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Abstract— We model a cloud computing infrastructure over
a set of locations, with multiple server instances per location.
The service rate offered by each server is differentiated by the
type of task, depending on whether its data is locally available.
Resource allocation questions for such systems include load
balancing of tasks between locations, scheduling of tasks within
each location, and sizing of the active server population at each
location.

Using a fluid queue model, we first characterize the capacity
region of a system with a fixed number of servers at each
location, recovering known results on throughput optimality
of certain policies. Next we allow the server populations to
vary, and pose the problem of minimizing a convex cost
function subject to load stabilization. Such right sizing of service
capacity is most interesting when it can be done dynamically,
without knowledge of the load. Invoking Lagrange duality, we
propose a primal-dual dynamic control with queues and server
populations as state variables, that also embeds the optimal load
balancing and scheduling. Its Lyapunov stability is established,
and illustrative simulations are given.

I. INTRODUCTION

Resource sharing has been at the center of the evolution
of both telecommunication networks and computing systems.
In the former, the transition from circuit to packet switching
was made long ago, mutualizing the communication sub-
strate among the large number of end-to-end connections.
In computation, a similar but more recent development are
cloud computing clusters made up of thousands of machines,
whose processing power is dynamically shared among a large
number of applications.

Managing such large scale computer infrastructures are
resource allocation algorithms: load balancing policies that
distribute tasks between different servers; scheduling algo-
rithms that prioritize tasks at each server; and right-sizing
rules that control the number of active servers. These control
laws interact in non-trivial ways: on their integrated perfor-
mance rests the tradeoff between the requirement of low task
latency and the provisioning cost of the infrastructure, with
its related energy consumption.

An additional feature of cloud computing involving large
datasets are distributed file systems (e.g. [1]) which divide
data into chunks and store multiple replicas of each at
different locations. In the MapReduce framework [2], large
jobs are broken up into many tasks, and routed for parallel
processing at servers in each location. Their processing time
will, however, depend on whether the server has the data
stored locally, or must retrieve it from a remote location.
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Following [3], we model the situation by a differentiated
service rate for local versus remote tasks; this data locality
issue adds a new level of complexity to the resource alloca-
tion question.

The recent literature on mathematical modeling for these
problems [3], [4] uses stochastic queueing tools to charac-
terize the capacity region of a cluster, and its heavy traffic
behavior. Here service is provided by a fixed set of machines.
On the other hand, the literature on speed-scaling or right-
sizing [5]–[9] allows for the dynamic variation of server
resources, but does not consider issues of data locality. Our
purpose in this paper is to integrate these different resource
allocation questions.

Returning to our initial parallel with communication net-
works, in that case substantial progress was made in cross-
layer resource allocation by using continuous variable (fluid)
models and convex optimization tools [10], [11]. Through
this technique, decomposition strategies were found that
yield decentralized control algorithms, with provable perfor-
mance properties. Our main contribution here is carrying this
approach through to the aforementioned cloud computing
problems.

The paper is organized as follows. Section II contains the
problem formulation and fluid variable models. In Section
III we study the case of fixed service capacity systems,
recovering results of [3] in this fluid setting. Adding the
server right sizing issue, we formulate in Section IV a
convex optimization problem, and in Section V we present
a dynamic solution, based on a suitable primal-dual control
law. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

Server locations are indexed by j = 1, . . . , N . At each
location j we have sj servers of equal capacity, which we
may think of as sharing the same physical rack. Alternatively
they could share a larger local facility; the key assumption is
that servers at location j have access to the same local data,
and therefore offer the same service rates to arriving tasks.

Tasks arriving into the system are classified in types1

i = 1, . . . ,M ; tasks of the same type will receive the same
level of service from all servers in each rack. Let µij be the
maximum service rate (in e.g. tasks/sec) that a single server
at location j can provide to a task of type i. We denote by
λi the arrival rate of tasks of type i, an exogenous quantity.

1For instance, in [3] the task type is defined by the three machines that
are local for its respective data chunks.



The decision variables that must be controlled are:
• The rates λij in which tasks of type i are split between

server locations, subject to the conservation constraint
N∑
j=1

λij = λi, i = 1, . . . ,M. (1)

We denote by Λ ∈ RM×N+ the matrix formed by the λij .
The selection of this matrix subject to the conservation
constraint is the load balancing problem.

• The aggregate service rate rij (in tasks/sec) that location
j provides to tasks of type i. Such an assignment will
consume a quantity rij

µij
of server instances; thus the

constraint on overall use of server resources at each
location across all types is:

M∑
i=1

rij
µij
≤ sj , j = 1, . . . , N. (2)

An implicit assumption is that servers can time-share
their capacity among different tasks. We denote by R ∈
RM×N+ the matrix formed by the rij . The choice of
this matrix subject to the above resource constraint is
the scheduling problem.

• In much of the literature the service capacities {sj}Nj=1

are assumed given, and the question is to characterize
the capacity region of such system in terms of the vector
λ = (λi) of arrival rates that can be supported. We
will revisit this question, with optimization tools, in
Section III. A more interesting possibility arises when
the number sj of active servers is itself subject to
control (in practice, by turning ON or OFF active server
instances). This right sizing problem has been studied
often in terms of a single server class [5], [9], [12], but
not to our knowledge in the multi-locality situation. We
will tackle this question in Sections IV and V.

As a final modeling step, we will use a fluid model of the
task queues present in this system. Let qij denote the number
of tasks of type i in service at location j; its dynamics is
given by:

q̇ij = [λij − rij ]+qij . (3)

This is simply flow balance plus a saturation to maintain pos-
itive queues. We use above the positive projection notation:
[z]+q = z if q > 0 or z ≥ 0, and [z]+q = 0 if q = 0, z < 0;
the projection is called active in the latter case.

Denote also by Q the corresponding matrix of queues. A
compact matrix form for (3) across i, j is:

Q̇ = [Λ−R]+Q. (4)

We will denote by 〈·, ·〉 the standard componentwise inner
product for vectors, and also for M ×N matrices:

〈Q,R〉 =
∑
i,j

qijrij .

In the latter case the corresponding Frobenius norm is,
‖Q‖F =

√
〈Q,Q〉.

III. CAPACITY REGION AND THROUGHPUT OPTIMAL
POLICIES FOR FIXED SERVER SYSTEMS

This question has been studied in the queueing literature,
from a stochastic perspective. We believe it is useful to
formulate a fluid version of this problem, and characterize
its solution by tools of convex optimization.

For the remainder of this section, s = (sj) is taken to be
a fixed vector.

Definition 1: The capacity region of our server system is
the set C ⊂ RM of vector rates λ = (λi), such that there
exists a control law for (Λ(t), R(t)) as a function of the state
Q(t), satisfying constraints (1-2), such that the solution to
(4) is stable in the Lyapunov sense.

We proceed to characterize the capacity region, by intro-
ducing the constraint in Λ = (λij):

M∑
i=1

λij
µij

< sj , j = 1, . . . , N, (5)

and defining the region

Cµ :=
{
λ ∈ RM+ : ∃Λ ∈ RM×N satisfying (1) and (5)

}
.

We will also consider its closure Cµ in RM , with the same
definition except the inequality in (5) becomes nonstrict. We
have the following characterization of the capacity region:

Theorem 1: Cµ ⊂ C ⊂ Cµ.

The above statement includes two separate inclusions,
which we will prove in succession. For the first we will rely
on a specific stabilizing policy, already known in the queue-
ing literature for this kind of problem [3]: a combination
of Join-the-Shortest Queue load balancing with Max-Weight
scheduling. In our context, these may be defined as follows:

JSQ : Λ∗(Q) := arg min
Λ
〈Λ, Q〉, subject to (1); (6)

MW : R∗(Q) := arg max
R
〈R,Q〉, subject to (2); (7)

We elaborate some more on the structure of these policies.
Starting with (6), the minimum of

∑
i

[∑
j λijqij

]
subject

to (1) decouples over i, since the constraints are decoupled.
For each i, clearly the minimizing {λ∗ij}Nj=1 is achieved by
placing the total mass λi at the smallest qij ; hence the JSQ
nomenclature. Ties can be broken arbitrarily. The optimum,
for future reference, is

〈Λ∗(Q), Q〉 =
∑
i

λi min
j

(qij). (8)

For the maximization in (7) we have the cost∑
j [
∑
i rijqij ], and the constraints (2), decoupled over j.

For a fixed j we have the problem

max
r

∑
i

rijqij , subject to
∑
i

rij
µij
≤ sj ,

which may be transformed by the change of variables zij =
rij
µijsj

into:

max
z
sj
∑
i

zijµijqij , subject to
∑
i

zij ≤ 1.



In this form the optimum is clearly sj maxi(µijqij), and the
maximizing schedule assigns nonzero server rate r∗ij only
to task types i which maximize the weight µijqij , with an
arbitrary split if there are ties.

Aggregating over j we have:

〈R∗(Q), Q〉 =
∑
j

sj max
i

(µijqij). (9)

Armed with these definitions we now prove the following
result on the capacity region:

Proposition 2: Suppose λ ∈ Cµ. Then the feedback laws
Λ∗(Q) and R∗(Q) are such that the closed loop dynamics

Q̇ = [Λ∗(Q)−R∗(Q)]+Q (10)

is Lyapunov stable.
Remark 1: The above control laws involve switching:

when the shortest queues or maximum weights change the
control will respond discontinuously. This raises technical
difficulties in terms of existence and uniqueness of solutions
for (10), which must be defined in a generalized sense; this is
the subject of a specialized literature, see e.g. [13]. We will
not address these issues in the present paper, and assume
in the proof below that classical differentiation of a suitable
Lyapunov function is allowed.

Proof: We first note that if qij = 0 for a certain
queue, without loss of generality one can assume that at
the maximum in (7) the corresponding r∗ij = 0; hence the
positive projection will never be active in (10).

By hypothesis, there exists a fixed Λ ∈ RM×N+ satisfying
both (1) and (5). Since Λ∗(Q) is minimizing among all Λ
satisfying (1), we have

〈Λ∗, Q〉 ≤ 〈Λ, Q〉.

Similarly, Λ satisfies the contraint (in R) given by (2), among
which R∗(Q) is maximizing. This implies that

〈Λ, Q〉 ≤ 〈R∗, Q〉;

We conclude that 〈Λ∗, Q〉 ≤ 〈R∗, Q〉 and hence that

〈Q̇,Q〉 = 〈Λ∗(Q)−R∗(Q), Q〉 ≤ 0;

the Lyapunov function V (Q) = 1
2 〈Q,Q〉 = 1

2‖Q‖
2
F is

decreasing across trajectories, implying the desired stability.

We now turn to the second part of Theorem 1, that provides
an outer bound for the capacity region. We will rely on
the following result on strong alternatives from convex
optimization (see [14], Section 5.8.2). Given the set

X = {x ∈ Rd+ : hi(x) = 0, i = 1, . . . ,M ;

fj(x) ≤ 0, j = 1, . . . N},

where hi(x) are affine functions, and fj(x) are convex
functions. Construct the Lagrangian

L(x, η, γ) =
∑
i

ηihi(x) +
∑
j

γjfj(x),

the dual function g(η, γ) = infx∈Rd
+
L(x, η, γ), and the set

Y = {(η, γ) ∈ RM+N : γ ≥ 0, g(η, γ) > 0}.

Assume: there exists x in the interior of Rd+ satisfying the
equality constraints hi(x) = 0 ∀i, and also maxj fj(x)→∞
as x→∞; then X and Y are strong alternatives, i.e. exactly
one of them is nonempty.

This result will be used to establish that for arrival rates
λ = (λi) outside Cµ there is no stabilizing control law.

Proposition 3: Suppose λ 6∈ Cµ. For any Λ(t), R(t) sat-
isfying (1)-(2) at all t, the resulting solution Q(t) of (3) is
unbounded.

Proof: By hypothesis, the set X ⊂ RM×N+ defined by
the affine constraints (1), and the convex constraints

M∑
i=1

λij
µij
≤ sj , j = 1, . . . , N,

both in the variable Λ, is empty. Also, these constraints verify
the assumptions of the cited strong alternative result, so the
corresponding set Y must be non-empty. To find it we write
the Lagrangian

L(Λ, η, γ) =
∑
i

ηi

(
λi −

∑
j

λij

)
+
∑
j

γj

(∑
i

λij
µij
− sj

)
=
∑
i

ηiλi −
∑
j

γjsj +
∑
i,j

λij

(
γj
µij
− ηi

)
.

(11)

Taking the infimum over λij ≥ 0 we obtain the dual function

g(η, γ) =

{
ηTλ− γT s if γj

µij
≥ ηi ∀i, j;

−∞ otherwise.

The strong alternative result implies there exist γ∗ ≥ 0, η∗

satisfying:

γ∗j
µij
≥ η∗i ∀i, j; (12)∑

i

η∗i λi >
∑
j

γ∗j sj . (13)

Without loss of generality we can take η∗ ≥ 0.
Consider now an arbitrary Λ(t), R(t) satisfying (1)-(2),

and the queue trajectory Q(t) given by (4). Let

f(t) :=
∑
i,j

η∗i qij(t);



its derivative along trajectories is

ḟ(t) =
∑
i,j

η∗i [λij(t)− rij(t)]+qij(t)

≥
∑
i,j

η∗i [λij(t)− rij(t)]

=
∑
i

η∗i λi −
∑
ij

η∗i rij(t)

≥
∑
i

η∗i λi −
∑
ij

γ∗j
µij

rij(t)

=
∑
i

η∗i λi −
∑
j

γ∗j
∑
i

rij(t)

µij

≥
∑
i

η∗i λi −
∑
j

γ∗j sj > 0.

The first inequality follows from η∗i ≥ 0: terms with active
projection are negative in the second summation. We then
invoke (1), and then (12) for the next inequality. The final
steps use (2) and (13).

The above implies that f(t) has superlinear growth, hence
it is unbounded and thus so is Q(t).

IV. OPTIMIZING SERVICE CAPACITY THAT SUPPORTS A
GIVEN LOAD

We have assumed so far that server resources are fixed,
and thus so is the capacity region. Modern day cloud systems
offer, however, the possibility of adapting the number of
active server instances to the external load. In practice,
this is done by summoning servers from the sleep mode,
or returning them to that state, as dictated by the load
requirement.

In the classical case of a single task type and server class,
the required minimum number of active servers is s = λ/µ,
the offered load in queueing terminology. However, in our
case with multiple service speeds and arrival rates, motivated
by the data locality question, constraints (5) leave many
degrees of freedom: how many servers to activate at each
location becomes a non-obvious choice.

In this section we frame this resource allocation question
in optimization terms: given a vector of loads per type
λ = (λi), find the server allocations s = (sj), and the
traffic split matrix Λ = (λij), that satisfy the capacity region
restrictions, and in addition optimize a certain cost function
in the allocated services:

Problem 1: Given λ = (λi), minimize c(s) =
∑
j cj(sj),

in the variables (s,Λ) subject to:
N∑
j=1

λij = λi, i = 1, . . . ,M ;

M∑
i=1

λij
µij
≤ sj , j = 1, . . . , N ;

sj ≤ s̄j , j = 1, . . . , N.

The last constraint above models a possible limitation in the
maximum number of server instances per location (rack).

A. Minimizing total capacity

We will assume initially that s̄j = ∞ (resources are
plentiful) and that the cost function is c(s) =

∑
j sj ; i.e., we

would like to minimize the total number of servers allocated
to serve the incoming load.

In this case we have a linear program, whose Lagrangian
becomes (adding the cost to the Lagrangian in (11)):

L(s,Λ, η, γ) =
∑
i

ηiλi +
∑
j

(1− γj)sj

+
∑
i,j

λij

(
γj
µij
− ηi

)
.

Minimizing over λij ≥ 0, sj ≥ 0 for fixed γ ≥ 0, η, the
corresponding dual function is now

g(η, γ) =

{
ηTλ if γj ≤ 1,

γj
µij
≥ ηi ∀i, j;

−∞ otherwise.

The dual problem is therefore

max ηTλ

s.t. ηi ≤
γj
µij

∀i, j;

0 ≤ γj ≤ 1 ∀j.

The second constraint can be eliminated (setting γ∗j = 1 ∀j)
and gives the problem

max
∑
i

ηiλi, s.t. ηi ≤
1

µij
∀i, j. (14)

Note now that the constraints decouple across i, so the
explicit solution for the optimal cost is

c∗ =
∑
i

λimin
j

1

µij
=
∑
i

λi
µ∗i
,

where we have denoted µ∗i = maxj µij , the maximal service
rate available to tasks of type i. We also can say the following
about the optimal load balancing allocation:

Proposition 4: For Problem 1 under c(s) =
∑
j sj and

s̄j =∞, the optimal Λ∗ is supported in

{(i, j) : j = arg maxµij};

i.e., traffic is sent only to locations that provide the maximum
service rate per task type.

Proof: The optimal multiplier for (14) is η∗i = 1/µ∗i ;
for any j such that µij < µ∗i , we will have

η∗i <
1

µij
=

γ∗j
µij

;

looking at the Lagrangian we see that the minimizing λ∗ij is
zero in this case.

The interpretation of the above result is very natural: if
resources are unlimited at each location, and the linear cost
values all locations equally, there is no reason to send traffic
to any location except the one that provides maximal service.
The following simple example further illustrates this.



Example 1: Consider the case where M = N , and for
each type i, location j = i is the only one that holds the
data locally and thus achieves the maximal µij . In that case
the optimal allocation matrix is diagonal, Λ∗ = diag(λi),
and s∗j = λj/µ

∗
j : we have parallel locations serving each

type, with no resource sharing among them.
For a concrete illustration: take M = N = 3, traffic

intensities λ1 = 10, λ2 = λ3 = 2, and the following matrix
of maximum service rates per location:

µ = (µij) =

2 1 1
1 2 1
1 1 2

 .
The linear cost

∑
j sj will give a diagonal optimum Λ∗ =

diag(10, 2, 2) and provision the servers

s∗1 = 5, s∗2 = s∗3 = 1.

The highly asymmetrical server allocation of the preceding
example may not be desirable. For instance if capacity
limitations s̄j <∞ are at play, one location may not be able
to cope with the entire load, and resource sharing becomes
inevitable. The resulting optimal allocation could be found
by including the corresponding capacity constraints in the
linear program.

B. Promoting resource sharing by a strictly convex cost

Alternatively, one could use a soft penalty approach to
favor more symmetrical allocations, for instance using the
quadratic cost function cj(sj) = s2

j/2. Below we apply it to
the preceding example.

Example 2: Under the same conditions in Example 1, but
using the cost cj(sj) = s2

j/2, the optimum of Problem 1,
found numerically, is the load balancing

Λ∗ = (λ∗ij) =

8 1 1
0 2 0
0 0 2

 .
together withe the server allocation

s∗1 = 4, s∗2 = s∗3 = 2.

Overall, there is an additional server required but the distri-
bution of resources across locations is more homogeneous.

V. DYNAMIC RIGHT SIZING OF THE NUMBER OF SERVERS

The results in the preceding section assume one knows in
advance the loads λi on each data type; in practice, these
quantities are uncertain and possibly varying in time. One
could think of some kind of online measurement, but a far
more interesting proposal is for the system to adapt itself
in feedback, controlling the number of server instances in
real time. This dynamic right sizing has been studied in the
context of data centers with homogeneous servers, see e.g.
[5]. In principle, summoning or removing servers on the fly
based on the state of the task queue offers the possibility of
adapting to an uncertain load; the only issue is that lags in
startup/shutoff must be considered [9].

We would like to extend this kind of feedback control
to the present scenario of multiple service locations and
different service rates per type. The natural state variable
on which to base our control decisions is the set of queues
qij in (3).

As with many other resource allocation problems in com-
munication networks (see [11] and references therein), the
optimization approach followed in this paper provides natural
ways to produce such control designs. Typically, these are
based on some kind of gradient dynamics on either primal
or dual variables, or both, combined possibly with static
partial optimization over some variables. There are often
many interesting alternative solutions to the same problem.

We will focus here on one such alternative, which exploits
the policies studied in Section III. We first consider the
following reformulation of Problem 1:

Problem 2: Given λ = (λi), minimize c(s) =
∑
j cj(sj),

in the non-negative variables (s,Λ, R) subject to

λij ≤ rij ∀i, j (15)
N∑
j=1

λij = λi, i = 1, . . . ,M. (16)

M∑
i=1

rij
µij
≤ sj , j = 1, . . . , N. (17)

For simplicity we have taken s̄j = ∞; we rely on
the penalty cj(sj), which we assume differentiable, strictly
increasing and strictly convex, to enforce resource sharing.
Except for this simplification, it should be transparent that
the two problems are equivalent; we have just introduced
explicitly the variable R = (rij) of allocated rates per
task type, subject to the constraint (17) (re-stated from (2));
this is suitable for real-time control and will allow us to
exploit the queue dynamics (3) in our solution. Note that
constraints (15)-(17) are always feasible, and the problem
has a well-defined minimum solution, unique in s due to
strict convexity.

Consider for this problem the Lagrangian obtained from
dualizing only constraints (15), and (suggestively) naming
the multiplier Q:

L(s,Λ, R,Q) =
∑
j

cj(sj) +
∑
i,j

qij(λij − rij).

Now minimizing over the remaining constraints (16)-(17)
yields the reduced Lagrangian

L̄(s,Q) := min
Λ,R

L(s,Λ, R,Q) (18)

=
∑
j

cj(sj) + min
Λ,R
〈Q,Λ−R〉. (19)

The last expression reveals that the required minimization has
already been studied in Section III: the results correspond
respectively to the Join-the-Shortest-Queue load balancing
Λ∗(Q) in (6), and the Max Weight scheduling in (7), which
we now denote as R∗(Q, s) since it depends on the server



populations which are now variable. This observation allows
us state the following:

Proposition 5:

L̄(s,Q) =
∑
j

[cj(sj)− sj ·max
i

(µijqij)] +
∑
i

λi min
j
qij ,

(20)

and a supergradient of L̄ with respect to the queue variables
is given by

∂L̄

∂Q
= Λ∗(Q)−R∗(Q, s),

where Λ∗(Q) and R∗(Q, s) are defined respectively by (6)
and (7).

Proof: In the definition (19) of L̄(s,Q), the variables
Λ, R satisfy the (independent) constraints (16) and (17).
We can thus decouple the minimization over each variable,
leading respectively to the JSQ and MW solutions, and
invoke (8) and (9) for the optimal costs. This shows (20).

Also, denoting

ϕ(Q) = min
Λ,R
〈Q,Λ−R〉 = 〈Q,Λ∗(Q)−R∗(Q)〉,

we have

ϕ(Q′) ≤ 〈Q′,Λ∗(Q)−R∗(Q, s)〉
= ϕ(Q) + 〈Q′ −Q,Λ∗(Q)−R∗(Q, s)〉;

adding
∑
j cj(sj) to both sides we conclude that

L̄(s,Q′) ≤ L̄(s,Q) + 〈Q′ −Q,Λ∗(Q)−R∗(Q, s)〉 (21)

which is the desired supergradient property.
Note that the two allocation decisions (JSQ, MW) can

be considered instantaneous in comparison with the much
slower dynamics of the queues and the number of servers.

Therefore, we may focus on designing a slower time-scale
dynamics that converges to a saddle-point (minimum in s,
maximum in Q) of the reduced Lagrangian L̄(s,Q), which is
strictly convex in s and concave in Q. If such a point (s∗, Q∗)
is found, supplementing it with the corresponding Λ∗(Q∗),
R∗(Q∗, s∗) we will have a saddle point of L(s,Λ, R,Q),
hence a solution to Problem 2.

A standard method [15]–[17] to seek a saddle point of a
convex-concave function L̄(s,Q) is a primal-dual gradient
dynamics of the form

ṡj = βj

[
− ∂L̄
∂sj

]+

sj

; (22)

q̇ij =

[
∂L̄

∂qij

]+

qij

. (23)

In our case the function is differentiable in s, but piecewise
linear in Q; the right-hand side of (23) invokes the super-
gradient already discussed. More specifically we have the
control laws:

ṡj = βj

[
max
i

(µijqij)− c′j(sj)
]+
sj

; (24)

q̇ij = λ∗ij(Q)− r∗ij(Q, s), (25)

where again:
• Λ∗(Q) is Join-the-Shortest-Queue load balancing,

which sends for each i the traffic λi to the location(s)
with the lowest qij ; ties are broken arbitrarily.

• R∗(Q, s) is the Max-Weight schedule, which at location
j assigns the sj servers to the local queues with largest
µijqij ; ties are broken arbitrarily.

We note that:
• The dynamic right-sizing rule (24) updates the server

population at each location j. The constant βj > 0 can
be assigned a practical interpretation, as a first order
model for the time lags inherent in server summoning
and deletion; see [9] for more discussion in a single
location scenario.

• (25) coincides with natural queue dynamics (3) for
each type of task i and server location j. Therefore
the queues already implement the dual portion of our
control. We have removed the positive projection from
this equation, since whenever qij = 0 the MW schedule
will assign r∗ij = 0 to this queue.

• As in Section III, the component (25) exhibits switch-
ing, and would require a generalized solution notion.
Again as mentioned in Remark 1, we will not consider
these issues in the present paper.

In the classical reference [15], a general quadratic Lya-
punov function is given for such primal-dual dynamics. We
provide (and, for completeness, prove) the version for our
situation.

Proposition 6: Let (s∗, Q∗) be a saddle point of L̄(s,Q).
Then the Lyapunov function

V (s,Q) =
1

2

∑
j

(sj − s∗j )2

βj
+

1

2
‖Q−Q∗‖2F . (26)

is decreasing along trajectories of (24)-(25). In particular the
saddle point is a stable equilibrium.

Proof: Differentiating along trajectories we have

V̇ =
∑
j

(sj − s∗j )
[
− ∂L̄
∂sj

]+

sj

+ 〈Q−Q∗, ∂L̄
∂Q
〉

≤
∑
j

(sj − s∗j )
[
− ∂L̄
∂sj

]
− 〈Q∗ −Q,Λ∗ −R∗〉,

where in the second step positive projections in s have been
removed. This is based on the fact that (x−y)[z]+x ≤ (x−y)z
(assuming x, y ≥ 0): in the non-trivial case of an active
projection, the left-hand side is zero and right-hand side is
non-negative.

Now the first sum may be written as 〈∂L̄∂s (s,Q), s∗ − s〉
and bounded above by L̄(s∗, Q)− L̄(s,Q), invoking the first
order conditions for convexity of L̄ in s.

Similarly the supergradient condition (21) (for Q′ = Q∗)
applies to the second term, leading to:

V̇ ≤ [L̄(s∗, Q)− L̄(s,Q)] + [L̄(s,Q)− L̄(s,Q∗)]

= [L̄(s∗, Q)− L̄(s∗, Q∗)] + [L̄(s∗, Q∗)− L̄(s,Q∗)].
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Fig. 1. Resource allocation s = (sj) across the locations j = 1, 2, 3
resulting from the primal-dual dynamics (22)-(23).

Both terms in brackets in the last expression are non-positive,
because of the saddle point condition of L̄ at (s∗, Q∗)
(maximum in Q, minimum in s).

Therefore V is decreasing, and since it is defined as a
norm-squared distance to the saddle point, we have stability
in the Lyapunov sense: trajectories starting in a neighborhood
of (s∗, Q∗) will stay in it.

The question arises as to whether we can claim asymptotic
stability, in particular convergence to the saddle point. We
note in this regard that the equilibrium Q∗ may not be
unique: in that case we may at most claim convergence to a
set. We do expect, convergence in the variable s∗ since this
point is indeed unique due to the assumed strict convexity.

The usual method to establish asymptotic stability in these
problems has been (see [16], [17]) the Lasalle invariance
principle, essentially present also in [15] for the case of a
smooth function L̄(s,Q).

The Lasalle theory is, however, more delicate for systems
with switching. In particular regarding positive projections,
[17] found flaws in the arguments given in [16], and pro-
vided an alternative proof based on the theory of projected
dynamical systems [18]. In the current case, switching is not
confined to projections, it also appears in the queue dynamics
under JSQ/MW. This is related to the non-differentiability
in Q of the reduced Lagrangian L̄(s,Q). Since we have
not dealt with such issues we will refrain from stating a
convergence theorem, although we conjecture that such a
result holds for our primal-dual dynamics.

We end the section with a numerical simulation of our
dynamic approach.

Example 3: Reconsider the system of Example 2, with
quadratic cost cj(sj) = s2

j/2, but in this case assuming
that the arrival rates λi are unknown by the system. We use
our primal-dual dynamics (22)-(23) to find the best resource
allocation s∗ = (s∗j ). The corresponding dynamics solution
is represented in Fig 1. We see a transient response that
converges to the same optimal allocations of Example 2.

VI. CONCLUSIONS AND FUTURE WORK

We have presented initial results on optimization-based
control design for resource allocation problems in cloud
computing, integrating server sizing, load balancing and

scheduling with consideration of data locality. Some techni-
cal issues have been postponed for future work, particularly
those arising from discontinuous dynamics.

Clearly our primal-dual law is not the only possible
solution strategy: for instance, a smoother update of the
primal variables Λ, R can be considered, replacing the static
switching with a dynamic update of e.g. traffic splits, anal-
ogous to proposals in the area multipath routing [19].

Another line of inquiry could be the integration of data
localization decisions (which determine service rates per
type) into the resource allocation.
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