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Abstract— We consider the problem of deploying a spatial
supply infrastructure to serve a distributed demand, motivated
by Electrical Vehicle charging facilities. We present a series of
optimization problems, which include the global transport cost
from demand points to supply stations with bounded capacity,
and also model demand elasticity. When supply locations are
fixed, linear programs of the class of the Monge-Kantorovich
problem apply; here our focus is showing that integer solutions
that respect the indivisibility of demand units can be found. If
locations are part of the design, the problem is not convex; we
study iterative methods that generalize the clustering literature.
Also, we investigate the issue of sparsity in the allocation,
invoking mixed-integer linear program formulations of the
facility location problem. The features and tractability of these
methods are demonstrated in illustrative simulations. The paper
ends by outlining a methodology through which these tools may
be used jointly for the progressive deployment and operation
of an EV charging infrastructure.

I. INTRODUCTION

Conversion of the automotive fleet to Electrical Vehicles
(EVs) is a widely accepted goal, promoted by government
initiatives [15]. The speed of adoption depends clearly on
the evolution of EV technology costs, but a crucial factor
is also the availability of flexible charging options, e.g. city
parking lots with charging equipment [8]. Dimensioning such
facilities requires knowledge of the expected demand, which
in turn may grow as a result of the infrastructure availability,
a circular situation. A policymaker wishing to catalyze the
adoption process may take gradual steps of infrastructure
expansion as the demand materializes.

One key aspect is the spatial nature of demand, which re-
quires a distributed charging infrastructure. In this regard, the
problem of facility location in operations research has a large
literature (e.g., [3], [5]). See [6], [10] for application to EV
charging and refueling for other new energy technologies;
these studies cover mostly a static decision on deployment.

EV charging has a complementary, dynamic aspect since
service must be provided in real time to customers subject to
deadlines, and consumption must be appropriately integrated
with the grid [11], [14]. The charge scheduling problem
within a single EV parking/charging installation is studied
in [7], trading off the competing objectives of quick service
and limiting power consumption peaks. In a similar setting,
[4], [16] consider the overload situation where only partial
service can be provided, and analyze efficiency and fairness
as a function of vehicle scheduling.

Our ultimate goal is to integrate the spatial and temporal
aspects into a unified operation where optimization guides
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vehicle assignment to stations, and charge scheduling; this
operation should be compatible with a distributed decision-
making by drivers, and provide economic signals to guide the
further growth of the installation. This paper covers initial
steps in this direction.

In Section II we briefly review the optimal transportation
problem of Monge-Kantorovch [12], a starting point for our
study, and some background on network flow optimization
[1]. In Section III we analyze the allocation of discrete
demands to stations of a given, fixed infrastructure, using
linear programming; this would be the situation of a decision
round of operation in which a new set of EVs would be
directed to parking stations. From the simplest “closest-
station” allocation we add capacity limits and elasticity of
demand, with particular focus on establishing the integer
nature of the solutions, i.e. the indivisibility of individual EV
demands. Lagrangian duality is used to derive a decentralized
self-routing solution. Illustrative simulations are presented.

Section IV considers the joint optimization over station lo-
cations, dimensioning and transport, a non-convex problem;
we present iterative approaches to this problem, variants of
the clustering literature. For the problem of sparse selection
over a set of candidate station locations, we review the
mixed-integer linear programming formulation, and show
an illustrative simulation example. Section V outlines how
the proposed methods may be combined for an incremental
deployment and operation of infrastructure, in which the dif-
ferent time-scales of deployment come together. Conclusions
are given in Section VI.

II. FORMULATION AND BACKGROUND

Our starting point is a region X in d-dimensional space
(typically d = 2) where demand arises for a certain good or
service (in our main motivation, demand for EV charging).
Quantities of demand will vary in space, and may also be
elastic. Postponing the elasticity feature, let us consider a
spatial distribution of demand quantities, which could be
continuous or discrete; for computational reasons we will
mostly work with the discrete case, but for our background
discussion assume we are working with a density function
q(x) supported in X for a total demand

∫
X
q(x)dx. Such

model might result from a statistical fit of earlier observations
or polling data from consumers.

The objective is to design an infrastructure constituted
by a set of discrete locations {y1, . . . , yn} = Y ⊂ X ,
with respective supplies {s1, . . . sn} to serve the demand,
together with an assignment strategy that seeks to minimize
the transport cost of consumers to reach the supply stations.



Such cost may be represented by a convex function c(x, y),
the most direct choice being the distance ‖x − y‖ in some
norm (say, the Euclidean) in Rd.

If locations and supply quantities are given, the assignment
problem is an instance of the classical optimal transport
problem of Monge: the problem is to find a transport map
ϕ : X 7→ Y that minimizes the cost∫

X

c(x, ϕ(x))q(x)dx,

subject to the condition that the transported mass to each
station matches its supply,

∫
ϕ−1(yj)

q(x)dx = sj , j =
1 . . . n. The Monge problem is covered by an abundant liter-
ature (see, e.g. [12]), together with the related Kantorovich
relaxation, which seeks to minimize the cost∫

X

c(x, y)dπ(x, y),

over the space of transport plans, measures π in X × Y
whose marginals are respectively the origin and destination
measures. If the former measure is non-atomic as assumed
for q(x), the infima of the Monge and Kantorovich problems
are known to be the same [12], an attractive property given
the linear structure of the second problem.

Let us now turn to the situation where the demand instance
is discrete: here, one seeks an assignment map from demand
locations to supply stations, ϕ : {xi}mi=1 7→ {yj}nj=1,
the cost being

∑
i c(xi, ϕ(xi))qi. The corresponding Kan-

torovich problem would allow a split assignment of demand,
optimizing the matrix Π = (πij) ≥ 0 of transferred quantities
via the linear program

min
Π≥0

∑
ij

cijπij , (1a)

subject to
∑
j

πij = qi; (1b)∑
i

πij = sj , (1c)

where we denote cij = c(xi, yj), and the matrix C = (cij).
The relationship with the Monge problem is less-trivial in
this case, a gap may appear.

Example 1: For the problem data

C =

[
1 3
3 1

]
; q =

[
1
2

]
; s =

[
2 1

]
;

it is easily shown that the optimal transport plan is

Π∗ =

[
1 0
1 1

]
,

which splits the mass q2 between the two stations. The
optimal cost is 5. There is only one feasible transport map,
ϕ(x1) = y2, ϕ(x2) = y1, with cost 9.

When station locations and/or capacities are part of the
design, a variety of problem formulations can arise, of varied
complexity. In this paper we investigate several of these, mo-
tivated by the application to an EV charging infrastructure.

A. Background on network flow

The optimization (1) belongs to the class of linear network
flow problems, see [1]; these are linear programs which enjoy
special properties due to the simple structure of the constraint
matrix. We briefly list some of these properties:
• A network flow problem involves a directed graph, with

non-negative link flows as variables and flow balance
at nodes as equality constraints. These have the form
Ax = b, where A is the link-node incidence matrix, x
the link flows, and b the vector of external supplies.

• Each column of A has two nonzero entries, 1 and −1;
this implies the total unimodularity property: all its
minors are all equal to 0 or ±1. This in turn implies that
the polyhedron P = {x ∈ Rn : Ax = b, l ≤ x ≤ u}
will have integer extreme points whenever b, l, u have
integer entries (see e.g. [13]). This implies the existence
of integer solutions to this kind of linear programs [1].

The transportation problem (1) is a special case with m
input nodes for the demands, n output nodes for the stations,
connected with links of flow πij > 0; additional variables
and inequality constraints will appear in other versions
considered below.

III. OPTIMAL ASSIGNMENT FOR FIXED LOCATIONS

In this section we will work under the assumption that
the station locations {yj} have already been selected, and
discuss properties of the allocation in different situations for
the supply capacities {sj}, and demand elasticity. We work
in the discrete demand setting. While quantities could be
real-valued in (1), we are mainly interested in the integer
case. In the EV application, the rationale is that units of
supply are charging opportunities (each station has a number
of discrete spots), each client demands one such unit and its
supply is indivisible, it can only park at a single station.

Remark 1: The allocation discussed here treats all de-
mands as equal, in particular it does not consider the amount
of energy required by each EV, or the planned sojourn time at
the station. For an analysis of these complementary aspects
for scheduling within a single station of limited capacity, we
refer to [16].

A. Free supply values

Assume first that demands {qi} are given, but supply is
unconstrained, which amounts to eliminating (1c) from (1).
This has a simple solution, since it decouples across i: each
demand must choose the station j with the lowest cost cij .
If there are ties, these can be broken arbitrarily for each
location, defining a transport map which is optimal.

If the cost function is a distance c(x, y) = ‖x − y‖, the
assignment is to the closest station; for the Euclidean case
assignment sets ϕ−1(yj) are simply the Voronoi cells defined
by the given choice of stations. The 1-norm may also be
of interest, for the so-called Manhattan routing. Note that
the solution is amenable to selfish routing; i.e., each unit of
demand may self-direct to the cheapest (e.g. closest) station.
Since this could produce very asymmetric loads on stations,
we consider next the situation where these are restricted.



B. Fixed supplies

Return now to the Monge-Kantorovich situation where
both demand and supply are specified, and required to have
equal total mass. We saw in Example 1 that a gap may appear
in the relaxation, the optimal transport plan may need to
distribute mass from one origin to several destinations.

Nevertheless, the following positive result may be stated;
its proof follows from the properties reviewed for the net-
work flow problem.

Proposition 1: Suppose {qi}mi=1, {sj}nj=1, are positive in-
tegers, satisfying

∑
j sj =

∑
i qi. Then (1) admits an integer

optimal solution Π∗. In particular, if qi = 1, i = 1, . . .m,∑
j sj = m, there is an optimal solution Π∗ which is a

transport map, π∗ij ∈ {0, 1} with one nonzero entry per row.
So for unit demands and integer capacities at charging

stations, there is no relaxation gap, the Kantorovich problem
has an optimal solution where each demand point is assigned
a single station. When larger integer demands must be
accommodated as in Example 1, the optimal transport plan
may split mass between stations; still, an integer Π∗ means
individual units of demand may be routed indivisibly.

C. Constrained capacities and supply costs

Assume now demand is still fixed and supplies allowed
to vary, but are subject to capacity limits, sj ∈ [0, s̄j ]; in
addition to the transport cost we may also incorporate a cost
αj ≥ 0 per unit of supply at station j, in compatible units1.
The optimization becomes:

min
∑
ij

cijπij +
∑
j

αjsj (2a)

subject to πij ≥ 0, (1b), (1c), and sj ≤ s̄j . (2b)

If limits s̄j are integer, the conclusions of Proposition 1
apply to this situation as well; the proof is again to cast the
problem in terms of network flow. The new variables sj are
now flows associated to arcs between station nodes and an
artificial sink node. Integer capacity limits may be applied
as reviewed in Section II.

A feature that is affected in the solution with fixed or
constrained capacities is selfish routing: the optimal transport
map may require some units of demand to travel to a location
that is not selfishly optimal, as illustrated in Example 1 where
two units of demand q2 pay different costs.

For a self-routing implementation, we may provide ade-
quate incentives by pricing the access to stations. We discuss
this for the capacity constrained problem (2), using Lagrange
duality. Consider the Lagrangian with respect to the supply
constraints (1c), with multipliers µj :

L(Π, µ) =
∑
i,j

cijπij +
∑
j

αjsj +
∑
j

µj

[∑
i

πij − sj
]

=
∑
i,j

(cij + µj)πij +
∑
j

(αj − µj)sj .

Assume that we are at a saddle point of the Lagrangian,
with µ∗j representing the shadow price for charging at station

1This term only modifies the solution if costs are different per station.

j. Looking first at the minimization over sj ∈ [0, s̄j ], we
see that only stations with αj ≤ µ∗j can receive positive
flow; the local cost is a lower bound for the shadow price of
active stations. But inequality may be strict when the station
becomes saturated, sj = s̄j . In particular, even if αj = 0, a
positive shadow price may appear due to resource scarcity.

Turning to the minimization of the Lagrangian over Π,
subject to the remaining constraints (1b) and πij ≥ 0; this
now decouples over i, as in Section III-A; the solution Π∗

is supported in arg minj(cij + µ∗j ). For there to exist mass-
splitting as in Example 1, the modified costs (augmented by
shadow prices) must be equal between the chosen locations.
The surcharge reduces the preference for the closest stations;
e.g. if cij is Euclidean distance, the natural Voronoi cells will
become modified by the additional pricing.

D. Elastic demand

So far, the demand quantities qi were exogenously given.
However, it is natural also for users to adapt the demand in
accordance to the cost of obtaining supply. With our focus on
discrete, indivisible service, quantities are not real numbers,
but elasticity may appear if some EVs seeking charge do not
accept the cost of transport to any of the stations.

Assume first for simplicity that each demand point xi
includes a single client, therefore the quantity to be con-
sumed is qi ∈ {0, 1}, and assign a utility Ui(qi) = βiqi
to this consumption. The parameter βi represents the user’s
value for a unit of service, again in units compatible with
the transport cost; a higher valuation means willingness to
travel further to obtain service. It will depend on individual
preferences but may also embed factors such as remaining
EV autonomy, which are known to the user and are otherwise
not part of our resource allocation.

A social welfare optimization problem that combines user
(dis)utility with the transport and supply costs is:

min
∑
ij

cijπij +
∑
j

αjsj −
∑
i

βiqi, (3a)

s.t. πij ≥ 0, (1b), (1c), qi ∈ [0, 1], sj ∈ [0, s̄j ]. (3b)

Note that we have relaxed the discrete demand constraint
to an interval, and thus obtained a linear program. Once
again, this relaxation does not modify our optimization
result, since we still have a network flow type problem with
integer solutions. To see this we need to add to the previous
formulation links between an artificial source and the demand
nodes, with qi as a flow. An extreme point allocation will
amount to assigning unit service to some EVs, and discarding
others.

This problem may also be analyzed by duality, including
a Lagrange multiplier λi for each of the demand constraints.
To simplify expressions we assume no supply costs (αj = 0),
and dualize only constraint (1b), obtaining a Lagrangian:

L(Π, q, s, λ) =
∑
i,j

cijπij −
∑
i

βiqi +
∑
i

λi

[
qi −

∑
j

πij

]
=
∑
i,j

(cij − λi)πij +
∑
i

(λi − βi)qi.



Fig. 1. Allocation under unconstrained capacities

At a saddle point with multiplier λ∗i : focusing on the
minimization over qi ∈ [0, 1], users with βi < λ∗i will be
curtailed to qi = 0, those with βi > λ∗i included; among
those indifferent (βi = λ∗i ) some will be selected by the
extreme point solution.

The transport component selects Π∗ ≥ 0, s∗ taking into
account the additional constraints (1c), for a problem in
which transport costs have been reduced by λ∗i : the higher
this value (stricter curtailment at point xi) the higher the
priority this site receives in the transport allocation.

The preceding arguments can be extended to the situation
of multiple units of demand at a single site xi, through a
piecewise linear, concave utility function Ui(qi), with integer
breakpoints. The decreasing marginal utilities represent indi-
vidual customer utilities in decreasing order of merit. It is not
difficult to show this problem also admits integer solutions.

E. Simulation Example

We illustrate some features of the allocation methods
discussed, in particular the effect of capacity restrictions
in resource allocation. The optimization methods were pro-
grammed in the Julia environment, with the solver Gurobi.

The region under consideration is X = [0, 1]× [0, 1], and
we place 5 fixed stations with a uniform distribution over
this square, numbered and indicated by stars in the plots.

For demand, 100 points were generated at random to
locate the EVs, in an inelastic situation. To get interesting
behavior we use a non-uniform distribution to generate these
points, with a mixture of two Gaussian bivariate distributions,
centered around the points (0.6, 0.5) and (0.4, 0.4), and suit-
able (non-isotropic) covariances. Transport costs are given by
the Euclidean norm.

Fig. 1 describes the allocation when no capacity restric-
tions are in place, as in Section III-A; in this case the demand

Fig. 2. Constrained Capacities

points are split according to the Voronoi cells defined by the
5 stations; the figure illustrates the transport of each EV to
the corresponding station.

We see that, given the misalignment between station
locations and the points of high demand, there is a very
asymmetric distribution of load, in fact we obtain s =
(1, 23, 37, 38, 1). Assume now that each station has a max-
imum capacity of 25 EVs, so the previous solution is
infeasible. Running the optimization again we obtain the
result of Fig. 2. The allocation is now more even than
before with s = (3, 25, 25, 25, 22), and Lagrange multipliers
µ = (0, 0.064, 0.113, 0.097, 0); the clusters no longer respect
the Voronoi cells.

IV. LOCATION SELECTION

In this section we consider the situation where the station
locations are part of the design. This could be the problem
faced upon deployment of the initial installation, and also
later on for decisions to grow the infrastructure as demand
for the service evolves.

A. Free locations

We first consider the abstract problem of designing station
locations, and their capacity, to serve a demand specified
by a spatial distribution. We assume given the number n of
locations to provision, and must decide simultaneously on
the locations {yj}, capacities {sj} to minimize the transport
cost, specified by a cost function c(x, y). With a discrete
model of demand, the formulation is:

min
y,Π

∑
ij

c(xi, yj)πij , (4a)

s.t. πij ≥ 0, (1b), (1c), (4b)
sj ≤ smax. (4c)



Constraint (4c) (maximum capacity per station) is optional;
since stations are not identified a priori it is natural for this
bound to be uniform across j, and omit the supply costs of
Section III-C. Demand elasticity could be added; however it
appears easier for an infrastructure planner to have estimates
of demand quantities than customer utilities.

The above is not a jointly convex optimization problem
in y and Π, due to the product that appears in the cost; this
makes a global solution non-trivial. Still, if c(x, y) is convex
we have a convex problem separately in each variable, which
suggests an iterative method to optimize starting from initial
station locations {y(0)

j }:
• Solve the optimal transport problem for Π(0) as in

Section III to obtain an initial assignment; e.g. if c(x, y)
is Euclidean distance and (4c) is inactive this yields the
assignment based on Voronoi cells.

• For fixed Π(0), minimize (4a) over {yj}nj=1 to obtain
new locations {y(1)

j }; this is an unconstrained convex
optimization problem, decoupled over j.

The above steps can be repeated, and each is guaranteed
to reduce cost. The iteration stops when improvements
become negligible, which does not mean we are at a global
minimum. The method may be repeated with multiple initial
configurations.

For unit demands qi = 1, the above procedure is analogous
to clustering methods used in data science. In particular, if
Π(k) is a matrix of zeros and ones, it defines a set of clusters
C(k)
j = {i : π

(k)
ij = 1}. Minimizing in y yields:

y
(k+1)
j = min

y

∑
i∈C(k)

j

c(xi, y).

For instance, if c(x, y) = ‖x− y‖2, the solution is the mean
or centroid

y
(k+1)
j =

1

#C(k)
j

∑
i∈C(k)

j

xi.

If (4c) remains inactive, so clusters are (generalized) Voronoi
cells around the previous points, we have the well-known
“K-means” clustering algorithm (e.g., [2]); similarly, using
c(x, y) = ‖x− y‖1 we obtain the “K-medians” algorithm.

If capacity constraints are active, the cluster selection
step is modified with respect to simply choosing the closest
location, as seen in Section III. Also, in the generalization to
elastic demand, the transport optimization may curtail part
of the load. So the above procedure generalizes the classical
clustering algorithms, with steps that are still tractable via
convex optimization.

B. Sparse selection over a set of candidate locations

The preceding study assumed that one starts “from
scratch” with complete freedom in the choice of station loca-
tions. This idealized solution will typically not be applicable
in practice, for (at least) the following reasons:
• The geometry of the region X , possibly non-convex,

may make some centroid locations infeasible.

• In an urban environment, most locations are occupied.
So we would be forced to approximate the chosen points
by feasible (unoccupied) sites.

A more realistic problem, considered in the facility loca-
tion literature [3], [5] is to select stations from a given a
set of candidate locations, a priori known to be feasible. In
our context, there would be a preexisting set of parking lots
on which EV charging stations may be installed, but there
are economic or operational reasons that motivate a sparse
deployment in only a few of these locations.

Specifically, we are given a set of candidate
points {y1, . . . , yN}, and maximum capacity bounds
{smax

1 , . . . , smax
N }; the objective is to select n ≤ N

points on which to install the supply infrastructure, and
the corresponding operational capacities s̄j . The number
n might be defined a priori, or a tradeoff curve may be
developed between sparsity and cost to select an adequate
compromise.

Due to the sparsity restriction, the above problem is also
non-convex. An exhaustive search over the combinatorial
number of station selections would be very expensive: e.g.
for N = 30, n = 10 we have ∼ 3 million combinations.

Remark 2: A popular method to promote sparsity via
convex optimization is an L1-norm penalty: in this case if
s = (s1, . . . , sN ) is the vector to make sparse, we would
add a cost term proportional to ‖s‖1; unfortunately this is
not useful here: all feasible points share the same ‖s‖1, i.e.
the total demand.

Despite its worst-case complexity, this type of problem
has been attacked with success in the operations research
field (see [3], [5]) via mixed-integer linear programming,
which yields efficient solutions for moderate-sized problems.
The following is a MILP formulation of the sparse station
selection problem for given demands; here Π ∈ Rm×N :

min
∑
ij

cijπij (5a)

s.t. πij ≥ 0, (1b), (1c), (5b)
sj ≤ bjsmax

j ; (5c)∑
j

bj ≤ n; (5d)

bj ∈ {0, 1}. (5e)

Above, the binary variable bj indicates whether station yj
is active or not, and (5d) allows only n active stations. Al-
ternatively, one could penalize the number of active stations∑

j bj in the cost. A variant of this problem with elastic
demand may also be considered.

C. Simulation Example

We illustrate the behavior of the sparse selection over
the same unit square X of Section III-E. To obtain fine
approximation of the density model, suitable for the planning
stage, we generate 1000 demand points.

Assume that we were given 100 uniformly distributed
stations to choose from (e.g., preexisting parking lots), with
a maximum size of 280 spots, so total capacity is loose;



# of Stations 4 5 6 7 8 9 10
Comp. time (s) 125 170 72 60 60 42 34
Optimal cost 95 85 78 73 69 65 63
Random cost 260 223 191 177 161 153 145

TABLE I
COMPUTATION TIME AND OPTIMAL COST AS A FUNCTION OF THE

NUMBER OF ACTIVE STATIONS. COMPARISON WITH COST OF RANDOM

SELECTION.

Fig. 3. Optimal selection of 4 active stations (stars) out of 100 options
(circles).

but the sparsity constraint n will impose that only a few
of the locations are equipped with chargers. We solve the
MILP (5), with the Gurobi solver; Table I shows several
values of the computation time, which remain moderate
despite the presence of a 100 binary variables. Note that
as the capacity restriction becomes tighter (n = 4 is the
minimum feasible choice), computation becomes longer: this
is interpreted in terms of the branch-and-bound methods used
in these algorithms; more branching is required, which delays
convergence.

Table I also shows how the cost varies as a function of the
number of active stations. The result is naturally decreasing
in n, with a progressively smaller marginal impact. For
comparison purposes, we also evaluated the cost of trans-
port when instead of choosing the optimal locations, the n
stations are chosen at random: to eliminate noise we ran 40
experiments of this kind, the table shows the average value.
We observe that the systematic location selection yields a
significant reduction to less than half the cost.

Fig. 3 depicts the choice for 4 active stations. The chosen
stations are displayed with a yellow star, whereas the avail-
able stations are displayed in white circles. The small dots
correspond to the EV demand distribution.

V. PROVISIONING OF INFRASTRUCTURE OVER TIME

The optimization problems covered in the preceding sec-
tions address static, one-shot decisions with regard to station
location, active capacities and/or demand assignment. A
comprehensive strategy for deployment and operation of
an EV charging infrastructure requires a combination of
the above approaches, at very different time-scales: station
location is a very occasional event, whereas demand routing
will take place regularly. Capacity upgrades could occur at
an intermediate time-scale.

We briefly outline a strategy to be pursued in future work,
where infrastructure is gradually deployed, from an initial
configuration based on estimated demand, evolving over time
as demand materializes and typically grows.

A. Initial design

An initial estimate of demand must be assumed, and
includes two aspects:
• A spatial probability distribution q(x). As a starting

point for an inference of this function one may take
data for fuel consumption of traditional vehicles; see
[9] for a practical instance of this approach.

• A scale, which reflects the number of EVs to accommo-
date. In [9] this is also estimated from fuel consumption
data assuming a percentage of EV adoption. Demand
could be time-varying: the arrival rates r(t) in EVs/sec,
and sojourn times T (t) in sec would be non-stationary.
At this planning stage, it is natural to plan for the peak
hour usage, and take these as constant: rT would be the
average number of vehicles in the system at peak hour,
which defines the infrastructure scale.

Given this information, decisions on station locations and
active capacities to install must be taken: the facility location
methods of Section IV-B may be used. Upper bounds smax

j

would represent maximum physical limits (e.g. parking lot
sizes); the sj resulting from (5) give the charging capacity
required at a sparse set of stations to serve the mean load
at peak time. The actual installed active capacity (denote it
by s̄j) could be set with some margin to cover for stochastic
fluctuations.

B. Operation

Given the station locations and capacities s̄j , the system
would begin to operate and serve demand as it arrives,
routing it to the most convenient station, taking into ac-
count distance and available capacity. This was the topic
of Section III, except for the following: the optimization
methods we discussed assume the simultaneous routing of
multiple demand points, whereas in practice, demands will
arrive asynchronously in time, following a stochastic process.

One way of reconciling both viewpoints is to assume there
are rounds of EV station assignment, periodically at times
kτ, k ∈ Z. The parameter τ should be long enough so that
the round involves multiple vehicles, but much shorter than
EV sojourn times (so service delays are acceptable). We now
describe this periodic operation.



• Let s̃j(k) denote the prior occupation of station j before
round k, satisfying 0 ≤ s̃j(k) ≤ s̄j .

• Let mk be the new vehicle arrivals in round k, which
may be stochastic. Their locations {xi(k)}mk

i=1 would
reflect the spatial distribution q(x).

• The station assignment problem is of the form (2):

min
∑
ij

c(xi(k), yj)πij (6)

subject to πij ≥ 0, (1b), (1c), and sj ≤ s̄j − s̃j(k);

the result gives the allocations πij(k) ∈ {0, 1} (trans-
port map) and the new assignments per station sj(k).

• EV departures will take place from during the interval τ ;
denote by dj(k) the number of departures from station
j, which again may be stochastic.

• The occupation update equation is:

s̃j(k + 1) = s̃j(k) + sj(k)− dj(k);

it is easily verified that s̃j(k + 1) continues to satisfy
0 ≤ s̃j(k + 1) ≤ s̄j .

In the preceding iteration, we can also obtain the Lagrange
multipliers µj(k) for the capacity constraint in (6); they
reflect the marginal value of additional capacity at each
location. In this regard, note that if we include in (6) stations
with s̄j = 0 (i.e., those discarded in the original deployment),
the result will not change, but the multiplier µj(k) will
provide a marginal valuation for these (unused) facilities.

C. Growth

After a certain trial period, an evaluation may be made on
the deployment of more infrastructure. The main observation
is that information gathered over prior operation from the
multipliers µj(k), averaged over time, represent the marginal
utility of station expansion. New deployments should balance
this utility with the cost of activating new capacity or
enabling new locations. If demand is growing (and thus these
multipliers increase over time), a forecast of their evolution
may also be considered.

VI. CONCLUSION

We have presented a number of optimization problems that
refer to the deployment and operation of an EV charging in-
frastructure, taking into account the spatial nature of demand
and the cost of transportation. Two main kinds of problems
were considered: the first, with fixed station locations leads
to linear programs which have attractive solution features,

in particular the indivisible assignment of EVs to stations.
The second, with site locations as variables leads to non-
convex programs, but relatively tractable formulations and
algorithms are available.

These two problems apply to different time-scales of
decision; combining them into a comprehensive strategy for
station deployment is still an open goal; we have outlined an
envisioned strategy to be pursued in future research.
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