configurations in terms of the fractions xi j

of its own bandwidth that peer i allocates to each peer j.

From it, the rate allocation can be obtained as

Z = diag (µi) X.

From a structural point of view, X must have the same

hard zeros imposed by the connectivity matrix A. This

is expressed by saying that X belongs to the following

set:

ΛS =

{

X ∈
{

0, 1
N0

}N2

: xi j = 0 if ai j = 0;
∑

j∈S

xi j = 1

}

.

3.1. Energy driven allocations

As a means to study the impact of discrete constraints

on the desired reciprocity, we will introduce an energy

function E(X), sum of squares of the peerwise discrep-

ancies in exchange rates, as follows:

E(X) =
1

2

∑

i, j

(µi xi j − µ jx ji)
2. (14)

This energy is thus equal to 1
2

∑

i, j(zi j − z ji)
2, and has

a minimal value of zero for symmetric allocations. At

this point it may not be entirely clear why we define this

new energy instead of just using the Kullback-Leibler

divergence, but it will become clear in section 4.

We would like to minimize the energy E(X) over

X ∈ ΛS . This is a discrete optimization problem which

has no explicit solution, but in certain cases we can iden-

tify interesting properties. One such case is where there

are repeated values in the sequence of upload band-

widths {µi}, of enough multiplicity with respect to the

connectivity parameter N0. We state the following re-

sult:

Proposition 5. Suppose that N0 is even. Divide the set

of peers into K groups with the same upload bandwidth

µ(k) for each member of group k. If every group has

Nk > N0 peers, there exists at least one configuration

X∗ such that E(X∗) = 0, resulting in the proportional

allocation.

Proof. As we have groups of peers with the same band-

width, E(X∗) = 0 holds for a configuration X∗ where

peers interact only within their group, provided each re-

ceives from N0 others. Formally, for each group of Nk
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peers we have to find a N0-regular graph (undirected,

where every node has N0 neighbors). Fortunately, the

existence of such graphs is a known result in graph the-

ory when N0 is even [23] (for instance, a solution is a

so-called Cayley graph). As a result, every group of N0-

regular graphs would make the energy equal to 0 and

thus yield a proportional allocation.

Remark 4. A N0-regular graph is fundamentally dif-

ferent to the formation of cliques (complete subgraphs)

which has been shown to be a property of the BitTor-

rent tit-for-tat mechanism [2]. A N0-order clique has

by definition N0 + 1 nodes; so unless the cardinality of

the repeated bandwidths happens to coincide with this

value, the result will be different. In fact, an algorithm

that forces cliques of fixed size can lead to severe loss in

proportional reciprocity, as portrayed in the following

example.

Example 3. Suppose that N0 = 4 and N = 15, where

seven peers have µi = 10 and the other eight have

µi = 1. The method of Proposition 5 forms two reg-

ular graphs and achieves proportional reciprocity. If

instead we form 3 cliques of size N0 +1 = 5, only two of

these can involve homogeneous peers and deliver pro-

portional reciprocity. The third clique will have two fast

peers (µi = 10) and three slow peers (µi = 1), result-

ing in an allocation of r = 3.25 for the fast peers, and

r = 5.5 for the slow ones. Not only is proportionality

broken, but the fast peers are being penalized!

One might think that having exact repetition of the

upload bandwidths is a very special case. However,

if peers can be grouped in classes with approximately

equal bandwidth, we can bound the minimum energy as

follows.

Proposition 6. Suppose that N0 is even. Divide the set

of peers into K groups, where the bandwidths {µi} for

peers in each group occupy an interval of length δ. If

every group has Nk > N0 peers, there exists at least one

configuration X∗ such that E(X∗) ≤ δ2 N
2N0

.

Proof. Consider the same X∗ constructed in Proposition

5. Write the total energy as E(X∗) =
∑

k Ek(X∗), adding

the energy contributions of each disconnected group.

For group k we have NkN0 mutual connections, each

with energy

1

2
(µixi j − µ j x ji)

2 ≤
δ2

2N2
0

.

Therefore Ek(X∗) ≤ δ2 Nk

2N0
and the result follows from

∑

k Nk = N.

Thus suggests that grouping peers in subsets of sim-

ilar bandwidth, of any size greater than N0, is a good

strategy to approximate the goal of proportional reci-

procity. The size of the classes will be a function of

the existing set of µi’s; the flexibility of going beyond

cliques of size N0 + 1 can lead to significant improve-

ments.

Remark 5. We note, however, a limitation of seeking

perfect reciprocity with the above discrete connections,

which did not occur with optimal allocations Z∗ of the

previous section. In the discrete case we are favoring

connectivity only between peers of the same (or similar)

bandwidth, thus reducing the level of file sharing, which

could be detrimental from the point of view of piece di-

versity. This issue will be later mitigated by adding ran-

domness.

3.2. Decentralized energy minimization and tit-for-tat

The question to ask at this point is: can the energy

by minimized by a decentralized algorithm? Given the

combinatoric nature of the problem we do not expect

the global optimum to be computable, but a reasonable

heuristic is to have each peer i choose its outgoing con-

nections seeking to myopically reduce its own portion

of the energy,

Ei(X) :=
∑

j

(µi xi j − µ jx ji)
2.

In this minimization we assume given the rates x ji re-

ceived by peer i, and we introduce the notation Jin =

{ j : x ji , 0} for the set of peers from which peer i is

currently receiving data. Let Nin be the cardinality of

this set, and note that there are no a priori constraints on

it, in principle 0 ≤ Nin ≤ N − 1.

Since peer i will divide its bandwidth uniformly

among its N0 outgoing connections, the myopic opti-

mization is just to choose the set Jout = { j : xi j ,

0}, of cardinality N0, to minimize the energy portion

Ei(X). The following proposition characterizes the op-

timal configuration.

Proposition 7. Given a set Jin of peers uploading to i,

a configuration X∗ minimizes the local energy Ei(X) if

and only if it solves

max
Jout

∑

Jin∩Jout

µ j. (15)

Proof. For convenience we will denote by µ̃ j :=
µ j

N0
, the

fraction of bandwidth allocated in a single connection

7



from peer j. The local energy of a given configuration

X can then be expressed as follows:

Ei(X) =
∑

j∈Jin∩Jout

(

µ̃i − µ̃ j

)2
+

∑

j∈Jin\Jout

µ̃2
j +

∑

j∈Jout\Jin

µ̃2
i .

Expanding the square
(

µ̃i − µ̃ j

)2
= µ̃2

i
+ µ̃2

j
− 2µ̃iµ̃ j and

rearranging terms leads to the equivalent expression

Ei(X) =
∑

j∈Jin

µ̃2
j +

∑

j∈Jout

µ̃2
i − 2

∑

j∈Jin∩Jout

µ̃iµ̃ j.

The first term above is given, and the second is fixed at

N0µ̃
2
i

for all allowable configurations, so only the third

term can be minimized by choice of Jout; noting that

µ̃i is fixed, and µ j = N0µ̃ j, we arrive at the equivalent

maximization (15).

To interpret the max-weight type condition (15), we

distinguish two cases:

(i) Nin ≤ N0. In this case it is clearly optimal in (15)

to cover the entire set Jin with Jout, assigning any

extra elements arbitrarily.

(i) Nin > N0. In this case only a portion of the µ j can

be included. The maximum weight is achieved by

assigning Jout to the largest N0 values of {µ j, j ∈

Jin}.

So we see that the local reciprocity energy is mini-

mized by picking N0 peers that are currently giving the

most bandwidth to peer i, and assigning any extra slots

arbitrarily. Interestingly, this corresponds exactly to the

tit-for-tat part of the BitTorrent algorithm. Therefore,

the myopic optimization of our energy cost is consistent

with this widespread reciprocity mechanism.

What happens if we iterate on the above deterministic

algorithm, each peer successively updating its configu-

ration based on the tit-for-tat like reciprocity scheme?

In general, it is difficult to characterize the behavior of

such dynamics over a discrete set of configurations. The

trajectory will depend on initial conditions, and there is

no reason to expect the global energy-minimizing con-

figuration will be found. For example, the initial file-

exchange may break the graph into components, leav-

ing some peers disconnected from their optimal neigh-

bors; these will never be discovered by the above deter-

ministic reciprocity. This suggests that a certain amount

of random exploration is required. An additional argu-

ment for randomization is mentioned earlier in Remark

5. BitTorrent addresses this issue through the optimistic

unchoke portion; however this egalitarian neighbor se-

lection implies an important deviation from proportion-

ality. An alternative is studied in the following section.

4. Incorporating randomness

From the preceding analysis, it is clear that random-

ness is needed in some form for a neighbor selection

algorithm to work properly in P2P networks. In this

section we will introduce a stochastic process over the

configuration space of neighbor connectionsΛS that in-

duces reciprocity in equilibrium. We would like the al-

gorithm to be decentralized, so a natural set of condi-

tions for the equilibrium distribution is the following:

• The connections of any peer, conditioned on the

connections of its neighbors under the connectivity

graph, should be independent from all the others

(as each node should decide its connections only

taking into account its neighbors).

• All configurations are possible a priori, so every

one should have positive probability.

• The configurations where reciprocity is higher

should have a higher probability.

We begin by introducing the following family of

probability distributions:

πT (X) =
1

ZT

exp

(

−
E(X)

T

)

, (16)

where E(X) is called the energy function, and the real

parameter is T called the “temperature”. Here ZT is just

a suitable normalization constant, often called partition

function in statistical mechanics.

Note that the above distribution gives the highest

probability to the low-energy states, provided the tem-

perature is low. More precisely:

Proposition 8 ([16]). Let {X∗
1
, . . . , X∗

K
} be the set of

configurations that minimize the energy E(X), then as

T → 0+ the distribution πT converges to
∑K

i=1
1
K
δX∗

i
, the

uniform distribution on the optimal set.

The energy function in (16) can be very general, but

the most interesting case is when it is based on local

interactions in the underlying connectivity graph. These

are the so-called Gibbs distributions [16]. Let C be a

complete subgraph or clique of the connectivity graph

and C the set of all cliques. Let the energy take the

form:

E(x) =
∑

C∈C

VC(x) (17)

where VC(x) is potential associated to the clique C. In

this case the Hammersley-Clifford equivalence Theo-

rem [16] shows that every Gibbs distribution whose en-

ergy satisfies (17) produces a Markov random field in
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the configuration space. This special structure ensures

that the connections any peer chooses depend only on

the connections of neighboring peers, the first assump-

tion we imposed at the beginning of the section. More-

over, the equivalence theorem states that every Markov

random field arises in this way, so there is no loss of

generality in concentrating in Gibbs distributions.

In this regard, our previously defined energy function

(14) is a perfect fit as the Gibbs energy. We recall its

definition:

E(X) =
1

2

∑

i, j

(µixi j − µ j x ji)
2.

Here, a potential VC(x) is assigned only to the cliques

of connected peers i and j (i.e. ai j > 0) and the po-

tential is given by the reciprocity attained in the current

configuration, i.e. V(i, j) = (µixi j − µ j x ji)
2.

This choice of energy yields the following invariant

distribution

πT (X) =

exp

(

− 1
2T

∑

i, j∈S

(µi xi j − µ jx ji)
2

)

∑

X′∈ΛS

exp

(

− 1
2T

∑

i, j∈S

(µi x
′
i j
− µ jx

′
ji
)2

) .

As we stated before, letting the temperature T → 0+

the probability concentrates on states with higher reci-

procity, as desired.

Note that other energy choices are possible to favor

reciprocity. In particular, one could use the Kullback-

Leibler divergence between the offered rates µ and the

received rates r, but this energy cannot be decomposed

in sums of terms that only depend on the connections of

peers that form cliques.

A major advantage of having a Gibbs measure as

target invariant distribution is that we have a natural

Markov chain which converges to this invariant distri-

bution. This is often called a Gibbs sampler [16]. An-

other commonly used name is “Glauber dynamics”, and

has been used with success in the problem of resource

allocation in wireless networks [24].

We remark at this point that in recent work by [17,

18], it was proposed to use this kind of approach for a

P2P network utility maximization problem, and it was

argued that this “reverse engineered” BitTorrent. In this

regard, we make the following remarks:

• The energy function used in the Gibbs approach

of [17, 18] is defined in terms of a network utility,

aimed more at performance than at fairness. This

would have impact in a situation where the rate of

upload of peer i is not equivalent for all peers j,

due to other network bottlenecks.

• The dynamics proposed in these references implies

choking one of the current peers and replacing by

a new one; the peer most likely to be choked is

the one with lowest current rate to it in the up-

load sense. Such a rule is in fact consistent with

the algorithm for seeders in the BitTorrent proto-

col (peers who already own the file). It is different,

however, to a reciprocity scheme based on down-

load rates received from other peers, as in the tit-

for-tat mechanism used by leechers. The latter is

the focus of our work, and so our Gibbs proposal

will be complementary to these references.

4.1. Random sweep Gibbs sampler

We now define the continuous time Markov chain

which has stationary distribution πT and only involves

neighbor interactions. The only transitions that are ad-

missible are between configurations X and X′ that only

differ in one row, that is, in the outgoing connections

(unchokes) of one peer. Given X, denote by ΛS
i

(X) =

{X′′ ∈ ΛS : x′′
k j
= xk j,∀k , i,∀ j}, that is, all the possi-

ble configurations that can be reached from X changing

only row i. For any X′ ∈ ΛS
i

(X), define the transition

rate

qT
X,X′ = τ · p

T
X,X′ , where (18)

pT
X,X′ =

exp

(

− 1
T

∑

j∈S

(µix
′
i j
− µ j x ji)

2

)

∑

X′′∈ΛS
i

(X)

exp

(

− 1
T

∑

j∈S

(µi x
′′
i j
− µ jx ji)2

) ,

and τ > 0 is a parameter.

The main property of the chosen transition rates is

that

πT (X)qT
X,X′ = π

T (X′)qT
X′,X ,

where we note that ΛS
i

(X′) = ΛS
i

(X) for every X′ ∈

ΛS
i

(X). The above detailed balance equations imply

that the Markov chain defined by (18) is reversible [25]

and has invariant distribution πT as required.

Additionally, note that by construction we have

qT
i :=

∑

X′∈ΛS
i

(X)

qT
X,X′ = τ

∑

X′∈ΛS
i

(X)

pT
X,X′ = τ.

Therefore, the rate at which each site i transitions is

common to all sites. This kind of Markov chain is

called a random sweep Gibbs sampler. Peers stay at

each configuration an exponential amount of time, of

parameter τ, after which they choose a new configura-

tion X′ ∈ ΛS
i

(X) with probability pT
X,X′ .
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Remark 6. When the temperature T goes to zero, the

transitions of peer i are dominated by configurations

that minimize the local energy Ei; as we saw in the pre-

vious section, these correspond to a tit-for-tat rule un-

choking peers from whom it is currently downloading

the fastest, similar to BitTorrent. The difference between

this algorithm and BitTorrent lies in the manner that we

introduce its randomness. Instead of having always an

optimistic connection that blindly explores other peer-

ing options, this algorithm chooses all of its connec-

tions using the same distribution. If at some point we

reach a state with local energy close to zero (e.g. when

the peer is exchanging with other peers with the same

upload capacity), the probability of choosing a different

peer is very small, making the current configuration sta-

ble. This is the key to obtaining an allocation as close

as possible to proportional fairness, while retaining the

capability of random search.

4.2. Systematic sweep Gibbs sampler

An alternative to the random sweep Gibbs sampler

is the systematic sweep Gibbs sampler, in which each

site is updated in a particular deterministic order, multi-

plying the transition probabilities of each row as the se-

quence goes along. It is most convenient here to define a

discrete-time Markov chain that tracks the configuration

state after each full sweep, with transition probabilities

p
sys

X,X′
now involving changes in all matrix rows, with the

following form:

p
sys

X,X′
=

N
∏

i=1

pi
X,X′ =

N
∏

i=1

exp
(

− 1
T
Ei(X, X

′)
)

ZT
i

,

where

Ei(X, X
′) =

i−1
∑

j=1

(µix
′
i j − µ j x

′
ji)

2 +

N
∑

j=i

(µi x
′
i j − µ j x ji)

2,

and ZT
i

are appropriate normalizing constants. Ei(X, X
′)

reflects the local energy of the i-th intermediate config-

uration when transitioning between X and X′.

The Markov chain defined before has a finite state

space and is irreducible and aperiodic, thus it eventu-

ally converges to its invariant distribution, which can be

shown to be equal to πT . This sampler would corre-

spond to the case where each peer updates its connec-

tions after a fixed amount of time, which is the version

that we chose to implement for the simulations (Section

6).

5. Mixing times of the Gibbs samplers

The previously defined Gibbs samplers effectively

yield the desired approximate allocation through their

invariant distribution. However, there is a delay between

the start of the process and the time that it reaches its

stationary regime, which could deviate the final alloca-

tion from the desired one. For a discrete time Markov

chain with finite state space ΛS , transition matrix P and

unique invariant distribution π, this delay is measured

by the mixing time defined as

Tmix(ǫ) = max
X0∈Λ

S
min {n : dTV (X0Pn, π) ≤ ǫ}

where dTV (·, ·) is the distance in total variation between

two probability measures.

5.1. Random sweep Gibbs sampler

As all transitions occur at the same rate independently

of the state, we will analyze the mixing time of the

embedded chain of the random sweep Gibbs sampler

whose transition matrix Pran is defined by

pran
X,X′ =

1

N

exp

(

− 1
T

∑

j∈S

(µi x
′
i j
− µ jx ji)

2

)

∑

X′′∈ΛS
i

(X)

exp

(

− 1
T

∑

j∈S

(µix
′′
i j
− µ j x ji)2

)

Note that the embedded chain has the same invariant

distribution πT because the transition rates are uniform.

Proposition 9. Let η be the initial distribution and Pran

be the transition matrix of the embedded discrete-time

Markov chain. Then

dTV

(

η(Pran)Nn, πT

)

≤ dTV (η, πT ) δ(Pran)n

where

δ(Pran) ≤

















1 −
N!

NN
exp

(

−
2Nµ2

max

T N0

) N
∏

i=1

(

di

N0

)

(

dmax

N0

)

















.

where di is the degree of node i and dmax is the maximum

degree between all nodes. Furthermore

Tmix(ǫ) ≤
N log(ǫ)

log

(

1 − N!
NN exp

(

−
2Nµ2

max

T N0

) N
∏

i=1

( di
N0

)

(dmax
N0

)

) + 1.

The proof is given in Appendix C.
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Remark 7. The preceding bound for mixing time is

valid for all T > 0, in particular for low values of tem-

perature it would indicate approximate convergence to

the set of optimal energy configurations. Note however

that, consistently with the combinatoric complexity of

the underlying problem, the bound scales poorly (expo-

nentially) with the network size N.

If instead we are willing to work with a high enough

T , a tighter bound on mixing time can be obtained,

which grows polynomially (as N log(N)) in the size of

the network. This means that we have a fast mixing al-

gorithm, which is great in practice.

Proposition 10. If T >
2µ2

max

N0 log

(

2N0
2N0−1

) , then

Tmix(ǫ) ≤
log(ǫN−1)

log

[

1 − 1
N
+

2N0

N

(

1 − exp

(

−
2µ2

max

T N0

))] + 1.

The proof uses the path coupling technique of [26],

and is given in Appendix D.

5.2. Systematic sweep Gibbs sampler

For the naturally discrete-time Systematic sweep

sampler, we bound the speed of convergence in the fol-

lowing result.

Proposition 11. Let η be the initial distribution and

Psys be the transition matrix of the discrete-time Markov

chain. Then

dTV

(

ηPn
sys, πT

)

≤ dTV (η, πT ) δ(Psys)
n

where

δ(Psys) ≤















1 − exp















−

N
∑

i=1

2µiµmax

T N0





























.

Furthermore

Tmix(ǫ) ≤
log(ǫ)

log

(

1 − exp

(

−
N
∑

i=1

2µiµmax

T N0

)) + 1.

The proof is given in Appendix E.

Remark 8. Here again we have a bound that holds for

all T > 0, with a similar drawback as the one in Propo-

sition 9; namely, it grows exponentially in N.

In both cases there appears to be a tradeoff between

the speed of convergence and the fairness of the allo-

cation. Indeed in the simulations section we will en-

counter such a tradeoff. We refer the reader to [24] for

a discussion of these issues on a similar problem.

6. Implementation and simulations

We now evaluate the devised systematic sweep Gibbs

algorithm as a means to achieve reciprocity and fairness.

In order to perform comparisons, we also implemented

idealized versions of the BitTorrent unchoking mecha-

nism, the ideal proportional reciprocity algorithm dis-

cussed in Section 2.2, the PropShare unchoking algo-

rithm of [6] and the Markov approximation approach

devised in [17].

Let us begin by briefly recalling the different algo-

rithms. The standard BitTorrent unchoking mechanism

maintains for each peer N0 = 4 outgoing connections.

Three of these connections are used to reciprocate other

peers, and the remaining connection is an optimistic un-

choke, designed to explore new peers. The latter is kept

for several iterations in order to allow time for the opti-

mistically unchoked peer to reciprocate. This algorithm

has low overhead and enables peers to find appropriate

partners [2], but it has two main disadvantages: the un-

chokes are based only on the ranking of better contribu-

tors, and not in the bandwidth they provided, which has

incentives problems [6]. It also constantly searches for

new peers, allocating a substantial proportion of the up-

link bandwidth to this end, and possibly drifting away

from good configurations.

The proportional reciprocity algorithm (9), on the

other hand, focuses on reciprocating only, by allocat-

ing proportional shares to each connected peer. To this

end, it is the best one can do and achieves a fast con-

vergence time. A pure proportional response however,

has two main drawbacks from a practical perspective:

it requires to keep a large amount of connections with

several peers, as well as controlling exactly the amount

of bandwidth allocated to each unchoked peer, which

may be difficult to implement in practice. More impor-

tantly, it can get stuck in bad configurations if the initial

connectivity of peers is sparse.

The PropShare algorithm is based on the reciprocity

iteration, and was devised to correct this last problem,

among other improvements. This algorithm allocates

proportionally to the received contributions 80% of the

uplink bandwidth of a given peer. It uses the remain-

ing 20% to explore new peers through optimistic un-

chokes, much like BitTorrent. This exploration mech-

anism enables the algorithm to increase the number of

connected peers. While this may achieve a higher level

of fairness, the bandwidth committed to the optimistic

search can make the algorithm drift away from good

configurations. This algorithm still suffers from the bur-

den of maintaining many connections and controlling

the amount of bandwidth given to each. In our simula-
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tions we implemented an idealized version of PropShare

based on these features, not taking into account these

problems, and thus we expect our results to provide an

upper bound on real life PropShare performance.

The Markov approximation algorithm of [17] has

points in common with the one proposed in this paper.

However, unchoke transitions in that case emphasize

maximizing throughput, by discovering the best neigh-

bors to upload to. Reciprocity is not taken into account,

so it suffers on the fairness side, as we will see.

As for our Gibbs algorithm, connections are updated

in order following the transition probabilities given Sec-

tion 4.2. The temperature parameter T in these expres-

sions has units of bandwidth squared; for normalization

purposes we express all bandwidth parameters in Mbps.

To evaluate the algorithms, we simulated the follow-

ing scenario: we constructed a swarm of N = 160 peers,

where each one has an average of 40 connections with

other peers, which is the typical value of neighbors in

BitTorrent implementations. This is achieved by con-

structing a random realization of an Erdös-Renyi graph

with edge probability p = 0.25. Participating peers

divide into two classes: half of the peers have an up-

link bandwidth of 1Mbps whereas the rest contribute

256Kbps =1/4 Mbps to the system. All algorithms start

from the same initial unchoke condition with N0 = 4

outgoing connections per peer. Updates are made every

10s as in BitTorrent.

As a measure of the achieved reciprocity and fairness,

we evaluate two metrics: the Gibbs energy E(X) from

(14) defined in Section 3, which is intended to be mini-

mized by the Gibbs algorithm, and also the Kullback-

Leibler divergence D(µ‖r) between the offered band-

widths µi and the rates received by each peer ri. The lat-

ter serves as an objective indicator of how much each al-

gorithm adheres to our fairness criterion, recalling from

Section 2 that in the optimal allocation D(µ‖r∗) = 0.

In order to correctly assess the performance of each

algorithm, we take several random initial conditions

(common to all), simulate each of the algorithms and

plot the average results for each metric.

In Figure 1, we plot the evolution of the Gibbs en-

ergy E(x) for the different algorithms in log scale. The

Markov approximation algorithm from [17] remains

with a high energy, which is not surprising since it does

not pursue reciprocity. The (ideal) proportional reci-

procity iteration (labeled in the Figure as “Sinkhorn”)

would be theoretically the best, but when facing ran-

dom initial conditions with sparse connectivity the algo-

rithm cannot fully achieve reciprocity, and thus it does

not reach minimum energy. The BitTorrent algorithm

is assigning too many optimistic unchokes, and this re-
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Figure 1: Gibbs energy evolution for the different algorithms.
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Figure 2: Evolution of the Kullback-Leibler divergence between up-

link and received rate.

flects on the energy achieved. PropShare is the best al-

ternative, at the expense of having a greater number of

simultaneous connections for each peer, and controlling

bandwidth on each one of them. Our Gibbs algorithm

(here with T = 0.2) finds the lowest energy level using

at any given time only N0 = 4 open connections which

share the uplink equally.

To evaluate fairness, in Figure 2 we plot the afore-

mentioned KL divergence for each algorithm, leaving

out in this case the Markov algorithm from [17]. Note

that also for this metric the best algorithms are Prop-

Share and the proposed Gibbs sampler, the latter achiev-

ing better results.

To explore the effect of the temperature parameter T

on the Gibbs algorithm, we simulated the system for

several values of T in the range 0.1 to 10. In Figure 3

we plot the steady-state energy and KL divergence as a

function of T . As we can see, the Gibbs algorithm out-

performs the alternatives for low enough T . The price to

pay for operating at lower temperatures is convergence

12



10
−1

10
0

10
1

10
0

Temperature

E
q
u
ili

b
ri
u
m

 E
n
e
rg

y

 

 

Gibbs

BitTorrent

Sinkhorn

PropShare

10
−1

10
0

10
1

0

5

10

15

20

Temperature

E
q
u
ili

b
ri
u
m

 K
L
−

d
iv

e
rg

e
n
c
e

 

 

Gibbs

BitTorrent

Sinkhorn

PropShare

Figure 3: Attained Gibbs energy and KL divergence for different val-

ues of T .

time, as shown in Figure 43. For low temperatures our

algorithm takes longer to stabilize (in the order of min-

utes). Note however, referring back to Figure 2, that in

this case even before fully converging our algorithm is

already achieving an improved fairness with respect to

the competitors.

Remark 9. The convergence-time issue is relevant if

one thinks of the exchange mechanism operating in a dy-

namic P2P swarm with arrival and departure of peers.

In this regard, we are separating two time-scales: the

faster, microscopic dynamics of piece exchanges, and

the slower dynamics of peer populations. In the present

paper we have considered the fast time scale, taking the

population of peers to be fixed, and developed an al-

gorithm to achieve fairness. Other papers by ourselves

[27, 28] and others (e.g., [9]) address the slower pop-

ulation dynamics, assuming that fairness is imposed in-

stantaneously. While in reality time-scale separation

is not perfect, the decomposition will be approximately

valid provided that fairness is imposed quickly with re-

spect to peer inter-arrival times. Our analysis of con-

3Precisely, we take convergence time to mean the iteration for

which which our energy metric decreases by less than 1%.
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Figure 4: Convergence time as a function of temperature.

vergence time gives credence to this idea: starting from

a random place, fairness is imposed relatively quickly,

in comparable times to other algorithms. If the ini-

tial condition were to deviate from fairness only in one

newly arrived peer, much shorter convergence times are

expected.

7. Conclusion

In this paper we analyzed P2P networks under het-

erogeneity in access bandwidth, with the aim of achiev-

ing a proportionally fair bandwidth allocation by means

of decentralized peer interactions. A proportional reci-

procity scheme from previous work was analyzed in

some detail, using tools of convex optimization. Incor-

porating practical design constraints led to an approxi-

mate, randomized scheme for recursive neighbor selec-

tion, built from a Gibbs sampler dynamics based on a

natural energy function. The proposal was implemented

in simulation and compared against alternatives, show-

ing good results. Natural follow-ups to the present work

would be to construct a packet-level implementation,

and investigating the performance of our Gibbs sam-

pler protocol in the case of swarm of peers that varies

in time.

Appendix A. Proof of Proposition 1

Proof. The necessity of the condition is straightforward.

If a feasible Z exists,

∑

j∈J

µ j =
∑

j∈J

r j =
∑

i

∑

j∈J

zi j

=
∑

i<I

∑

j∈J

zi j ≤
∑

i<I

∑

j

zi j =
∑

i<I

µi.
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The intermediate step (from one row to the next) uses

the fact that zi j = 0 ∀i ∈ I, j ∈ J, a zero minor inherited

from the structure A.

Let us now turn to the converse implication, estab-

lished through a contradiction argument. Suppose that

the allocation r(Z) = µ is infeasible within the structure

A, and let Z∗ be a solution to Problem 1, with p∗ the

optimal Lagrange multipliers. Invoking r∗
j
= p∗

j
µ j from

Remark 3, infeasibility implies not all prices are unity.

Recalling further that peers only exchange information

with others of inverse price, the set of optimal prices

must satisfy

pmin = min
i

p∗i < 1, pmax = max
i

p∗i =
1

pmin

> 1.

Define the partition of indices in disjoint sets

Imin = {i : p∗i = pmin}; Iint = {pmin < p∗i < pmax};

Imax = {i : p∗i = pmax}.

If we choose a row and column order consistent with the

index partition (Imin, Iint, Imax), Z∗ must have structure

Z∗ =





















0 0 X

0 X 0

X 0 0





















, (A.1)

where nonzero entries are confined to blocks marked by

X. Adding the entries in the bottom-left block we have
∑

i∈Imax

µi =
∑

j∈Imin,i∈Imax

z∗i j =
∑

j∈Imin

r∗j .

Now recalling that r∗
j
= p∗

j
µ j we conclude that

∑

i∈Imax

µi = pmin

∑

j∈Imin

µ j. (A.2)

We now claim that the row/column sets (Imin, Imin ∪ Iint)

must define a zero minor of A. In fact for any j ∈ Imin ∪

Iint we have, invoking (6):

1

min{p∗
i

: ai j = 1}
= π∗j = p∗j <

1

pmin

,

therefore no i ∈ Imin can be connected to j. Using sym-

metry of A, (Imin∪ Iint, Imin) is also a zero minor. In other

words the top-left blocks of the structure (A.1) must be

hard zeros imposed by A. Now applying the hypothesis

(condition (8)) to (I, J) = (Imin ∪ Iint, Imin) we have
∑

j∈Imin

µ j ≤
∑

i<I

µi =
∑

i∈Imax

µi.

But then (A.2) implies
∑

j∈Imin

µ j ≤ pmin

∑

j∈Imin

µ j,

a contradiction since pmin < 1.

Appendix B. Proof of Theorem 4

Consider any optimal allocation Z∗, solution of Prob-

lem 1. For a feasible Z define the function

V(Z) := D(Z∗||Z) =
∑

i, j

z∗i j log

(

z∗
i j

zi j

)

, (B.1)

which is the K-L divergence between the matrices. Note

that
∑

i, j z∗
i j
=

∑

i, j zi j so this metric is meaningful.

In order for V(Z) to be finite, it must be that zi j > 0

whenever z∗
i j
> 0; this is automatically guaranteed for

any Z that assigns positive rate to all allowable connec-

tions (ai j = 1), which is an assumption of the Theorem

for the initial condition Z(0) of the proportional reci-

procity algorithm; it is easily seen that this condition is

preserved during the iteration.

Our first Lemma establishes a monotonicity condition

of V after two steps of proportional reciprocity.

Lemma 12. For V defined in (B.1), the mapping R in

(10) satisfies

V(R2[Z]) ≤ V(Z), (B.2)

with equality only if Z is an optimal allocation.

Proof. Let Z+ = R[Z∗], recall by Proposition 2 that it

is also an optimal allocation. Also denote Ẑ+ = R[Z],

Ẑ++ = R2[Z], r = r(Z) and r̂+ = r(Ẑ+). Recalling the

definition the reciprocity iteration (10), we have

ẑ++i j =
µi

r̂+
i

·
µ j

r j·
zi j. (B.3)

Now introduce some additional factors from the optimal

allocations Z∗, Z+ to write the equivalent expression

ẑ++
i j

zi j

=
µi

r+
i

·
r+

i

r̂+
i

·
µ j

r∗
j

·
r∗

j

r j

=
r+

i

r̂+
i

·
r∗

j

r j

for z∗i j > 0.

In the second step we have invoked the facts from

Proposition 2, that z∗
i j
> 0 implies

µ j

r∗
j

= pi,
µi

r+
i

= 1
pi

.

Taking a log and substituting in (B.1) we arrive at:

V(Z) − V(Ẑ++) =
∑

i, j

z∗i j log

(

r+
i

r̂+
i

)

+
∑

i, j

z∗i j log

(

r∗
j

r j

)

=
∑

i

µi log

(

r+
i

r̂+
i

)

+
∑

j

r∗j log

(

r∗
j

r j

)

.

(B.4)
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The first term above is non-negative because Z+ is a so-

lution to Problem 1, and the second is the K-L diver-

gence D(r∗||r) ≥ 0. This establishes (B.2). Furthermore,

from the second term we see that equality holds only if

r = r∗, i.e. Z is an optimal allocation.

We now tackle the proof of the Theorem.

Proof. Denote by Zk = Z(2k) the sequence of even

iterations of the initial condition Z(0). The previous

Lemma implies that Vk = V(Zk) is decreasing, non-

negative sequence and hence has a limit V∞ ≥ 0.

Now since Zk is a bounded matrix sequence due to

(1), consider a convergent subsequence Zkl
→ Z̃. By

continuity we must have V(Z̃) = D(Z∗||Z̃) = V∞. Now

also R2(Zkl
) = Zkl+1 must satisfy V(Zkl+1) → V∞, there-

fore V(R2(Z̃)) = V(Z̃). Invoking the second statement of

the previous Lemma, Z̃ must be an optimal allocation.

So {Zk} can only accumulate in the set of optimal

points; a slight refinement of the argument implies Zk

must actually converge to an optimal point. To see this,

choose a function V as in (B.1) but where Z∗ is actually

Z̃, subsequential limit of Zk. In that case clearly V∞ = 0.

Now D(Z̃||Zk) → 0 implies that Zk → Z̃, optimal point

as claimed.

An analogous argument applies to the odd subse-

quence Z(2k + 1).

Appendix C. Proof of Proposition 9

First, we prove a useful lemma.

Lemma 13. We have the following lower bound for the

transition probabilities

pT
X,X′ =

exp
(

− 1
T
Ei(X

′)
)

∑

X′′∈ΛS
i

(X)

exp
(

− 1
T
Ei(X′′)

) ≥
exp

(

−
2µiµmax

T N0

)

#ΛS
i

(X)

which is uniform in X, as #ΛS
i
(X) does not actually de-

pend on X.

Proof. Let

mi(X) = min
X′∈ΛS

i
(X)
{Ei(X

′)}

and

Mi(X) = max
X′∈ΛS

i
(X)
{Ei(X

′)}

be the minimum and maximum local energy at node i

that can be achieved from X. Then we have that

pT
X,X′ =

exp
(

− 1
T

[Ei(X
′) − mi(X)]

)

∑

X′′∈ΛS
i

(X)

exp
(

− 1
T

[Ei(X′′) − mi(X)]
)

We can bound from above each term of the sum in the

denominator by 1 and thus the sum by the number of

terms that is #ΛS
i

(X). Furthermore, we can bound from

below the numerator by

exp

(

−
1

T
[Mi(X) − mi(X)]

)

To find an appropriate bound, we need to find the maxi-

mum possible difference between Mi(X) and mi(X). The

maximum local energy in node i is achieved when the

peer chooses to upload to a set of peers from which it is

not downloading content. In that case

Mi(X) =
1

N2
0

















N0
∑

k=1

µ2
i +

Nin
∑

k=1

µ2
jk

















.

On the other hand, Proposition 7 tells us that the min-

imum local energy is achieved when the peer chooses

the fastest peers that are uploading to him. As a result,

the minimum energy is

mi(X) =
1

N2
0

















N0
∑

k=1

(µi − µ jk )
2 +

Nin
∑

k=N0+1

µ2
jk

















if Nin ≥ N0 and

mi(X) =
1

N2
0

















Nin
∑

k=1

(µi − µ jk )
2 +

N0
∑

k=Nin+1

µ2
i

















otherwise. In any case, the minimum energy can be ex-

pressed as

mi(X) =
1

N2
0



















N0
∑

k=1

µ2
i +

Nin
∑

k=1

µ2
jk
−

min{N0,N
in}

∑

k=1

2µiµ jk



















.

and thus the difference is

Mi(X) − mi(X) =
1

N2
0

min{N0,N
in}

∑

k=1

2µiµ jk ≤
2µiµmax

N0

.

Putting all together we have that

pT
X,X′ ≥

exp
(

−
2µiµmax

T N0

)

#ΛS
i
(X)

Now we are ready to prove the proposition.

Proof. Consider the Markov chain with transition ma-

trix P′ = PN
ran, which is actually the embedded chain for
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the random sweep Gibbs sampler every N-th transition.

This chain can now jump from one state to any other

in exactly one step, while the original could not. Using

Theorem 7.2 of chapter 6 in [16], we have

dTV

(

ηP′n, πT

)

≤ dTV (η, πT ) δ(P′)n

where δ(P′) is the Dobrushin’s ergodic coefficient

δ(P′) =
1

2
max
X,X′















∑

X′′

|p′X,X′′ − p′X′,X′′ |















= 1 −min
X,X′















∑

X′′

min
{

p′X,X′′ , p
′
X′,X′′

}















The transition probabilities p′
X,X′′

are sums of products

of N factors that come from Pran. In the worst case,

when X and X′′ differ in all rows, there is only N! terms

in the sum (one for each permutation of the order of

transitions). As a result, if we get a lower bound for the

elements of Pran, we can obtain one for the elements of

P′.

Using Lemma 13, we obtain the following uniform

bound

pran
X,X′′ ≥

1

N

exp
(

−
2µiµmax

T N0

)

#ΛS
i
(X)

If X = X0, X1, . . . , XN−1, XN = X′′ is a path of config-

urations from X to X′′ such that Xi−1 and Xi can only

differ in row σ(i) for some permutation σ (but may be

equal), then the minimum element in the matrix P′ is

lower bounded as follows

min
X,X′′∈ΛS

{p′X,X′′} ≥ N! min
X0,...,XN∈Λ

S















N
∏

i=1

pran
Xi−1,Xi















≥
N!

NN

















min
i

exp
(

−
2µiµmax

T N0

)

#ΛS
i

(X)

















N

≥
N!

NN

exp

(

−
2Nµ2

max

T N0

)

(

dmax

N0

)N
,

where dmax is the maximum degree in the connectivity

graph. With this we obtain the following expression

δ(P′) ≤ 1 −
N!

NN

exp

(

−
2Nµ2

max

T N0

)

(

dmax

N0

)N
#ΛS

≤ 1 −
N!

NN
exp

(

−
2Nµ2

max

T N0

) N
∏

i=1

(

di

N0

)

(

dmax

N0

)

For the mixing time we need the total variation to be

less than or equal to ǫ in the worst case regarding the

initial condition

dTV

(

δX0
P′n, πT

)

≤ dTV

(

δX0
, πT

)

δ(P′)n

≤

















1 −
N!

NN
exp

(

−
2Nµ2

max

T N0

) N
∏

i=1

(

di

N0

)

(

dmax

N0

)

















n

≤ ǫ

Taking logarithms, rearranging terms and multiplying

by N concludes the proof.

Appendix D. Proof of Proposition 10

This proposition heavily relies on a theorem from

[26] which we now state.

Let C and V be finite sets with #V = N. Consider a

discrete-time Markov chain with state space Ω = CV

with the following transition structure: We first pick

i ∈ V from a fixed distribution J over V . Then we pick

c ∈ C according to a distribution κX,i over C, dependent

only on the current state X and i. We make the transi-

tion towards the state X′ which only differs from X in i,

such that X′
i
= c (which we denote Xi→c). Also, assume

that the chain is irreducible and aperiodic thus having a

unique invariant distribution.

Theorem 14. If

β = max
X,Y∈Ω,i∈V



















1 − J(i) +
∑

j∈V

J( j)dTV (κX, j, κY, j) :

X, Y only differ in i, X , Y} < 1

then

Tmix(ǫ) ≤

⌈

log(ǫN−1)

log(β)

⌉

Although this theorem requires a state space which is

a product of identical finite sets, the same result still

holds for Markov chains with state spaces which are

product of different finite sets. The proof is essentially

the same with minor modifications. Now we can prove

the proposition.

Proof. In order to use the previous theorem, we only

need to get an upper bound for β in our particular chain.

β = 1 −
1

N
+ max

X∈ΛS ,Y∈ΛS
i

(X),i



















1

N

N
∑

j=1

dTV

(

pT
X,X j→·
, pT

Y,Y j→·

)
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Note that because X and Y only differ on the connec-

tions of one peer (i), there can only be 2N0 nonzero dTV ,

due to the fact that the peers that do not receive a con-

nection from i in X nor in Y will be unaffected by the

connections of i. Furthermore, dTV

(

pT
X,Xi→·
, pT

Y,Yi→·

)

= 0

always as the distribution of the new connections does

not depend on current connections.

Now, for j , i we have that

dTV

(

pT
X,X j→·

, pT
Y,Y j→·

)

=
1

2

∑

X′
j
∈Λ j

∣

∣

∣

∣

∣

pT
X,X j→X′

j

− pT
Y,Y j→X′

j

∣

∣

∣

∣

∣

= 1 −
∑

X′
j
∈Λ j

min

{

pT
X,X j→X′

j

, pT
Y,Y j→X′

j

}

≤ 1 − #Λ j min
X′

j
∈Λ j

min

{

pT
X,X j→X′

j

, pT
Y,Y j→X′

j

}

≤ 1 − exp

(

−
2µ2

max

T N0

)

where the last inequality comes from Lemma 13. This

translates into an upper bound for β

β ≤ 1 −
1

N
+

1

N
2N0

(

1 − exp

(

−
2µ2

max

T N0

))

< 1

where the last inequality comes from the hypothesis on

T . Theorem 14 concludes the proof.

Appendix E. Proof of Proposition 11

Proof. Using Theorem 7.2 of chapter 6 in [16], we have

dTV

(

ηPn
sys, πT

)

≤ dTV (η, πT )δ(Psys)
n

where δ(Psys) is the Dobrushin’s ergodic coefficient

δ(Psys) =
1

2
max
X,X′















∑

X′′

|p
sys

X,X′′
− p

sys

X′,X′′
|















= 1 −min
X,X′















∑

X′′

min
{

p
sys

X,X′′
, p

sys

X′,X′′

}















Now, lets define ΛS
i

(X, X′) as the set of all configura-

tions X′′ ∈ ΛS such that the row j of X′′, denoted X′′
j

satisfies X′′
j
= X′

j
if j < i and X′′

j
= X j if j > i. That

is, ΛS
i

(X, X′) is the set of all possible configurations that

can be reached in step i in the partial transition between

X and X′. Using Lemma 13, we obtain the following

uniform bound

pi
X,X′ ≥

exp
(

−
2µiµmax

T N0

)

#ΛS
i

(X, X′)

Then, the minimum element in the matrix Psys is

min
X,X′∈ΛS

{p
sys

X,X′
} = min

X,X′∈ΛS















N
∏

i=1

pi
X,X′















≥

N
∏

i=1

exp
(

−
2µiµmax

T N0

)

#ΛS
i

(X, X′)

≥

exp

(

−
N
∑

i=1

2µiµmax

T N0

)

N
∏

i=1

#ΛS
i
(X, X′)

,

and with this we obtain the following expression

δ(Psys) ≤ 1 −

exp

(

−
N
∑

i=1

2µiµmax

T N0

)

N
∏

i=1

#ΛS
i

(X, X′)

N
∏

i=1

#ΛS
i (X, X′)

≤ 1 − exp















−

N
∑

i=1

2µiµmax

T N0















For the mixing time we need the total variation to be

less than or equal to ǫ in the worst case regarding the

initial condition

dTV

(

δX0
Pn

sys, πT

)

≤ dTV (δX0
, πT )δ(Psys)

n

≤















1 − exp















−
∑

i

2µiµmax

T N0





























n

≤ ǫ

Taking logarithms and rearranging terms concludes the

proof.
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