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Abstract— This paper analyzes previously-proposed dynamic
models of content-sharing networks from the point of view
of global stability. Our focus is on models that track popu-
lations of participating peers as a function of the download
progress achieved, described in previous research by a Partial
Differential Equation where this progress is a fluid variable.
We use such a model to identify conditions on the rate
allocation function that make the dynamics preserve a suitable
ordering of the state. This enables the application of tools of
monotone dynamical systems. This is formally done with finite-
dimensional, ordinary differential equation model in which the
content fraction index is discrete. Our results apply both to the
case of homogeneous upload bandwidths in the participating
population, as well as the heterogeneous case with multiple
populations of each bandwidth class.

I. INTRODUCTION

In recent years, over-the-net content sharing has become

one of the main sources of traffic on the global Internet.

Different mechanisms have appeared to empower users to

share content (files) mostly through peer-to-peer (P2P) con-

nections that mutually exchange file pieces. Among them, the

BitTorrent protocol [2] provides an important example, and

we adopt its terminology: a subset of peers called seeders

already possess the file and act as the servers to others,

while leechers are the downloading clients. However the

latter become, after downloading their first pieces, them-

selves servers to other peers, thus contributing their upload

bandwidth during content download.

Such a swarm of peers is itself dynamic, as new peers

arrive and others depart after completing the download. Since

departures depend on the service capacity, which itself de-

pends on the number of uploading peers, a feedback structure

appears in the population dynamics. An early model that

identifies this feedback is [14], using an ordinary differential

equation (ODE); the model has roots in stochastic models

of a similar nature [16]. Local [14] and global [13] stability

results are derived for these ODE dynamics.

These initial models are coarse in the sense that the state

does not track the peers’ download progress. To obtain a

finer description, in [4], [11] we proposed using a Partial

Differential Equation (PDE) which discriminates the popu-

lation of leechers as a function of the fraction of content file

downloaded, expressed as a fluid variable. This intermediate

resolution avoids the exponential complexity of tracking

individual pieces (an alternative pursued in [7], [10], [18]),

yet provides tighter predictions of the dynamics as compared
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to models with a single variable for the overall population.

In particular we analyzed in [11] the resulting equilib-

rium, established its local stability through linearization, and

showed through comparisons with BitTorrent simulations the

increased predictive power of the model when analyzing

variability and transient response.

All the above references work with a homogeneous pop-

ulation, in the sense that the upload bandwidth provided

by each peer is the same. If there are multiple classes of

peers with different parameters, an analysis of the resource

allocation is required [3], [8]. It is found that while a set

of homogeneous peers can be modeled through a processor-

sharing allocation (where all leechers receive equal rate),

service differentiation can and arguably must occur in the

heterogeneous case. [9] suggests a proportional allocation,

where every leecher receives from fellow leechers as much

as it contributes to the network. In terms of the dynamics of

such heterogeneous networks, a first ODE model for the two-

class case was given in [1]. Recently in [12] we considered

multi-class versions of both ODE and PDE models under

proportional reciprocity; for the latter we generalized the

equilibrium and local stability analysis.

What has been lacking for our PDE models with download

progress is proof of global stability of the equilibrium, which

is in general challenging since these are nonlinear dynamics

with a distributed state. In this paper we recognize a key tool

that enables such global results to be obtained, namely the

monotonicity of trajectories with respect to a natural order-

ing. In particular we identify general conditions on the rate-

allocation functions that give rise to such order preservation,

as well boundedness of trajectories, from which stability

theorems can be pursued using the theory of monotone

dynamical systems [6]. Our conditions cover both the homo-

geneous and heterogeneous scenarios, and apply in particular

to the processor sharing and proportional reciprocity models.

While they are motivated very transparently with the PDE

model, for our theory we will avoid the complexity of an

infinite dimensional state and work with an ODE version of

the dynamics where the content fraction variable is discrete.

The rest of the paper is organized as follows. In Section

II we review some results on monotone dynamical systems,

and our PDE models. In Section III we identify conditions on

the rate allocation that yield a monotone, bounded dynamics

for the PDE. We then turn to a finite-dimensional version

in Section IV to give precise results on monotonicity and

global stability. In Section V we extend these results to the

multi-class setting. Conclusions are given in Section VI.



II. BACKGROUND

A. Monotone systems

The theory of monotone dynamical systems refers to

dynamics on a set X in which a partial ordering relationship

has been established. An extensive recent monograph on this

topic is [6], we extract from it some elements to be applied

in the present paper.

Given a Banach space Y and a closed, convex cone Y+ ⊂
Y , an ordering can be defined by x ≤ x′⇐⇒x′ − x ∈ Y+;

Strict ordering x ≪ x′ means x′ − x ∈ Int(Y+), the interior

of the cone, assumed non-empty. A semiflow Φt : X → X
for t ≥ 0 on a set X ⊂ Y , is monotone or order preserving if

x(0) ≤ x′(0) implies x(t) = Φt(x(0)) ≤ x′(t) = Φt(x
′(0))

for all t. Strong monotonicity means the ordering becomes

strict for t > 0.

Strong monotonicity greatly narrows down the possibilities

for such dynamics; for instance, there can be no stable

periodic orbits. And, for semiflows with orbits of compact

closure, most initial conditions will lead to convergent tra-

jectories. If, further, for an invariant region one can establish

there is a unique equilibrium, it must attract the entire region.

We state the following result from [6]1.

Proposition 1 ( [6], Corollary 1.20): Let Y be an or-

dered Banach space, and Φ a strongly monotone semiflow

on X ⊂ Y with orbits of compact closure. If X is open and

contains a single equilibrium point p, all trajectories in X
converge to p.

For the case X ⊂ R
n, a natural ordering to be used in

this paper is the one defined by Y+ = R
n
+; namely, x ≤ x′

iff xi ≤ x′

i for all i, and x ≪ x′ when all inequalities

are strict. Suppose the semiflow Φ is given by solutions

to a smooth differential equation ẋ = f(x) defined on X .

Chapter 3 of [6] analyzes monotonicity in this situation, in

terms of the system Jacobian. In particular, if the matrix

A(x) := ∂f
∂x

is Metzler (this means aij ≥ 0 for i 6= j)

at any x, then the dynamics are called cooperative, and

the corresponding flow is monotone. Strong monotonicity

requires in addition that the matrix A(x) be irreducible: this

means there is no permutation of variables where the matrix

becomes block triangular. Equivalently, if one considers a

graph with vertices in {1, . . . , n} and a directed edge from i
to j whenever aij > 0, the resulting graph must be strongly

connected (there is a directed path between any two nodes).

B. Population and download dynamics in p2p file-sharing

As discussed before, content-sharing is implemented by

the bidirectional exchange of small pieces of a certain file

between peers. In this paper we focus on the scenario where

the population of seeders (who own the entire content) is

fixed at y0, whereas leechers interested in the content form a

variable population x(t): they arrive at the swarm at a certain

rate, stay as long as necessary to complete the download, and

then immediately leave the system. This simplified scenario

is nevertheless common in practice.

1In fact Corollary 1.20 from [6] is a stronger version of this statement.
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Fig. 1. Fluid state evolution.

To develop a clean and intuitive picture of the dynamics,

in [4], [11] it was found convenient to use a fluid variable

σ ∈ [0, 1] for the download fraction, and express the resulting

dynamics by means of a partial differential equation (PDE),

as is now reviewed. We consider first the single class case,

where all leechers are of the same kind, see Section V for

the multi-class version.

Define the real-valued variable F (t, σ) that represents (in

fluid terms) the population of leechers that, at time t, have

pending download of at least σ. Thus F (t, σ), non-increasing

in σ, acts as the complementary cumulative distribution of

the leecher population, with F (t, 0) = x(t), the total leecher

count and F (t, 1) ≡ 0. Figure 1 shows an instance of such

fluid download profiles. The dynamic model from [11] is:

∂F

∂t
= λ+ r(F, σ)

∂F

∂σ
, σ ∈ [0, 1]. (1)

Here λ is the arrival rate of new leechers, which we assume

arrive with no prior content2; this provides an upward drift

to the entire population distribution. r(F, σ) ≥ 0 represents

the download rate per peer, in units of files per second,

which regulates the speed at which the function F (t, σ) is

transported in the direction of σ = 0 as download progresses.

The notation expresses the dependence on the function state

F , and a possible differentiation across σ; state-dependence

arises because download speeds are determined by upload

speeds of others; this is the cause of nonlinear feedback

present in these dynamics. Specifically, the overall upload

capacity of the set of peers is

Rup = µ(x + y0), (2)

where the parameter µ represents the individual upload rate

of each peer (assuming for now homogeneity across peers).

This upload capacity must necessarily be no smaller than the

aggregate download rate, integrated over the population:

Rdown :=

∫ 1

0

r(F, σ)

[

−
∂F

∂σ

]

dσ; (3)

(the minus sign arises due to F being a complementary

CDF). The functional r(F, σ) that maps population profiles

F in [0, 1] to rate profiles specifies how the download

2This is done for simplicity, our results of this paper generalize to the
case considered in [11] where leechers have a distribution H(σ) of content
to download upon arrival.



bandwidth is distributed among the population, allowing for

differentiation (at most) across σ. A simple yet important

case for the rate functional is

r(F, σ) =
Rup

x
=

µ(x+ y0)

x
∀σ. (4)

This is a processor sharing allocation, i.e. the upload

bandwidth is efficiently and uniformly distributed among

leechers, independently of their download stage. In particular,

Rdown = Rup and this implies there are no other bottlenecks.

Empirical evidence indicates that this is quite an accurate

model for upload-constrained BitTorrent systems under the

homogeneity assumption (cf. the discussion in [5], [11]).

Other allocations have been analyzed in [4].

III. MONOTONICITY AND STABILITY IN THE PDE MODEL

In this section we will identify conditions for which

the file-sharing dynamics can exhibit monotonicity, bounded

trajectories, and a unique equilibrium. For this task the PDE

model provides a clear intuition, which we present here,

somewhat informally; in the next section we prove rigorous

results with a discretized ODE version.

A. Monotonicity

As a natural order in the space of trajectories we consider

pointwise inequality3.

F (t, ·) ≥ F̃ (t, ·) ⇐⇒ F (t, σ) ≥ F̃ (t, σ) ∀σ ∈ [0, 1]. (5)

One such pair of profiles is depicted in Figure 2. We now

identify a condition on the rate functional to guarantee this

order is preserved.

Assumption 1: r is decreasing with the respect to the

pointwise order:

F ≥ F̃=⇒ r(F, σ) ≤ r(F̃ , σ) ∀σ.

We argue hat this assumption ensures the monotonicity

of the flow with respect to the pointwise order. In reference

to Fig. 2: Note that both curves F ≥ F̃ are subject to the

same upward drift due to the arrivals term in (1), but the

transport term is in general different, because rate depends

on population. The condition r ≤ r̃ implies the resulting

drift vectors for each of the two states must be as depicted

in the figure, with the upper curve having a more upward

direction, thus locally preserving the inequality F ≥ F̃ .

B. Boundedness

The second issue for a global stability result is to ensure

boundedness of trajectories; this turns out to hold provided

the file sharing achieves at least a minimal level of efficiency,

as is now specified.

Assumption 2: The rate functional r(F, σ) is κ-efficient

for some 0 < κ ≤ 1. We define this to mean that Rdown >
κµx, i.e. the total download rate exceeds a positive fraction

κ of the leecher upload bandwidth.

3This corresponds to the cone of positive functions; we will not be precise
about the Banach space in question, since our theory will be developed in
finite dimensions.
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Fig. 2. Monotonicity property of the PDE dynamics

To show this assumption imposes a bound on trajectories,

define the unfinished work of a profile F (σ) by

u(F ) =

∫ 1

0

σ

[

−
∂F

∂σ

]

dσ =

∫ 1

0

F (σ)dσ, (6)

the last identity following from integration by parts.

We claim that the set XK = {F : u(F ) < K} is invariant

under the dynamics for K ≥ λ
κµ

. To see this integrate (1)

over σ ∈ [0, 1] to obtain

u̇ = λ−Rdown < λ− κµx, (7)

where we have used κ-efficiency. If, starting in XK , a

trajectory were to reach the boundary u(t) = K , this implies

x(t) ≥ λ
κµ

(note x(t) ≥ u(t) since F (t, ·) is decreasing), and

thus from (7) that u̇ < 0, in contradiction with u reaching

the boundary from below. This establishes the claim.

C. Equilibria and stability

The remaining question is to characterize the set of

equilibria. To make the problem interesting we will assume

henceforth that λ > µy0; this means that the seeder upload

rate alone is insufficient to sustain the load, so any equilib-

rium will necessarily have positive population of leechers.

In the perfectly efficient case with Rdown = µ(x + y0) the

population would be x∗ = F ∗(0) = λ
µ
− y0, as we can see

setting u̇ = 0 in (7). In a less efficient situation the population

would be larger.

Even if x∗ is determined, there could in general be

multiple profiles F ∗(σ) that set to zero the right-hand side

of (1). For certain rate functionals we can further show that

this equilibrium profile is unique. In particular, the proces-

sor sharing rate functional (4) is decreasing and perfectly

efficient, and has a unique equilibrium. This follows from

the fact that r(F, σ) in (4) does not depend on σ, so the

equilibrium condition is

∂F ∗

∂σ
= −

λ

r∗
,

constant in σ. Using boundary conditions the unique equi-

librium is the linear function F ∗(σ) = x∗(1 − σ) (uniform

distribution) with x∗ = λ/µ− y0.

Other rate functionals also meet the uniqueness test. As-

suming this happens, we have the ingredients for a global



stability result using monotone systems. Pursuing this result

precisely in the realm of PDEs requires defining an appro-

priate Banach space, with compactness of orbit closures, and

refining inequalities to be strict in the appropriate sense, for

Proposition 1 to be applicable. This is presently out of our

scope, we will instead turn to a finite-dimensional setting.

IV. MONOTONICITY AND GLOBAL STABILITY FOR A

DISCRETIZED ODE MODEL

To avoid technicalities associated with PDEs we now for-

mulate an ordinary differential equation model, discretizing

the σ variable in M points, defining the states

zj(t) = F (t, j/M) , j = 0, . . . ,M − 1.

Through the approximation

∂F

∂σ

∣

∣

∣

∣

σ=
j

M

≈ M(zj+1 − zj),

the earlier model (1) indicates the dynamics

żj = λ+Mrj(z)(zj+1 − zj), j = 0, . . . ,M − 1, (8)

where by convention zM = 0. The state is defined in the

cone of vectors with decreasing components

Z :=
{

z ∈ R
M : z0 ≥ z1 ≥ · · · ≥ zM−1 ≥ 0

}

. (9)

Here the function rj(z) ≥ 0 provides the download rate for

peers at the j-th download stage; it could vary with j, as well

as depend on the entire profile z. The download constraint

is now written as

M
∑

j=1

rj(z)(zj − zj+1) ≤ µ(z0 + y0).

Remark 1: Of course, file content could be quantified dis-

cretely from the start, writing directly (8) without reference

to any PDE. We note however that:

(i) The fluid PDE model provides a very intuitive descrip-

tion of the dynamics, with pictures as in Figure 2 which

helped us reason about monotonicity.

(ii) The PDE suggests the natural state variables to use.

Namely zj is the accumulated population of leechers

with pending download larger than j/M . This will turn

out to be a simpler coordinate system for monotonicity

studies, as compared to the non-accumulated popula-

tion quantities considered in [4].

As an additional comment, we note the distinction between

the above ODE and population models in [14], which do not

discriminate by download stage and would thus correspond

to the case M = 1, a significantly coarser model.

Introduce now the interior of the cone Z ,

Int Z :=
{

z ∈ R
M : z0 > z1 > · · · > zM−1 > 0

}

. (10)

Int Z is invariant under (8) provided that rj(z) > 0 (strictly)

on Int Z . To see this start from an initial condition in Int Z ,

assume that a certain zj later reaches zero; then so must zl,
l ≥ j and thus (8) gives żj = λ > 0, a contradiction with zj
reaching zero. Assume instead that zj − zj+1 reaches zero

for j ≤ M − 2 at some point in time, with positive zj ; by

redefining j if necessary we can suppose zj = zj+1 > zj+2,

which implies

żj − żj+1 = −Mrj+1(z)(zj+2 − zj+1) > 0,

a contradiction with zj − zj+1 reaching zero from above.

The assumptions on the rate functions rj(z) are now

stated, using as guideline the PDE counterparts:

1) rj(z) is decreasing with respect to the componentwise

ordering in z. Assuming it is smooth, this translates to

the condition

∂rj
∂zk

≤ 0 ∀j, k. (11)

1’) We will also impose a stronger requirement on deriva-

tives with respect to the total population z0 = x:

∂rj
∂z0

< 0 ∀j, z ∈ Int Z. (12)

2) rj(z) is κ-efficient:
∑

j

rj(z)(zj+1 − zj) > κµz0. (13)

A. Monotonicity

We first prove that assumption (11) implies the flow

is monotone, through the system Jacobian. We denote by

g(z) = (gj(z))
M−1

j=0
the vector field in (8).

Proposition 2: Assume (11) holds. For z ∈ Int Z the

Jacobian matrix A(z) = ∂g
∂z

is Metzler, i.e.

∂gj
∂zk

≥ 0 for k 6= j. (14)

If in addition (12) holds, then A(z) is irreducible in Int Z .

Proof: For k 6= j, k 6= j + 1 we have

∂gj
∂zk

= M
∂rj
∂zk

(z) · (zj+1 − zj) ≥ 0.

Since both factors are non-positive in Z due to (11), then

(14) follows. For k = j + 1 < M , we have

∂gj
∂zk

= Mrj(z) +M
∂rj
∂zk

(z) · (zj+1 − zj) ≥ 0,

the additional term being non-negative as well. We conclude

that the Jacobian is Metzler as claimed.

Assuming now an interior point where
∂rj
∂z0

< 0, note that

this implies rj(z) > 0 (otherwise rj would become negative

in a neighborhood), thus
∂gj

∂zj+1
> 0. Also, z ∈ Int Z implies

∂gj
∂z0

= M
∂rj
∂z0

(z) · (zj+1 − zj) > 0 ∀j > 0.

We see then that the elements aj0 for j > 0, and aj,j+1

for j < M − 1 are strictly positive. This implies that the

directed graph associated with A(z) is strongly connected:

one can move up sequentially in j and back to 0 with positive

transitions. Hence A(z) is irreducible.

Invoking the material on Section II-A, the dynamics pro-

duce a strongly monotone flow.



B. Boundedness

Let us now show that the second assumption on efficiency

ensures boundedness of trajectories.

Proposition 3: Consider the dynamics (8). Under assump-

tion (13), the set XK =
{

z ∈ Int Z :
∑

j zj < K
}

for

K ≥ M λ
κµ

is positively invariant under the flow.

Proof: From the hypothesis we obtain
∑

j

żj = Mλ−M
∑

j

rj(z)(zj+1 − zj)

< M(λ− κµz0). (15)

If, starting from XK , a trajectory reaches the boundary, it

must be that
∑

j zj = K , since we already established the

invariance of Int Z . Now since z is a decreasing vector we

must have z0 ≥ K
M

≥ λ
κµ

. But this makes the left-hand side

of (15) negative, a contradiction since
∑

j zj approached the

threshold from below. This establishes the invariance.

Note also the above argument implies there can be no

equilibrium points outside such XK .

C. Global stability

We complete the analysis by stating a global stability result

for the case where the equilibrium is unique.

Theorem 4: Suppose the rate functions rj(z) satisfy (11),

(12), and (13). If in addition there is a unique z∗ ∈ Int Z
such that

λ = Mrj(z
∗)(z∗j − z∗j+1), j = 0, . . . ,M − 1,

then this point is a global attractor of the dynamics (8).

Proof: For any initial condition we can choose an

invariant set XK that contains it, and restrict our attention to

the dynamics on this bounded open set, which must contain

the equilibrium. We have a strictly monotone flow with

orbits of compact closure, with a single equilibrium point

in XK . Proposition 1 implies there is global convergence to

equilibrium.

As a particular case, we obtain global stability for the

processor sharing rate function introduced in (4).

Corollary 5: The system (8) with the rate functions

rj(z) = r(z0) = µ
z0 + y0

z0
, j = 0, . . . ,M − 1,

has the globally attracting equilibrium

z∗j =

(

λ

µ
− y0

)(

1−
j

M

)

. (16)

Proof: Clearly rj(z) is decreasing and in particular

∂rj
∂z0

= −
µy0
(z0)2

< 0;

it is also perfectly efficient (Rdown = Rup = µ(z0 + y0));
this implies as in (15) that

∑

j żj = λ − µy0 − µz0 , from

which there is a unique possible z∗0 in equilibrium. Looking

now at the individual derivatives in (8) we find at equilibrium

λ+Mr(z∗0)(z
∗

j+1 − z∗j ) = 0

from where all partial increments are z∗j+1−z∗j must be equal,

yielding the formula in (16). In particular the equilibrium is

unique, so Theorem 4 can be invoked.

V. EXTENSION TO HETEROGENEOUS NETWORKS

The models discussed so far apply to the situation where

all peers have a common bandwidth access parameter µ.

When this parameter is allowed to vary across peers, resource

allocation does not correspond to processor sharing; instead,

service differentiation can arise due to the reciprocity mecha-

nisms of p2p. In this section we study this more general case

with a multi-class model, where peers in each of n classes

have upload bandwidths {µi}ni=1, and arrival rate λi. Seeders

are fixed and have an upload rate µ0.

We will assume each class has a population profile as a

function of downloaded content. Adopting initially a continu-

ous variable σ to represent file fraction, let F i(t, σ) represent

the population of leechers of class i with pending download

larger than σ. Its dynamics has the form

∂F i

∂t
= λi + ri(F, σ)

∂F i

∂σ
, σ ∈ [0, 1]. (17)

Here the overall state F (t, σ) is the vector of profile functions

(F i(t, σ))ni=1, and the download rate functional ri depends

in general on the entire state across all classes.

Our state ordering (5) extends to this case as follows:

F ≥ F̃ ⇔ F i(σ) ≥ F̃ i(σ) ∀σ ∈ [0, 1], i = 1, . . . , n. (18)

The following are the appropriate generalizations of the

assumptions considered in Section III for the rate functional

r(F, σ) = (ri(F, σ))ni=1:

1) r is decreasing with the respect to the pointwise order:

F ≥ F̃=⇒ r(F, σ) ≤ r(F̃ , σ) ∀σ.

2) r is κ-efficient in each component, for 0 < κ ≤ 1:

Ri
down =

∫ 1

0

ri(F, σ)

[

−
∂F i

∂σ

]

dσ > κµixi.

This means that class i receives at least a fraction κ
of what it contributes to the network, which in fact

embeds some level of fairness in the allocation, as

opposed to just efficiency of total bandwidth use.

It can be argued, analogously to Section III, that these con-

ditions ensure respectively, monotonicity and boundedness

for the flow in (17). Once again, under uniqueness of the

equilibrium we should have global stability. Below we state

precise results with a finite dimensional model.

A. Global stability for a multi-class ODE

For each class i define M state variables zij , j = 0, . . .M−

1, corresponding to the accumulated populations F i(t, j
M
).

The overall state z belongs to

Zn :=
{

z = (zij) ∈ R
nM : zi0 ≥ · · · ≥ ziM−1 ≥ 0 ∀i

}

;
(19)

when thought as a column vector, the variables of z are

ordered lexicographically in (i, j). Int Zn is analogous, with

strict inequalities. The dynamics is

żij = λi +Mrij(z)(z
i
j+1 − zij),

i = 1, . . . , n;
j = 0, . . . ,M − 1.

(20)



We lay out the assumptions on the rate functions rij(z).

1) rij(z) is decreasing for componentwise ordering:

∂rij

∂zlk
≤ 0 ∀(i, j), (l, k). (21)

1’) Rates are strictly decreasing with respect to total class

populations:

∂rij

∂zl0
< 0 ∀(i, j), l, ∀z ∈ Int Zn. (22)

2) rij(z) is κ-efficient in each class:

Ri
down =

∑

j

rij(z)(z
i
j+1 − zij) > κµizi0. (23)

We denote by g(z) = (gij(z)) the overall vector field,

again using lexicographical order in i, j. We now state the

corresponding results extending the work in Section IV.

Proofs are analogous and omitted due

Proposition 6 (Montonicity): Assume (21) holds. For z ∈
Zn the Jacobian matrix A(z) = ∂g

∂z
is Metzler, i.e.

∂gij

∂zlk
≥ 0 for (l, k) 6= (i, j). (24)

If in addition (22) holds, then A(z) is

irreducible in Int Zn.

Proposition 7 (Boundedness): Consider the dynamics

(20). Let K = (Ki)ni=1, Ki ≥ λi

κµi . Under assumption (23),

the set Xn
K =

{

z ∈ Int Z :
∑

j z
i
j < Ki, i = 1, . . . , n

}

is

positively invariant under the flow.

Theorem 8 (Global stability): Suppose the rate functions

rij(z) satisfy (21), (22), and (23). If in addition there is a

unique z∗ ∈ Int Zn such that

λi = Mrij(z
∗)(z∗ij − z∗ij+1),

i = 1, . . . , n;
j = 0, . . . ,M − 1.

(25)

then this point is a global attractor of the dynamics (20).

B. Application to the proportional reciprocity rate function

We apply the theory to an important example of multi-

class rate allocation, the proportional reciprocity model:

rij(z) =
µ0y0

∑n
l=1

zl0
+ µi (26)

Here the seeder capacity is equally distributed among all

downloading peers, but leechers receive from other leechers

exactly as much as they give. This reciprocity proposal

has been discussed in many references [3], [9], [12], [15],

[17], and shown to approximately represent the tit-for-tat

component of BitTorrent’s file-sharing. (26) is monotonically

decreasing and satisfies κ-efficiency with κ = 1.

Proposition 9: Consider the system (20) with the rate

function (26) for each i, with j = 0, . . . ,M − 1.

Suppose that
∑

i λ
i > µ0y0 (meaning that seeders alone

cannot cope with the service demands). Then there exists a

unique, globally attracting equilibrium of the form

z∗ij =

(

λi

µi + α

)(

1−
j

M

)

,
i = 1, . . . , n;
j = 0, . . . ,M − 1,

where α > 0 is the unique solution to
∑

i λi
α

µi+α
= µ0y0.

The main step of the proof is establishing existence and

uniqueness of equilibrium; this was done in [12] for the case

of a single population state per class (M = 1), and can easily

be extended to the present case.

VI. CONCLUSIONS

In this paper we obtained global stability results for the

dynamics of content-sharing networks. These apply to re-

source allocation policies which assign decreasing resources

per peer at any download stage or class when populations

increase, with a minimum amount of efficiency in the allo-

cation for each class. Under these conditions we can invoke

the powerful theory of monotone dynamical systems to prove

global stability. In particular the question is settled for mod-

els (processor sharing, proportional allocation) commonly

applied to respectively homogeneous and heterogeneous p2p

networks; in future work we will study other file-sharing

policies from this perspective.
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