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Abstract

Wireless local area networks, in particular those based in the IEEE 802.11 standard, are becoming increasingly preva-

lent to deliver Internet access. One of the features these networks introduce is the use of multiple transmission rates

in the physical layer; in this regard, a crucial performance issue is how this capability interacts with higher layer

protocols such as TCP to determine resource allocation among competing users.

In this paper, we use the Network Utility Maximization framework to characterize the cross-layer interaction be-

tween TCP and an underlying MAC layer with multirate capabilities; the result, for current wireless networks, shows

a significant bias against users with high modulation rates, to the point of overriding the high-speed feature. Based

on this recognition, we propose an alternative resource allocation that overcomes this bias, and simple mechanisms to

impose these more efficient equilibria in single cell scenarios and wireless access systems.

We implement these proposals at the packet level in ns2, and present simulations of these mechanisms in action in

concrete IEEE 802.11 networks.
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1. Introduction

Wireless local area networks (WLANs) based on

IEEE 802.11 [1] are nowadays present in most network-

ing deployments around the world. WLAN hotspots are

shared by multiple users at a time through Medium Ac-

cess Control (MAC) protocols, most prominently the

IEEE 802.11 Distributed Coordination Function. The

interaction of this standard with those in other layers

determines the efficiency and fairness between stations

in the use of bandwidth resources.

The pioneering work by Bianchi [2] analyzed IEEE

802.11 performance through a careful modelling of col-

lisions and the backoff response process stipulated by

the standard. This led to accurate means of predicting

the effective long term rates of a set of stations sharing

the medium, for the case of a single modulation rate in

the physical (PHY) layer. Recently in [3] this analysis

was extended to consider multiple physical data rates

present in a single cell. What has been mostly idealized
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in these references are higher layer protocols: it is as-

sumed that stations always have packets to send. Some

simple ways to account for the transport layer were sug-

gested in [3, 4], but there is no full consideration of the

TCP congestion control mechanisms that interact with

the MAC layer to determine user performance.

Congestion control is commonly modelled through

the Network Utility Maximization (NUM) approach of

Kelly [5], which was extended in recent years to cross-

layer optimization in wireless networks, (see [6, 7] and

references therein). A significant portion of this liter-

ature refers to a scheduled MAC, for which the cross-

layer optimization can be tackled through dual decom-

position, although the scheduling component is diffi-

cult. In the case of a random MAC, most of the work

has been theoretical, with an idealized model of colli-

sions: [6] studies a change of variables to handle the

non-convexity in these models, while a recent line of

work [8, 9] shows how a fine-grained control of medium

access probabilities allows in principle to approach the

performance of the scheduled case. While this research

has deep theoretical implications, it has limited impact

in current practice since it does not represent prevailing

protocols such as IEEE 802.11.
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We argue also that for wireless LAN technologies, the

emphasis on collisions is misplaced. In recent versions

of the IEEE 802.11 standard, the loss of performance

due to collisions is not as important as one might ex-

pect, due to two main reasons: on one hand, most of the

traffic is downlink, and the Access Point (AP) does not

collide with itself; secondly, with the 802.11 default pa-

rameters, collision probabilities and resolution time are

low when compared with data transmission, whenever

the number of stations is not too large.

Far more relevant to user performance is the interac-

tion between TCP and the multiple physical data rates.

A first contribution of our paper is to model in the NUM

framework this cross-layer interaction involving TCP

flows that respond to losses in an access point buffer,

itself served through multiple PHY rates. We show the

inefficiency that can result from this arrangement, where

users with high PHY rates are severely penalized, with

minimal benefit for the slow users. This issue had al-

ready been identified in [3] without a full model of the

TCP behavior. In our NUM model, the bias against fast

users appears as an inverse scaling in the corresponding

utilities; as a result one can make more general perfor-

mance predictions, in particular study the effect of the

bias on non-homogeneous TCP flows.

This model suggests that the desirable resource al-

location should remove the utility bias; this alternative

is studied in Section 3. We find that a suitable price

scaling applied to the TCP sources achieves global con-

vergence to the unbiased NUM problem, and explore

ways to implement this scaling through an appropriate

Active Queue Management scheme, termed Multirate

RED. We also extend the analysis to more general net-

works than a single cell, involving possibly wired and

wireless links. We show that as long as each link partic-

ipates in a single “contention set”, the problem admits a

decentralized solution via price scaling.

Higher up in the protocol hierarchy, in Section 4 we

study this resource allocation subject to randomly arriv-

ing connections. In wired networks it is known [10, 11]

that the bandwidth sharing of TCP congestion control is

able to stabilize any load compatible with the capacity

constraints. We show the multi-rate counterpart of this

condition, which involves a Discriminatory Processor

Sharing (DPS) queue, and geometric models are devel-

oped to determine the stability region of a cell under

spatially distributed loads. On the performance side,

the DPS model allows for a study of connection level

throughput (equivalently, workload completion time).

This exhibits once more the inefficiency of the current

allocation and the enhancement obtained through the

unbiased version of Section 3.

Finally, in Section 5 we apply the above analysis to

802.11. We begin by analyzing the effective rates the

TCP layer can achieve when operating above the 802.11

MAC layer, taking into account the impact of overheads.

This provides us with a characterization of the effective

data rates which were the basis of the preceding analy-

sis. We then implement a multirate cell in the ns2 sim-

ulator, together with our Multirate RED algorithm. A

series of tests are carried out to validate the conclusions

of the NUM models, in particular the inefficiencies of

current networks, as well as to exhibit the improvements

that can be obtained through our proposals.

Conclusions are given in Section 6. Some prelimi-

nary versions of this work were presented in [12, 13].

2. TCP resource allocation in a multirate wireless

environment

We begin by considering a single cell scenario where

N users indexed by i = 1, . . . ,N are downloading data

from a single AP. Each station establishes a downlink

TCP connection, with sending rate xi. Our main pur-

pose is to analyze the behavior of the xi when the wire-

less medium offers different transmission rates to each

user, and the higher layer control is performed by TCP.

The packets of each connection will be stored in the

interface queue of the AP, before being put into the

shared medium to reach their destination. The physi-

cal layer offers each destination a different modulation

rate, which combined with other factors such as proto-

col overheads results in an effective rate Ci offered to the

connection. We assume for now these rates are given,

and postpone to Section 5.1 the discussion on how to

calculate them in the case of 802.11 networks.

First, we analyze the service rate yi attained by each

user in such a queue. Assume that the Head of Line

(HOL) probability for a packet of user i is proportional

to the input rates xi. Then, we can write the relationship

yi =
pHOL,iL

∑

j pHOL, jL/C j

=
xi

∑

j x j/C j

. (1)

This relationship is similar to eq. (5) in [3], established

through a renewal reward argument; here we omit the

collision terms since we are focusing in the downlink

case.

To complete the loop, we now model the TCP behav-

ior, that determines the input rates xi. Recall (c.f. [14])

that TCP congestion control algorithms can be modelled

as

ẋi = k(xi)(U
′
i (xi) − pi),
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where U(x) is an increasing and strictly concave utility

function, pi is the link loss rate (interpreted as a price)

and k(xi) > 0 a scaling factor. In the analysis, we will

restrict ourselves to the α−fair family of utility func-

tions introduced in [15], which verify U ′(x) = Kx−α

with α > 0 a parameter which determines the compro-

mise between efficiency and fairness of the allocation.

We can model the link loss rate as:

pi =

(

xi − yi

xi

)+

=

(

1 −
1

∑

j x j/C j

)+

= p

which is simply the proportion of packets that exceed

the current service rate, where (·)+ = max(·, 0) as usual.

With this model the packet loss rate of each flow is the

same and the complete dynamics follow:

ẋi = k(xi)(U
′
i (xi) − p), (2a)

p =

(

1 −
1

∑

j x j/C j

)+

. (2b)

We would like to characterize the equilibrium of this

dynamics in terms of a NUM problem. For this purpose,

consider the following function:

Φ(x) =
∑

i

xi

Ci

− 1 − log















∑

i

xi

Ci















,

whenever
∑

i
xi
Ci
> 1 and 0 otherwise.

We have the following Lemma, proved in the Ap-

pendix:

Lemma 1. Φ is a convex function of x.

Consider now the following convex optimization:

Problem 1.

max
x

∑

i

1

Ci

Ui(xi) − Φ(x). (3)

Theorem 1. The equilibrium of the dynamics (2) is the

unique optimum of Problem 1. Moreover this equilib-

rium is globally asymptotically stable.

LetV(x) denote the objective function in equation (3).

The following properties of V(x) are proved in the Ap-

pendix:

Lemma 2. V has compact upper level sets {x : V(x) >

γ}, and is radially unbounded: lim‖x‖→∞ V(x) = −∞.

Proof of Theorem 1. By Lemma 2 and the strict con-

cavity of the objective function, there is a unique op-

timum for Problem 1, and it must satisfy the optimality

conditions, namely:

1

Ci

U ′i (xi) −
∂

∂xi
Φ(x) = 0 ∀i

By substituting Φ we have:

1

Ci

[

U ′i (xi) −

(

1 −
1

∑

j x j/C j

)+]

= 0

Identifying the last term as p = p(x) in (2), the optimal-

ity conditions become:

U ′i (xi) − p = 0 ∀i

which is the equilibrium condition of (2).

We consider now V(x) as a Lyapunov function of the

system. Differentiating along trajectories:

V̇ = ∇V · ẋ =
∑

i

k(xi)

Ci

(

U ′i (xi) − p
)2

> 0

So V is increasing along the trajectories. Moreover,

V̇ = 0 only when x = x∗ the solution of Problem 1.

Invoking Theorem 3.2 in [16], the equilibrium is glob-

ally asymptotically stable.

The function Φ in Problem 1 plays the role of a

penalty function, and thus Problem 1 can be seen as an

approximation of the following problem:

Problem 2 (Modified Network Problem).

max
x

∑

i

1

Ci

Ui(xi)

subject to the constraint:

∑

i

xi

Ci

6 1.

This NUM problem has two variations with respect

to the standard one of [5]. The first is that the constraint

is rewritten in terms of xi/Ci, the “time proportion” the

shared medium is used by connection i. The sum of the

allocated time proportions must be less than one, this is

a natural way to express capacity constraints in a shared

multirate substrate.

The second difference with [5] is the scaling factor

C−1
i

for the user utility. This is not a natural feature of

the problem, it reflects a bias in the resource allocation

against users of higher physical rates, which are given

less weight in the net utility. The effect of this bias is

a radical equalization of rates dominated by the slowest

stations, as shown in the following example.

Example 1. Assume 3 users are downloading data

from a single AP, and they have equal utilities U(x) =

− 1
τ2x

which models the TCP/Reno response, while their

lower-layer effective rates are Ci = 10. In this case
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Problem 1 gives x∗
i
= 3.333 for all three users. Now,

if for instance user 3 changes its radio conditions to

C3 = 1, the new allocation is

x∗1 = x∗2 = x∗3 = 0.8333.

So we see that the faster destinations are heavily penal-

ized due to the user 3 inefficiency1. This problem has

been observed in practice in 802.11 environments, and

we will exhibit it by simulation in Section 5.

Remark 1. In the case where all users share a common

utility function, the solution to Problem 2 is

x∗i =
1

∑

j 1/C j

; (4)

the TCP rates are all equal to the harmonic mean of the

effective data rates. This is in a accordance with re-

sults obtained in [3] for multiple-rate 802.11 networks,

where collisions are considered, and the rate (4) ap-

pears as an upper bound on the realistic rate of perma-

nent connections. In [3] the TCP layer is not modelled;

rather, it is assumed that the AP has equal probabil-

ity of servicing all users. Here we have modeled TCP,

and we find that (4) holds only under the assumption of

equal utilities (independent of the TCP flavor). How-

ever, if users have different utility functions, as is the

case when TCP-Reno connections have different RTTs,

this solution is no longer valid, and the allocation must

be calculated as the solution of Problem 2.

The previous remarks and examples suggest that

ways of removing the bias from Problem 2 should be

explored. This is the subject of the following Section.

3. A more efficient resource allocation

We will study unbiased versions of Problem 2, start-

ing with the case of a single wireless cell.

3.1. The case of a single cell

Consider the following optimization problem:

Problem 3 (Wireless Multirate Network Problem).

max
x

∑

i

Ui(xi)

subject to the constraint:

∑

i

xi

Ci

6 1, (5)

1The result from Problem 1 would be x∗
1
= x∗

2
= x∗

3
= 0.89, which

shows that the barrier function approximation is very close.

As formulated, the above NUM problem becomes

a special case of those in the literature on sched-

uled wireless networks (see e.g. [7] and references

therein), where the set of feasible rates is taken to be

the convex hull of rates achievable by independent (non-

interfering) sets of links. In the current scenario, only

individual links are schedulable without interference, at

rate Ci, so the convex hull becomes (5). In contrast to

these references, we will seek a solution to Problem 3

compatible that does not require a complicated schedul-

ing mechanism in the AP, which would imply a signifi-

cant departure from current 802.11 networks.

The Lagrangian for Problem 3 is

L(x, p) =
∑

i

Ui(xi) − p















∑

i

xi

Ci

− 1















.

To see the difference with Problem 2, consider the case

of identical utilities Ui(·) = U(·) of the α-fair fam-

ily. The Karush-Kuhn-Tucker (KKT) [17] conditions

for this problem give in particular

x−αi = U ′(xi) =
p

Ci

;

imposing equality in (5) we obtain

p−
1
α

∑

i

C
1
α
−1

i
= 1,

from where we obtain the optimal rates

x∗i =
C

1
α

i

∑

jC
1
α
−1

j

. (6)

We see that, in contrast to (4), rates are no longer

equalized in the solution, users with larger Ci will re-

ceive a larger share of resources2. We look at some im-

portant special cases.

Proposition 1. In the case of proportional fairness,

U(x) = K log(x) for all connections (α = 1) the equi-

librium of Problem 3 is x∗
i
=

Ci

n
. In particular, the al-

located rate for user i depends only on its own effective

rate and the total number of users.

Equivalently: under proportional fairness time is

shared equally among users, but those with a more ef-

ficient use of time can obtain a proportionally greater

rate. This protects the fastest users from the lower rate

2Except for the case α → ∞ (max-min fair allocation) where we

recover (4).
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ones. For instance, in Example 1, high rate users would

be unaffected by the change in C3.

When TCP Reno is in use, we do not have complete

protection but the situation is nevertheless improved, as

the following example shows.

Example 2. Consider the same situation of Example 1.

When all three users have Ci = 10, the equilibirium of

Problem 3 is the same as before, x∗
i
= 3.33. When user

3 changes its radio conditions and Ci = 1, the equilib-

rium changes to x∗
1
= x∗

2
= 1.93, x∗

3
= 0.61. The total

network throughput increases by ≈ 80% with respect to

Example 1, and fastest users are not as heavily penal-

ized.

We would like to drive the network to the equilibrium

of Problem 3. A simple primal-dual gradient algorithm

to solve this optimization problem is:

ẋi = k(xi)

(

U ′(xi) −
p

Ci

)

, (7a)

ṗ =















∑

i

xi

Ci

− 1















+

p

, (7b)

where k(xi) > 0 as before and (·)+p is the usual positive

projection. It is well known [18, 19] that for strictly

concave utility the trajectories of (7) converge globally

to the optimum of Problem 3.

Note that, in order to implement (7), the congestion

control must react to a scaled version of the congestion

price generated at the links. To achieve this in a decen-

tralized way, we must convey to the sources this scaled

price. In the following section we analyze a practical

algorithm to achieve this goal.

3.2. The Multirate RED algorithm

In the wired case, dual algorithms have interpreted

the price variable as the queueing delay [20, 21]. This

is also the case here in this modified version. By in-

tegrating ṗ in equation (7b) we see that p tracks the

amount of time the shared medium is not capable of

coping with the demands, and thus accumulating as de-

lay in the queue.

More formally, let bi denote the amount of data of

connection i in the buffer (assume it is non empty). Then

ḃi = xi − yi

and the delay d is given by:

d =
∑

i

bi

Ci

.

Therefore, recalling equation (1) we have:

ḋ =
∑

i

ḃi

Ci

=
∑

i

xi

Ci

− 1.

Observe further that when all capacities are equal Ci =

C we recover the delay based model of [20, 21].

From equations (7) we see that in order to appro-

priately solve Problem 3, we need to scale the price

to which the user reacts by the effective rate Ci. This

makes sense since connections with higher rates use the

medium more efficiently, and thus should be charged

less whenever this resource is scarce. Note however

that this poses problems on implementation, because it

prevents from using directly the queueing delay as the

price. Moreover, the user source would have to be noti-

fied of the correct MAC level rate, which is infeasible.

We now discuss a practical method to overcome these

limitations without resorting to a complicated schedul-

ing mechanism. In order to drive the system to the op-

timum of Problem 3, we propose to use a simple Active

Queue Management policy which we call the Multirate

RED algorithm (MRED).

Instead of using queueing delay as the price, we pro-

pose to use as a proxy the buffer length b, and to gen-

erate the price, the AP discards packets randomly with

probability pi proportional to
b
Ci

for connection i. This

gives a linear Random Early Detection (RED) algo-

rithm, but with probabilities related to the effective data

rates. Note that less packets will be dropped for con-

nections with higher MAC rates. Moreover, this mech-

anism can be implemented in the AP resorting only to

local information, such as destination address and cur-

rent effective rate for this destination.

The closed loop dynamics for the proposed system is:

ẋi = k(xi)
(

U ′(xi) − κb/Ci

)

, (8a)

ḃ =















∑

i

xi − yi















+

b

=















∑

i

yi





























∑

i

xi

Ci

− 1















+

b

.(8b)

where κ > 0 is the proportionality constant of RED.

These equations are similar to (7). In particular, in equi-

librium, the xi and p = κb will satisfy the KKT condi-

tions of Problem 3. Stability results for these equations

are harder to obtain, in Section 5 we explore its behavior

by simulation.

3.3. Extension to wireless access networks

The analysis of Section 3.1 is valid in a single cell set-

ting. We would like to generalize it to more complicated

networks. In particular, we are interested in the case of
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wireless access systems, i.e. a wired backbone which

has non-interfering wireless cells as stub networks.

In such networks, one obtains a combination of clas-

sical capacity constraints for wired links (that do not in-

terfere with any other links), and constraints of the type

(5) for links of the same stub cell interfering with one

another, potentially with different effective rates. For

such networks, we would like to develop a price scal-

ing method that enables decentralized users to allocate

resources to maximize utility.

Of course, one could further consider more general

interference models, such as different wireless cells in-

terfering with each other, or more arbitrary interference

patterns as has been considered in the scheduling lit-

erature [7]. These, in addition to the complexity of

scheduling, lead to optimization problems that are diffi-

cult to decentralize. For this reason we choose to focus

on a narrower setting which nevertheless covers scenar-

ios of practical importance, and which can be addressed

through a smaller departure from current practice, in

particular using currently deployed MAC layers.

Consider then a network composed of links l =

1, . . . , L. These links can be wired or wireless, and have

an effective transmission rate Cl. In the case of wired

links, Cl is the link capacity. In the wireless case, it is

the effecive data rate. Let i = 1, . . . , n represent the con-

nections, with rate xi, and R the classical routing matrix:

Rli = 1 if connection i traverses link l and 0 otherwise.

To represent the contention inherent to the case, we

group the links l in contention sets: two links belong

to the same contention set if they cannot be transmit-

ting simultaneously and define Gkl = 1 if link l belongs

to contention set k and 0 otherwise; we call G the con-

tention matrix. If a link is wired, its contention set is a

singleton. In the case of a wireless cell, the contention

set is composed of all links that depend on the same AP.

Each link belongs to only one contention set: this is the

restriction imposed on the interference model.

The network capacity constraints can then be written

as Hx 6 1 where H is given by H = GC−1R, with G,R

previously defined,C = diag(Cl) and 1 a column vector

of ones.

To see how this framework enables us to model dif-

ferent situations, consider the following examples:

Example 3 (Wired network). If all links are wired, the

contention matrix G is the Identity matrix. By taking

R and C as before we recover the classical wired con-

straints
∑

i∈l xi 6 Cl.

Example 4 (Single wireless cell). If there is only one

wireless AP with N users in the cell, we can take R as

the identity matrix, C as the wireless effective capacities

and G = 1T (there is only one contention region where

all links participate). We then recover the constraints

discussed in Section 3.

Example 5 (Wireless Distribution System). To see a

more complete example, consider the network com-

posed of wired and wireless links shown in Figure 1.

This topology appears in outdoor wireless distribution

scenarios. We can model the capacity constraints of this

network with the above framework by taking:

G =





























1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1





























C = diag(c, cAP1
, cAP2

, c1, c2, c3, c4)

R =





























































1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





























































AP1

AP2

Backhaul

Access (C)

cAP1

cAP2

c1

c2

c3

c4

Figure 1: Topology of a mixed wired-wireless distribution system

with 4 end-users.

We can now pose the general Network Utility Maxi-

mization problem, which is:

Problem 4 (Wired-Wireless Network Problem).

max
x

∑

i

Ui(xi)

subject to:

Hx 6 1.
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The previous problem seeks an optimal allocation

within the natural constraints of the network, expressed

in terms of allocated time proportions. These con-

straints are equivalent to the ones used in the scheduling

literature [7]. We will show that for the special structure

under consideration, a decentralized solution can be ob-

tained that involves FIFO buffers and standard conges-

tion control, provided a suitable price scaling is applied.

Consider the Lagrangian of Problem 4:

L(x, p) =
∑

i

Ui(xi) − pT (Hx − 1) (9)

where p = (p1, . . . , pK)
T is the vector of prices. We see

therefore that we have one price for each contention set.

By denoting q = HT p, the KKT conditions of Prob-

lem 4 are U ′
i
(xi) = qi where qi is given by:

qi =
∑

l:i∈l

∑

k:l∈k

pk

Cl

(10)

Therefore, the connection must react to a price which

is the sum of the prices of the the contention sets it tra-

verses, divided by the link capacities it uses within each

contention set.

Again, to solve Problem 4, we can use a primal-dual

algorithm with the following dynamics:

ẋi = k(xi)
(

U ′(xi) − qi
)

(11a)

ṗ = (Hx − 1)+p , (11b)

q = HT p. (11c)

These dynamics are globally asymptotically stable [18,

19] and its equilibrium is the solution of Problem 4. In

this context, the prices track again the queueing delays

at each FIFO queue.

The remaining issue is whether this prices can be cor-

rectly generated and transmitted to the sources via the

MRED implementation discussed in Section 3.2. The

following examples show how this can be done for wire-

less access networks.

Example 6 (Mixed wired-wireless access network). A

typical configuration for wireless access coverage is to

distribute access points in non overlapping channels

across the region to cover, and wire them to the Inter-

net access node. This produces the tree topology of Fig-

ure 2. There, the APs are connected to a central switch,

which is also connected to the router handling the Inter-

net connection. End users are then connected to the APs

via 802.11 for example. In this case, each user traverses

three contention sets, one per link.

AP1

APn

Internet

Access (Caccess)

Distr ibution

(Cdist)

Distr ibution

(Cdist)

Figure 2: Topology of a mixed wired-wireless access network.

Assuming the link capacities and user distributions

shown in Figure 2, the corresponding price for user i is

calculated according to equation 10 as:

qi =
paccess

Caccess

+
pdist j

Cdist j

+
pAP j

Ci

where paccess, and pdist j are the queueing delays of the

wired links traversed by packet of user i, whereas and

pAP j
is the queueing delay of the FIFO queue at the AP

used by connection i. All are scaled by the correspond-

ing link capacities.

By using the Multirate RED algorithm in each link in

the network, we can therefore transmit this price to the

source, and impose the notion of fairness of Problem 4

by emulating the dynamics of (11).

Example 7 (Wireless distribution system). A variation

of the above example occurs when the area to cover is

large, for instance, large outdoor deployements. In this

case, the distribution links that connect each AP with

the wired network are replaced by a wireless cell that

backhauls all the APs and which is directly connected

to the Internet router, as in Figure 1. The APs have 2

radio interfaces: one to connect to the backhaul link

and one for local connectivity.

In this case, the corresponding price for user i can

again be calculated according to 10 as:

qi =
paccess

Caccess

+
pBH

CAP j

+
pAP

Ci

.

The main difference with respect to the wired backhaul

case is that pBH is common to all distribution links, it

reflects the FIFO queueing delay at the backhaul node.

cAPi
is the effective rate at which the AP of user i connect
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to the backhaul node. Again, by using Multirate RED in

this tree topology we can impose the notion of fairness

of Problem 4.

In Section 5 we will analyze the performance of such

systems via simulation.

What is the structure in these examples that enables

a simple distributed solution? The essence is that each

link belongs to a single contention set, and each such

set is served by a common FIFO queue. Under these

assumptions, the inner sum of (10) consists of a single

term, i.e. we can write

qi =
∑

l:i∈l

1

Cl

pk(l),

where k(l) is the contention set associated with l. The

price pk(l) is the queueing delay of the corresponding

FIFO queue. By performing the correct capacity scal-

ing, the price qi can be appropriately relayed to the

sources.

4. Connection level stability and performance.

In this section we turn to the analysis of multirate

wireless networks at the connection level, focusing on

the case of a single cell. We develop a stochastic model

for the evolution of the number of connections present

in the cell, that tries to capture the time and spatial be-

havior of a connection arrivals, as well as the resource

allocation that the lower layers (TCP, multirate MAC)

impose on the rate of these connections.

Assume that the AP is located at the origin of the

plane R2. Let R j ⊂ R
2 be the region of the plane where

users can achieve a transmission rate C j. As an exam-

ple, in an outdoor setting the R j could be concentric

discs around the origin, with decreasing physical layer

rates as depicted in Figure 3. Our model, however, re-

quires no assumptions on the shape of the different rate

regions.

We describe first the arrival of connections. Stations

can be anywhere in the cell and connections may arrive

randomly in time. We model this by assuming that con-

nections follow a spatial birth and death process [22].

New connections appear in the cell as a Poisson process

of intensity λ(x), x ∈ R2 which represents the frequency

per unit of area. In particular, users arrive to region R j

with intensity:

Λ j =

∫

R j

λ(x) dx.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

x

y

Figure 3: A typical 802.11 cell with geometrically random connection

demands and circular rate regions.

Each connection demands some random amount of

workload which we assume exponential3 with mean

1/µ. For simplicity we assume that these workloads

have the same mean in all regions.

To complete the model, and thus derive stability con-

ditions and performance metrics at the connection level

timescale, we must specify the service rate of each con-

nection. In this regard, we will analyze both the biased

resource allocation discussed in Section 2, and the alter-

native proposed in Section 3.

4.1. Connection level performance of current TCP-

multirate environments.

Supppose that rates are allocated to ongoing connec-

tions following the TCP resource allocation of Problem

2; as argued in Section 2, this approximately models the

behavior of the prevailing loss-based TCP congestion

control when connections share a FIFO queue, serviced

with multiple lower-layer rates.

For simplicity, assume that all connections share the

same utility function, for which the solution of Problem

2 is given by equation (4). In this case, given that at a

certain moment of time there are n j connections of rate

C j, the rate for every connection is given by

x(n) =
1

∑

j n j/C j

; (12)

here we denote by n the vector of n j.

3The use of exponential distributions for connection size is ques-

tionable, we do this in order to obtain a tractable model. See [11] for

a discussion.
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Putting together all the previous considerations we

get the following Markov model for the vector n(t).

n 7→ n + e j with intensity Λ j (13a)

n 7→ n − e j with intensity µn jx(n) (13b)

where e j denotes the vector with a 1 in the j−coordinate

and 0 elsewhere.

Remark 2. The Markov model holds irrespectively of

whether new connections are from different stations or

belong to the same station (in the same position in

space). The only important parameter is the total ar-

rival rate Λ j of connections from class j.

The first question of interest for this model is the

stochastic stability region, i.e. the region of arrival in-

tensities that produce an ergodic Markov process, and

hence a stationary distribution. We are also interested in

calculating the throughput of connections. Both issues

will be studied by identifying the above model with a

well known queue.

Substituting equation (12) in (13) we can rewrite the

death rates as

µn jx(n) = µC j

g jn j
∑

k gknk
,

where g j :=
1
C j
. With this notation, we can identify the

transition rates of (13) with those of a Discriminatory

Processor Sharing (DPS) queue [23], with total capac-

ity 1, and where for each class j the arrival rate is Λ j,

the mean job size ν j = µC j and the DPS weight is g j.

With this identification, the following result follows

directly from the stability condition of the DPS queue:

Proposition 2. The Markov process describing the

number of connections is ergodic if and only if:

̺ =
∑

j

Λ j

µC j

< 1. (14)

It is worth specializing equation (14) to the important

case in which connections arrive uniformly distributed

in the cell, i.e. λ(x) = λ, a constant. This can represent

a situation where users do not know where the AP is. In

that case, if A j is the area of the region R j, Λ j = λA j

and the stability condition becomes

λ

µ
<

1
∑

j
A j

C j

. (15)

This is of the form ρ < C∗ where ρ is the traffic intensity

in bits/(s ·m2) andC∗ can be thought as a cell traffic ca-

pacity, which captures the geometry, and is a weighted

harmonic mean of the effective rates.
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Figure 4: Connection level throughputs, 2 classes, C1 = 10, C2 = 1

Mbps. Arrival rates are proportional to coverage areas.

The second issue we are interested in is performance,

measured by connection level throughput, whenever the

system is stable (i.e. ̺ < 1). This can be evaluated by

calculating the expected time in the system for jobs in a

DPS queue, using the results of [24, 25]. Let τ j be the

time in the system for a job of class j. For the case of

two classes there is an explicit formula:

E(τ1) =
1

µC1(1 − ̺)













1 +
Λ2(C1 − C2)

µC2
2
(2 − ̺)













E(τ2) =
1

µC2(1 − ̺)













1 +
Λ1(C2 − C1)

µC2
1
(2 − ̺)













where ̺ is the system load as in equation (14).

Observing that a user can send an average 1/µ bits

during time τ1 we can measure the connection level

throughput as:

γ j =
1

µE(τ j)

Applying the previous formula, we calculated the con-

nection level throughput for a cell with two allowed

rates as in Example 1, namely C1 = 10 and C2 = 1

Mbps. We assume that connections arrive uniformly in

space, so the proportion of slow connections is greater.

Results are shown in Figure 4, that shows connection

level throughput under varying cell load. Note that

when the load increases, the connection level through-

put of both classes equalizes to the detriment of faster

users, with no appreciable gain for the slower ones; this

is a consequence of the allocation that equalizes per-

connection rates.

For the general case with multiple classes simple ex-

plicit formulas for the τ j are not available. Rather, these

values can be obtained by solving a system of linear

equations:

E(τ j) = B j0 +

m
∑

k=1

E(τk)ΛkB jk (16)
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where the B jk depend on the system parameters (we re-

fer the reader to [23] for the expressions). Therefore, we

can calculate the connection level throughputs γ j by nu-

merically solving this system for the effective data rates

of, for example, IEEE 802.11. A case study is given in

Section 5.

Results similar to the above example were given in

[26], where a connection level model is also analyzed.

Once again, however, in this work the lower layers are

not modeled, and a simple time-sharing mechanism is

assumed for the medium. Here we have found that the

“downward” equalization of connection-level through-

puts will occur with any α−fair congestion control,

in particular current implementations, provided utilities

are the same for all sources.

4.2. Connection level performance of the unbiased al-

location

We now analyze the connection level performance of

the resource allocation of Problem 3, which removes

the bias in utility against fast users, and as discussed

in Section 3 can be implemented through a price scaling

mechanism.

Again, we will assume that all users share the same

utility function U(x) = x1−α/(1 − α) of the α−fair fam-

ily. In this case the solution of Problem 3 is given by

(6); given that at a certain moment of time there are n j

connections of rate C j, we obtain the connection rates

xi(n) =
C

1/α

i
∑

j n jC
1/α−1

j

. (17)

The connection level process behaves again as a DPS

queue, with arrival rates Λ j, job sizes µC j and weights

depending on α as:

g j = C
1/α−1

j
.

Therefore, for any α, the system will be stable when

the loads verify the stability condition (14), and the ex-

pected job service times and connection level through-

put can be calculated by the same method we described

above.

It is worth noting that as α → ∞, we recover the

weights of the current allocation analyzed in the previ-

ous section, which can be highly inefficient, penalizing

the highest rates.

For the case of α = 1 corresponding to proportional

fairness, the weights associated to each class become

equal and the performancemetrics can be explicitly cal-

culated as:

E(τ j) =
1

µC j(1 − ̺)
, γ j = C j(1 − ̺).
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Figure 5: Connection level throughputs, 2 classes, C1 = 10, C2 =

1 Mbps. for different fairness notions under price scaling. Class 2

throughput is only plotted once since results are similar in all three

cases.

This has the nice property that connection level through-

puts become proportional to the lower layer offered rate,

the proportionality constant being the slowdown of the

processor sharing queue, which only depends on the cell

total load.

The case of current TCP Reno-like algorithms will be

an intermediate one, corresponding to α = 2. In Figure

5 we compare the connection level throughputs of a cell

with two allowed rates as in Example 1, namelyC1 = 10

and C2 = 1 Mbps, in the case of max-min, proportional

fair and Reno-like allocations.

5. Application to IEEE 802.11

In this Section, we apply the previous models to

quantify the behavior of TCP over an IEEE 802.11

MAC layer. We begin by calculating the effective data

rates 802.11 provides to TCP connections, and then we

proceed to analyze through simulation several exam-

ples.

5.1. Calculating the effective rates: the impact of over-

heads.

In the models derived in the preceding sections, an

important quantity is the Ci, which is the effective data

rate at which TCP packets from a given user i are served

by the underlying layers. When the AP wants to trasmit

a packet to user i of length L at a physical layer mod-

ulation rate PHYi using 802.11, it must comply with a

series of backoff and waiting times, as well as headers

included by the PHY layer.

This means that the MAC layer offers a service to the

upper layer consisting of a tranmission rate Ci 6 PHYi.

This has been analyzed before [2, 3, 12] and we will

recall and extend this analysis here.
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The time it takes to send this packet has a fixed com-

ponent given by

T 0
i := DIFS +H +

L

PHYi
+S IFS +MAC ACKi, (18)

that includes the time in the air and all overheads,

plus a random number of time slots Kσ, where K ∼

U{0, . . . ,CW}. In Table 1 we show typical values of

these parameters for 802.11g.

Parameter Value

Slot time σ 9µs

S IFS 10µs

DIFS 28µs

PLCP Header H 28µs

PHYi 6Mbps . . . 54Mbps

CWmin 15 slots

MAC ACK 50µs

Table 1: IEEE 802.11g parameters

We are interested in the average rate obtained by a

station to study the upper layer effective rate. Observing

that each packet is treated independently, the transmis-

sion times of successive packets form a renewal process,

and the renewal reward theorem [27] tells us that in the

long range the average rate is:

C0
i =

L

EKσ + T 0
i

=
L

CWmin

2
σ + T 0

i

, (19)

where we substituted K for its mean. We also took

CW = CWmin since we are modeling downlink traffic

from the AP, which does not collide with itself. We also

assume the appropriate PHYi has been used so that one

can neglect packet transmission errors. The denomina-

tor of the preceding expression (mean total time) is de-

noted by Ti.

In Table 2 we show the corresponding MAC level

rates C0
i
for the different PHY rates allowed in 802.11g

with parameters as in Table 1. Note the impact of over-

heads in the highest modulation rates: this is due mainly

to the fact that physical and MAC layer overheads are

fixed in time, independent of the modulation rate PHYi
chosen for the data. This implies that higher modulation

rates can finish the data part of the packet more quickly,

but they still have to send the fixed length headers and

wait for the backoff slots.

When TCP connections are taken into account, an-

other overhead must be considered: the TCP ACK

packet. These packets were designed to have low im-

pact on the reverse path, by having a length of 40 bytes.

However, due to the overheads added by the MAC layer,

the TCP ACK becomes non negligible, in particular at

high modulation speeds. We assume that one TCP ACK

is sent in the uplink direction for every TCP packet sent

downlink. We will also assume that collision proba-

bilities are low between downlink packets and the TCP

ACKs. Under these assumptions, the TCP ACK packet

introduces another overhead time in the system. The

effective data rate then becomes:

Ci =
L

Ti + TCP ACKi

(20)

where TCP ACKi is the average time to transmit a

TCP ACK packet and is given by:

TCP ACKi :=DIFS +
CWmin

2
σ + H +

Lack

PHYi
+

+ S IFS + MAC ACKi (21)

where Lack is typically 40 bytes. These effective data

rates Ci are also shown in Table 2. Again, note the

strong impact of the TCP ACKs in the performance of

the protocol at high modulation rates, due to the fact that

the lower layer protocol overheads are fixed in time.

PHY MAC rate Eff. rate Measured

rates (C0
i
) (Ci) rate

54 28.6 19.5 19.7

48 26.8 18.6 18.6

36 22.4 16.3 16.2

24 16.9 13.1 12.8

18 13.6 11.0 10.6

12 9.78 8.25 8.0

6 5.30 4.74 4.6

Table 2: MAC rates for the corresponding PHY rates of 802.11g for

a packet size of L = 1500 bytes. Values are in Mbps. The measured

rates are estimated within 0.1Mbps of error.

To validate the above expressions, we simulated in

ns-2 [28] several independent replications of a long TCP

connection in a single wireless hop scenario. The aver-

age throughput for each PHY rate is reported in the last

column of Table 2, showing good fit with the predicted

values.

In the following, we shall not try to modify the impact

of overheads and consider them given, since they are

included in the standards. For the purpose of modelling,

we will use theCi values of Table 2, as the effective data

rates provided by 802.11 to TCP connections, and use

this values for the algorithm implementations.

11



5.2. Multirate RED implementation

As we discussed in section 3, the price to which a

TCP connection should react in order to attain the equi-

librium of Problem 3 is the queueing delay. However,

this price should be scaled by the effective data rate Ci

the connection experiments in each link. Clearly, this is

difficult to implement without resorting to scheduling.

Moreover, typical TCP connections use loss based con-

gestion control mechanims, such as TCP Reno. There-

fore, we propose to use the MRED algorithm developed

in Section 3.2 at each node to attain the optimum of

Problem 3.

To test the proposal in a real environment, we im-

plemented this algorithm in the Network Simulator

ns-2 [28]. Our implementation is based on the li-

brary dei80211mr [29]. Two important extensions

were made to the library: the existing ARF mechanism

was updated to cope with the possibility of a single node

having different modulation rates for different destina-

tions, which reflects the real behavior of current APs.

The second modification was to implement the Mul-

tirate RED (MRED) queue, where the described early

packet discard takes place.

Note that the cross-layer information needed for im-

plementation of the mechanism is minimal: whenever

a packet for next-hop j is received, it is discarded with

probability p j = κb/C j where κ acts as a scaling pa-

rameter, b is the current queue length, and C j is the

corresponding effective rate for the current modulation

rate the AP maintains with destination i (as in Table 2).

In the case of wired links, the link capacity is used to

scale this drop probability. The non-dropped packets

are served then on a FIFO basis.

We now present several simulation scenarios to illus-

trate the behavior of the proposed algorithm.

5.3. Simulation examples

5.3.1. Single-cell scenario

We simulate the topology shown in Figure 6, which

consists of a single cell 802.11g scenario in which 3

users are connected with a modulation rate PHYi =

54Mbps, and some time later, a fourth user is added

at the lowest possible modulation PHY4 = 6Mbps.

All four connections use TCP/Newreno and share equal

Round Trip Times (RTTs), then having similar utility

functions.

Results are shown in Figure 7. We simulated 50 in-

dependent replications of the experiment, and the av-

erage throughput for each connection type as well as

95% confidence intervals are shown. For these modu-

lation rates, the effective data rates according to Table

802.11

AP

Coverage Area

Bad link

Figure 6: Topology of a single-cell scenario.

2 are Ci = 19.5Mbps, i = 1, 2, 3 and C4 = 4.74Mbps.

In the first graph of Figure 7, we see that all connec-

tions converge to the same throughput, which is ap-

proximately x∗ = 2.74Mbps, the harmonic mean dis-

cussed in Remark 1. In the second graph, we show

the behavior of the system under the MRED algorithm.

In this case the allocation converges approximately to

x∗
i
= 4.2Mbps, i = 1, 2, 3 and x∗

4
= 2.1Mbps, which

is the exact solution of Problem 3. Note that the to-

tal throughput in the network is increased by more than

30%.

5.3.2. Different RTTs scenario

The purpose of this example is to show that Problem 2

captures the behavior of the system when the TCP con-

nections have different RTTs, and thus different utilities,

and to show how efficiency can also be improved in this

case with the MRED algorithm.

We consider the topology of Figure 8, where two con-

nections with different RTTs share a wireless bottleneck

link. In this example, connection 1 has a longer RTT

than that of connection 2, and its station is closer to the

AP, having a modulation rate PHY1 = 54Mbps. The

second connection has a modulation rate of PHY2 =

6Mbps. Both connections use TCP/Newreno, which we

model by the utility function U(x) = −1/(τ2x) with τ

the connection RTT.

Plugging these values into Problem 2 using the ef-

fective data rates of Table 2, the allocation results x∗
1
=

2.43Mbps and x∗
2
= 4.14Mbps. In the first graph of

Figure 9 we show the results of 50 independent repli-

cations of the experiment, which shows that indeed the

connection throughputs converge approximately to the

values predicted by Problem 2.

By using MRED in the AP we can change the allo-
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Figure 7: Comparison between throughputs: without MRED (above),

with MRED (below).

AP

TCP1

TCP2

Figure 8: Wired-wireless topology.

cation to the one proposed in Problem 3, removing the

bias of Problem 2. The resulting allocation is x∗
1
= 4.38

and x∗
2
= 3.67.In the second graph of 9 we show the cor-

responding simulation results. We see that the MRED

algorithm approximately drives the system to the new

equilibrium. Note that this new equilibrium is also more

efficient.
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Figure 9: Wired-wireless topology simulation. Above: original allo-

cation. Below: MRED algorithm.

5.3.3. IEEE 802.11 connection level throughputs

We now apply the results of Section 4 to evaluate the

TCP connection level performance when working with

a random workload and an underlying IEEE 802.11

MAC layer. As before, we focus on a downlink sce-

nario where all TCP connections arrive at the coverage

zone at a random point, with total arrival rate Λ j for the

rate C j. These rates are chosen as in Table 2, which are

valid for 802.11g.

As a first example, we consider a single cell sce-

nario with two PHY rates. Users near the cell estab-

lish connecions at the highest possible modulation rate

of 54Mbps and the remaining users use the lowest pos-

sible modulation of 6Mbps. We simulated the random

arrival of connections in ns-2 and measured the connec-

tion level throughput for different values of the cell load.
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To take into account the fact that the low modulation

rate has a greater coverage area, the arrival intensities

were chosen proportional to the size of the coverage ar-

eas.

In Figure 10 we plot the connection level throughputs

obtained by simulation and the predicted throughputs

using the results of Section 4 for different values of the

total cell load ̺. The first graph shows the connection

level throughputs when the proposed Multirate RED is

not in use, and the second one shows the results for a

cell usingMultirate RED. Note that in both cases results

show a good fit with the model.

In each case, the connection level throughputs start at

the effective data rate for each class, Ci, corresponding

to the case where each connection arrives to an empty

network, and thus is able to obtain its full rate. When the

offered load ̺ begins to grow the throughputs go to zero,

as expected. We observe that in the case where MRED

is not in use, the high modulation rate users are more

heavily penalized, and throughputs tend to equalize.
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Figure 10: Connection level throughputs for an IEEE 802.11g cell

with two modulation rates. Above: without MRED, Below: with

MRED in use.

When all the data rates are allowed, the connection

level throughputs can be calculated by solving the linear

system of equations discussed in Section 4. In Figure

11 we plot the predicted connection level throughputs

for such a setting, with increasing cell load. Again, the

arrival rates for each class are chosen proportional to the

estimated coverage areas. In the first graph, we show the

results for current 802.11g cells, where price scaling is

not used, and thus penalizing the higher rates. In the

second graph we show the connection level throughputs

under the price scaling mechanism, removing the bias.

We can see that the higher rates get better throughput in

all cell loads, while the lower ones are mostly unaffected

by the change.
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Figure 11: Connection level throughputs for an IEEE 802.11g cell.

Above: without MRED, Below: with MRED. Each line corresponds

to a different PHY rate in decreasing order.

To evaluate the difference between the two mech-

anisms, in Figure 12 we plot the ratio between the

higher and lower throughputs for three different situ-

ations: without MRED, with MRED and proportional

fair. We can see that applying MRED with current

TCP implementations gives an intermediate situation,

improving on the higher throughputs with respect to the

current situation.

5.3.4. An application to a mixed wired-wireless tree

topology

In this example, we simulate the topology of Figure 2

with two distribution APs and two users in each AP. The

access link capacity is caccess = 20Mbps representing a

typical access capacity (e.g. a DSL line). The distribu-
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Figure 12: Ratio of best vs. worst throughput for an IEEE 802.11g

cell.

tion links have cdist = 100Mbps and thus are overpro-

visioned. The wireless cells are identical and have each

one two users, with modulation rates PHY1 = PHY3 =

54Mbps and PHY2 = PHY4 = 6Mbps. Each user has

a single TCP connection and all connections have equal

RTTs.

Plugging these values in Problem 3 gives the follow-

ing allocation:

x∗1 = x∗3 = 6.4Mbps x∗2 = x∗4 = 3.2Mbps

Note in particular that both the access link and the

wireless cells are saturated in the resulting allocation.

This is a difference with typical wired-only models with

tree topologies. In particular, in this case, there is a posi-

tive price (queueing delay) both at the APs and the wired

access link.

By using the MRED algorithm as discussed in Sec-

tion 3.3, we can drive the system to this allocation.

Results are shown in Figure 13, where again 50 in-

dependent replications were performed, and the aver-

age throughputs as well as 95% confidence intervals are

shown. We see that the throughputs appoximately con-

verge to the above equilibrium.

Note also that, if we choose not to use the MRED

algorithm, the allocation will be given by the solution

of Problem 2, which is x∗
i
≈ 3.8Mbps for each user. In

that case, the full access capacity will not be used.

6. Conclusions

In this paper we applied the Network Utility Maxi-

mization framework to characterize the cross-layer in-

teraction between the TCP transport protocol with an

underlying MAC where multiple modulation rates co-

exist. This situation is present in typical IEEE 802.11

deployment scenarios. We described the resource al-

location imposed by current wireless networks in this
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Figure 13: Throughputs of TCP connections for a wireless access sce-

nario with 4 users. MRED is in use.

framework, showing that a bias is imposed against users

of high modulation rates.

We then proposed an alternative resource allocation

that generalizes the fairness and efficiency notions of

TCP in wired networks to this context, and overcomes

the inefficiencies of current protocols. We developed a

simple mechanism to impose these more efficient equi-

libria in single cell scenarios and generalizations of this

procedure to more complex topologies.

We also showed how the connection level dynamics

can be analyzed through a Markov process, which can

be identified in some cases with a well known queue.

This enables us to characterize the stability regions and

connection-level throughput obtained by the current re-

source allocation and our proposed alternative.

Finally we applied the previous results to the IEEE

802.11 MAC layer, establishing the effective data rates

and validating the results by simulations.

In future work, we plan to extend the proposed mech-

anisms to the new 802.11 additions, where these issues

may becomemore important due to the higher data rates

involved, and due to packet aggregation mechanisms.

We also would like to study the performance of a sys-

tem where the uplink traffic is not negligible, as is the

case in several of today usage models, where collisions

have to be taken into account.

A. Appendix

Proof of Lemma 1. Φ(x) can be written as Φ(x) =

g( f (x)) where f (x) =
∑

i xi/Ci is a linear function of
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x and g(u) = (u − 1 − log(u))1{u>1}, where 1 represents

the indicator function. It is easy to see that, for u > 0,

g′(u) = max{0, 1 − 1/u} which is nonnegative and in-

creasing function of u. Therefore, g is increasing and

convex and thus Φ is convex [17].

Proof of Lemma 2. Denote by V(x) =
∑

i
1
Ci
Ui(xi) −

Φ(x) the objective function of Problem 1. We analyze

the case 0 < α < 1, where we have the following bound:

∑

i

1

Ci

Ui(xi) =
∑

i

Kix
1−α
i

Ci(1 − α)

=
∑

i

KiC
−α
i

1 − α

(

xi

Ci

)1−α

6 K

(

max
i

xi

Ci

)1−α

6 K















∑

i

xi

Ci















1−α

.

Here K = maxi

{

KiC
−α
i

1−α

}

. Let y =
∑

i xi/Ci and assume

y > 1. Using the previous bound we have:

V(x) 6 Ky1−α − y + 1 + log(y) = h(y) (22)

Now, h(y)→ −∞ when y → ∞, since α > 0. Therefore

V(x) → −∞ when y → ∞; since y is a norm over the

positive orthant, the same conclusion holds when ||x|| →

∞ for any (equivalent) norm. Also, {x : V(x) ≥ γ} ⊂ {x :

h(y) ≥ γ} which is compact since h(y)→ −∞.

For α = 1, we can use the bound xi ≤ ciy to get
∑

i
1
Ci
Ui(xi) ≤

∑

i
1
Ci
Ui(Ci) + K log(y) which gives a

bound analogous to (22) and the rest follows. If α > 1,

the bound is even simpler since
∑

i
1
Ci
Ui(xi) ≤ 0.
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AFOSR-US. We thank José Garcı́a for assistance with

the ns2 implementation.

References

[1] IEEE 802.11-2007, Wireless LAN Medium Access Con-

trol (MAC) and Physical Layer (PHY) Specifications,

http://www.ieee802.org/11/, 2007.

[2] G. Bianchi, Performance analysis of the IEEE 802.11 dis-

tributed coordination function., IEEE Journal on Selected Areas

in Communications 18 (2000) 535–547.

[3] A. Kumar, E. Altman, D. Miorandi, M. Goyal, New insights

from a fixed-point analysis of single cell IEEE 802.11 WLANs,

IEEE/ACM Transactions on Networking 15 (2007) 588–601.

[4] F. Lebeugle, A. Proutiere, User-level performance of WLAN

hotspots, in: Proceedings of the 19th International Teletraffic

Conference.

[5] F. Kelly, A. Maulloo, D. Tan, Rate control in communication

networks: shadow prices, proportional fairness and stability,

Journal of the Operational Research Society 39 (1998) 237–252.

[6] M. Chiang, S. H. Low, A. R. Calderbank, J. C. Doyle, Layering

as optimization decomposition: A mathematical theory of net-

work architectures, in: Proceedings of the IEEE, volume 95, pp.

255–312.

[7] X. Lin, N. B. Shroff, R. Srikant, A tutorial on cross-layer opti-

mization in wireless networks, IEEE Journal on Selected Areas

in Communication (2006) 1452–1463.

[8] L. Jiang, J. Walrand, A distributed CSMA algorithm for

throughput and utility maximization in wireless networks, in:

Proceedings of the Forty-Sixth Annual Allerton Conference on

Communication, Control, and Computing.

[9] A. Proutire, Y. Yi, M. Chiang, Throughput of random access

without message passing, in: Proceedings of the 44th Confer-

ence on Information Science and Systems (CISS 08).

[10] G. de Veciana, T.-J. Lee, T. Konstantopoulos, Stability and

performance analysis of networks supporting services with rate

control - could the internet be unstable?, in: IEEE/Infocom, pp.

802–810.
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