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Abstract—Peer to peer file exchange systems such as Bit-
Torrent are changing the way in which content is distributed
in the Internet. Service capacity for a certain content adjusts
dynamically as a function of peer population, thus achieving
scalability. This dynamic behavior has been the subject of recent
analytical studies.

In this paper, we propose a partial differential equation
model for BitTorrent-like systems, in which a fluid variable
represents content and its distribution in the system is taken
into account. This model allows for a variety of file sharing
disciplines; we identify equilibrium properties that must hold
regardless of this choice, and others that depend on a notion

of efficiency. The equilibrium properties of many specific disci-
plines are described. Through a discretized ordinary differential
equation model, we also present results on the stability of the
equilibrium for a particular sharing policy that is suitable to
model current BitTorrent systems.

I. INTRODUCTION

A large proportion of Internet traffic in recent years is

attributed to peer-to-peer (P2P) systems. These applications

move away from the traditional client-server model for data

exchange, replacing it with a system in which every peer is

both a client and a server, sharing its own upload capacity

to enhance the collective download performance. The main

advantage of this approach is scalability: as demand for a

certain content becomes large, so does the available supply.

One of the dominant P2P file sharing systems is BitTorrent

[1], where a swarm of peers is dynamically formed in relation

to a particular content of interest. Peers are classified in

seeders who own the full content, and leechers who own

part of it, and exchange rules are set up to elicit collaborative

behavior among them. Some basic elements of BitTorrent are

reviewed in Section II.

This new file-sharing paradigm has raised interesting mod-

eling questions. In particular, the dynamics of the swarm

population has non-trivial properties, given that service times

depend on network capacity, which itself depends on the

population size. A first model in this regard was proposed by

[8]: here, populations of leechers and seeders are described

by a continuous time Markov chain, and its equilibrium

distribution is studied numerically. In [5], the authors pro-

posed a differential equation model for this system, which

corresponds to a fluid limit of the previous model, with some

additional features. This allows for an analytical description

of the resulting equilibrium and its stability, as we review
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in Section II. The above models lump leechers into a single

quantity, irrespective of how much content they possess. In

[6], a Markov model that includes the degree of advance

is considered, with a specific choice for the exchange rates

among peers; again, numerical studies are performed.

In this paper we generalize the idea in [6] to provide a

finer characterization of how content propagates in a P2P

network. In particular, by taking a fluid approach in the

content variable, we will express in Section III the population

dynamics in terms of a partial differential equation, which

covers BitTorrent-like systems under very general assump-

tions on how upload capacity is shared among peers. We

identify certain equilibrium properties that are independent of

this choice, as well as others than are contingent on a suitably

defined notion of efficiency. In Section IV we analyze some

specific sharing disciplines and show how they include and

generalize the previously cited models.

In Section V we turn to dynamic studies, focusing on

the sharing model that is most similar to current BitTorrent

practice. We give results on local stability for its equilibrium,

using an ordinary differential equation discretization of the

previous dynamics. Conclusions are presented in Section VI.

II. BACKGROUND AND RELATED WORK

Consider a set of Internet users who have common interest

in a certain content (i.e. a file or a set of files). In a

BitTorrent-like system, such content is organized and subdi-

vided in smaller size pieces named chunks, to be exchanged

among peers. An incoming peer first obtains from a tracker

information that identifies a set of peers that have the whole

or part of the content; from here on, a series of control

messages exchange a bitfield with detailed information on

which chunks are in possession of each of these other peers.

The new peer then becomes a leecher, requesting chunks

from others; at the same time, as soon as the user has some

pieces of the file, other peers can request them from it. At

some point, the peer completes the download and becomes a

seeder, who is no longer interested in downloading content,

but contributes uploading to the remaining leeches. This goes

on until the peer decides to leave the system.

A first dynamic model for such a P2P network was given

in [8]. This Markov chain model has as state variables the

populations of leechers and seeders in the system, behaving

as follows: peers arrive as a Poisson process of rate λ, stay
in a leecher queue until completing the download, and then

in a seeder queue for an exponential time of parameter γ.
The leecher queue is served in a processor sharing discipline



by those uploading content, the mean upload time for the

file being 1
µ . Taking the latter time to be exponential leads

to a continuous time Markov chain, which is then analyzed

numerically.

As an initial observation regarding this model, we distin-

guish two cases that will have impact in what follows:

(i) If γ < µ, then the mean time 1
γ that a peer spends as

a seeder suffices (with excess) to upload one copy of

the file, thus generating a replacement seeder. In this

situation, which we will call seeder-sustained, the P2P

system could reproduce the content even without the

upload contribution of leechers.

(ii) If γ > µ, then the opposite holds: seeders leave quickly,

so the upload contribution of leechers is essential to

reach an equilibrium. We call this regime globally-

sustained; here is where the power of P2P sharing is

most significant.

In [5], the authors proposed a differential equation model

for this system, which corresponds to a fluid limit of the

Markov model in [8], with some additional features. The

main one is to make explicit the download capacity limit

which is necessary to have a bounded equilibrium in the

seeder-sustained case. We now recall this model, with some

new notation of our own.

Let x(t) denote the number of leechers at time t, and y(t)
the number of seeders. Therefore, the total upload capacity

in the system in files per second becomes1

Ω̄up = µ(y + x). (1)

Let Ωdown denote the total download rate of the system, in

files per second. This determines the rate at which leechers

turn into seeders2, so the overall dynamics, including leech

arrivals and seed departures is:

ẋ = λ− Ωdown(x, y), (2a)

ẏ = Ωdown(x, y)− γy. (2b)

To complete the model, the expression

Ωdown(x, y) = min{Ω̄up, cx} (3)

states that Ωdown is constrained (only) by either the available

upload capacity or the maximum download rate per peer,

defined as c. We assume that c > µ (download capacity

exceeds upload capacity), common in practice.

It is easily checked that at an equilibrium of (2) the number

of seeders must be y∗ = λ
γ . As for the number of leechers,

there are two cases distinguished by a critical value of γ,
defined as γcr := µ c

c−µ .

(i’) If γ < γcr, the equilibrium point satisfies

x∗ =
λ

c
, Ωdown(x

∗, y∗) = cx∗ < Ω̄up,

1In [5], [8] the leecher contribution is weighed by an efficiency parameter
η < 1; since subsequent analysis in [5] shows η ≈ 1 in nearly all practical
situations, we will not include it here.

2For simplicity, we assume here that leechers do not leave the system
before completing their download.

so here the bottleneck of the system is the download

capacity.

(ii’) If γ > γcr, the equilibrium point is

x∗ = λ

(

1

µ
−

1

γ

)

, Ωdown(x
∗, y∗) = Ω̄up < cx∗,

so the bottleneck is the upload capacity.

With a slight modification, the above cases correspond

respectively to the seeder-sustained (i) and globally-sustained

(ii) cases mentioned before. Indeed, as c → ∞, γcr → µ and

the identification becomes exact.

It is shown in [5] that equilibrium points in both cases are

locally asymptotically stable; moreover, in [4] it is proved

that the switched system defined by (1), (2), (3) is globally

asymptotically stable for any choice of λ, µ, γ and c > µ.
The main limitation of the above models is that the chosen

state does not differentiate between peers who have different

amounts of downloaded content; rather, the entire download

rate is assigned indiscriminately to leecher termination. A

more accurate model should describe the dynamics of a

leecher gaining content, and how this degree of advance

in turn influences the download rate, that need not be

homogeneous among peers.

At the other extreme of detail would be a model that takes

as state the complete bitfield of each peer, i.e. the list of

chunks it possesses. This kind of model was analyzed in [2],

[3], but becomes unmanageable as the number of chunks

grows due to the state dimensionality.

An intermediate point is to consider the amount of content

each peer possesses as an index for the state; a Markov model

in this direction was studied by [6]. In what follows, we will

propose and study a fluid model of this nature, that can be

thought as a generalization of the models in [5], [6].

III. A FLUID MODEL FOR CONTENT DOWNLOAD IN

BITTORRENT SYSTEMS

As mentioned before, the file of interest in a BitTorrent

system is divided into small size chunks that are downloaded

independently. We will propose now a fluid model in which

the chunk size is considered infinitesimally small, and the

download rate of a given peer may depend on the amount of

file it has already obtained from the system.

To do so, let us denote by F (t, σ) the number of leechers

that have completed downloading less than σ units of the

file. We let σ vary continuously between 0 and 1, with

σ = 1 representing the entire file. F (t, σ) acts therefore

as a cumulative distribution of leechers in different stages

of download, with F (t, 0) = 0 and F (t, 1) = x(t), the total

number of leechers.

Let ω(F, y, σ) denote the download speed of a single

leecher, that depends on the current distribution F , the

number of seeders y, and is also allowed to the depend on

σ, the amount of data already in the leecher’s possession.

The evolution of F after an infinitesimal amount of time dt
verifies:

F (t+ dt, σ) = F (t, σ) + λdt− [F (t, σ)− F (t, σ − ωdt)].



The preceding equation tells us that the number of peers with

content less than σ after a time dt is incremented by the new

arrivals λdt, and decremented by the number of peers that

advance beyond σ in their download stage. The latter is given

by those that at time t have content between σ−ωdt and σ,
which explains the last term in the above equation.

By reordering terms, dividing by dt and letting dt → 0
we have the following evolution equation for F , in the form

of a transport partial differential equation:

∂F

∂t
= λ− ω(F, y, σ)

∂F

∂σ
. (4)

As for the evolution of the seeders, the generalization of

(2b) is:

ẏ = ω(F, y, 1)
∂F

∂σ

∣

∣

∣

∣

σ=1

− γy, (5)

corresponding to the leechers finishing download minus the

seeder departures.

To completely specify the model, we have to choose a

particular ω(F, y, σ). This corresponds to choosing a way

to distribute the available system capacity between leechers

with different amounts of content. In particular, since the

bandwidth is provided by the peers present in the system, a

first constraint on ω is:

Ωdown(t) :=

∫ 1

0

ω(F, y, σ)
∂F

∂σ
dσ 6 Ω̄up(t), (6)

where Ω̄up(t) = µ(y(t) + F (t, 1)) as before.
Secondly, we impose downlink capacity constraint for

each user:

ω(F, y, σ) 6 c ∀σ. (7)

We now analyze the model of (4), (5) with the above

constraints (6), (7).

A. Evolution of the unfinished work

Let us define the following quantity, which represents the

amount of data that must be provided to the leechers present

for them to finish download.

Definition 1 (Unfinished work):

u(t) =

∫ 1

0

(1− σ)
∂F

∂σ
dσ. (8)

Integrating by parts in (8), we have an alternative way to

express the amount of unfinished work as:

u(t) =

∫ 1

0

F (t, σ)dσ. (9)

Assuming sufficient regularity in F and using (4) we can

calculate the following evolution equation for u:

u̇ =
∂

∂t

∫ 1

0

F (t, σ)dσ =

∫ 1

0

λ− ω(F, y, σ)
∂F

∂σ
dσ

= λ− Ωdown(t). (10)

The right hand side of (10) is similar to the one in equation

(2a). In fact, we can interpret (2a) as an extreme case of our

model where the torrent has only one chunk. In this case, the

number of leechers x(t) = F (t, 1) of (2a) coincides with u,
the amount of unfinished work. Similarly, (2b) can be seen

as a specialization of (5) to the case of one chunk.

When the distribution of content is considered, however,

the model becomes different; in particular, the seeder gener-

ation rate is determined only by the leechers who are about

to complete their download.

B. Equilibrium properties

We now turn our attention to the equilibrium properties

of our model. Let us denote by F ∗(σ) and y∗ the values of

the state at equilibrium. We have the following proposition,

whose proof is direct from the dynamics:

Proposition 1: The number of seeders in equilibrium is

y∗ =
λ

γ
.

The following result concerns the download time:

Proposition 2: Assume that in equilibrium each peer is

assured a minimal download rate, i.e. ω(F ∗, y∗, σ) > ε > 0
∀σ. Then the download time satisfies:

λT̄leecher = F ∗(1). (11)

Proof: Notice that in equilibrium a given leecher

downloads an amount of content dσ in a time 1/ω(F ∗, y∗, σ)
and therefore we can calculate the download time as:

T̄leecher =

∫ 1

0

1

ω(F ∗, y∗, σ)
dσ =

∫ 1

0

1

λ

∂F ∗

∂σ
dσ =

F ∗(1)

λ
.

Equation (11) is a fluid version of Little’s law of queueing

theory.

Let us now focus in the efficiency of the file sharing and

its consequences on the equilibrium. We have the following

definition:

Definition 2 (Efficient sharing): A bandwidth sharing

model ω(F, y, σ) is called efficient if Ωdown(t) satisfies:

Ωdown(t) = min{Ω̄up(t), cF (t, 1)}

at all times. If the above is satisfied in the equilibrium we

call the equilibrium efficient.

Note that the constraints (6), (7) in ω imply that Ωdown is

always less or equal that the right hand side. The rationale

behind Definition 2 is that if Ωdown is strictly less that both

Ω̄up and cF (t, 1), then the system has spare upload capacity,

and has some leechers below their download capacity, thus

a potential exchange opportunity is not being used.

We have the following bound for the number of leechers

in equilibrium:

Lemma 1: The number of leechers in equilibrium verifies:

F ∗(1) > max

{

λ

c
, λ

(

1

µ
−

1

γ

)}

(12)

independently of the shape of ω. The equality holds if and

only if the equilibrium is efficient.

Proof: By equation (10) in equilibrium we must have:

λ = Ω∗
down 6 min

{

Ω̄∗
up, cF

∗(1)
}

. (13)



In particular we have F ∗(1) > λ/c. Recalling the definition

of Ω̄up we have

λ 6 µ(y∗ + F ∗(1)).

Using that y∗ = λ/γ by Proposition 1 we get:

F ∗(1) > λ

(

1

µ
−

1

γ

)

.

Combining the above equations we have the desired inequal-

ity. Note that equality for F ∗(1) holds if and only if equality

holds in (13), which by definition is only achieved when the

equilibrium is efficient.

We now analyze efficient bandwidth sharing policies at

equilibrium. Recall that for the model (2) we defined γcr :=
µ c

c−µ . For our more general model we have the following

result, analogous to the case (i’) discussed earlier:

Proposition 3: If the bandwidth sharing is efficient and

γ < γcr, then in equilibrium ω(F ∗, y∗, σ) = c ∀σ.
Proof: Suppose that ω(F ∗, y∗, σ) < c for some value

of σ. Then, Ω∗
down < cF ∗(1). In equilibrium, equation (10)

guarantees also that Ω∗
down = λ, and we conclude that

F ∗(1) > λ
c . Since we assumed that the sharing is efficient,

and Ω∗
down < cF ∗(1) it must be by Definition 2:

λ = Ω∗
down = Ω̄∗

up = µ(y∗ + F ∗(1)) > λµ

(

1

γ
+

1

c

)

.

And thus we require:

µ

(

1

γ
+

1

c

)

< 1 ⇔
1

γ
<

1

µ
−

1

c
=

1

γcr

which contradicts our hypothesis γ < γcr.
For the case γ > γcr, a bandwidth sharing cannot operate

in equilibrium fully saturated by download, as the following

Proposition shows:

Proposition 4: If γ > γcr, then in equilibrium

ω(F ∗, y∗, σ) < c for some σ.
Proof: Recall that from Lemma 1:

F ∗(1) > λ

(

1

µ
−

1

γ

)

,

and from γ > γcr the right hand side is greater than λ/c.
We conclude that cF ∗(1) > λ and recalling that from (10)

λ = Ω∗
down we have:

cF ∗(1) > Ω∗
down =

∫ 1

0

ω(F ∗, y∗, σ)
∂F ∗

∂σ
dσ

We conclude that:
∫ 1

0

(c− ω(F ∗, y∗, σ))
∂F ∗

∂σ
dσ > 0

and thus ω(F ∗, y∗, σ) < c for some σ.
We end this Section with the following results on the

download time. If we combine Proposition 2 and Lemma

1 we arrive at the following result:

Proposition 5: The download time in equilibrium satisfies

the following inequality:

T̄leecher > max

{

1

c
,
1

µ
−

1

γ

}

,

with equality if and only if the equilibrium is efficient.

It is interesting to intepret the above proposition in the case

where c → ∞, i.e. when the downlink capacity is not the

bottleneck, and the torrent is globally sustained, i.e. µ < γ.
Recalling that 1/γ represents the time spent in the system

as a seeder, the bound of Proposition 5 becomes:

T̄ = T̄leecher + T̄seed >
1

µ
.

In this case, Proposition 5 tells us that the minimal time

spent in the system by a given peer is the time needed

to upload a full copy of the file, that is, to return to the

system the same amount of content it has downloaded. This

minimum is achieved if and only if the bandwidth sharing

is efficient.

IV. BANDWIDTH SHARING MODELS

We will now analyze some properties under specific

choices for ω(F, y, σ). From now on we will focus on the

case of globally sustained torrents, i.e. µ < γ and with no

downlink capacity limit (c → ∞). Note that in this case

γcr = µ.

A. Processor sharing discipline

The simplest model for bandwidth sharing is the processor

sharing model in which each leecher gets the same amount

of bandwidth, namely:

ω(F, y, σ) =
µ(y(t) + F (t, 1))

F (t, 1)
=

Ωup(t)

F (t, 1)

The processor sharing model is efficient and its equilib-

rium is obtained by noting that ω(F, y, σ) is independent of
σ and therefore:

∂F ∗

∂σ
=

λ

ω(F ∗, y∗, σ)
= K.

Thus using the result of Lemma 1:

F ∗(σ) = F ∗(1)σ = λ

(

1

µ
−

1

γ

)

σ, y∗ =
λ

γ
.

Note that in equilibrium the distribution of leechers is

uniform between different states of download. In [5] the

authors assume this as an hypothesis for the system, here it is

a consequence of the sharing mechanism chosen. In Section

V we will analyze the stability properties of this equilibrium.

B. A generalization of the processor sharing discipline

We can generalize the processor sharing discipline by

introducing a weight function g(σ) > 0 that determines the

profile of bandwidth distribution among leechers. By anal-

ogy with queueing systems, we call this the discriminatory

processor sharing model, and in this case:

ω(F, y, σ) =
µ(y(t) + F (t, 1))g(σ)

∫ 1

0 g(σ)∂F∂σ dσ

Note that this sharing discipline is also efficient. In equilib-

rium we have:

∂F ∗

∂σ
=

λ

ω∗
=

λ
∫ 1

0
g(σ)∂F

∗

∂σ dσ

µ(y∗ + F ∗(1))g(σ)
=

K

g(σ)
, (14)



where K must verify
∫ 1

0
K

g(σ)dσ = F ∗(1) = λ
(

1
µ − 1

γ

)

.

The introduction of g(σ) allows us to model different

sharing regimes, where download rates are dependent on

the degree of advance. Note that due to efficiency, the total

download time is not altered by this choice; what changes is

the equilibrium distribution of leechers in different download

stages.

C. Random selection model

We now turn our attention to a different sharing regime

which takes into account a different aspect of the BitTorrent

protocol, the tit-for-tat incentive mechanism. Under this

exchange mechanism, a leecher exchanges data with another

provided that each has something that the other one needs. To

model this consider two leechers with content σ1 and σ2. An

approximation of the probability that two leechers at random

can exchange data is p(σ1, σ2) = σ1(1 − σ2)σ2(1 − σ1).
Assume now that a leecher with content σ chooses another

leecher at random. By appropriately modelling the matching

probability, and assuming the uplink bandwidth of seeders

is equally shared, the following model can be derived for

ω(F, y, σ):

ω(F, y, σ) =
µ

F (t, 1)

(

y(t) + σ(1− σ)

∫

1

0

s(1− s)
∂F

∂σ
ds

)

.

(15)

Equation (15) can be interpreted as a fluid version of the

model proposed in [6]. We note now that this bandwidth

sharing is not efficient in the sense of Definition 2. We can

bound Ωdown for the ω given in (15) by:

Ωdown 6 µ

(

y(t) +
1

16
F (t, 1)

)

< Ωup.

The above model predicts that the system significantly

under-utilizes the upload capacity of leechers, a fact not

supported by real life and simulation evidence (see e.g. [5]):

thus the model proposed in (15) is pessimistic. The main

reason is that in real BitTorrent, peer exchange opportunities

are not the result of random encounters: in contrast, each

peer knows exactly the chunks available at other peers, and

therefore tries to exchange data in a more directed fashion.

There is a high chance that exchange opportunities will be

found to exploit the available upload capacity.

V. STABILITY ANALYSIS

A. Stability of the processor sharing model

In this Section we will analyze the stability of the pro-

cessor sharing model of Section IV-A. As in Section IV we

assume that the torrent is globally sustained, i.e. µ < γ and

for simplicity we assume c → ∞, although the results remain

valid for finite c whenever γ > γcr.
The model is given by equations (4) and (5) with:

ω(F, y, σ) =
µ(y + F (t, 1))

F (t, 1)
.

For tractability reasons, we will deal with a discretized

version of the PDE (4). Let us define ni(t) = F (t, i/M)−
F (t, (i−1)/M) for i = 1, . . . ,M , i.e. the number of leechers

with content σ ∈ [ i−1
M , i

M ]. M is the number of intermediate

states of download, and can be thought as the number of file

chunks of the torrent.

Note that ∂F
∂σ

∣

∣

σ=i/M
≈ Mni and that:

ω(F, y, i/M) =
µ(y(t) +

∑M
i=1 ni)

∑M
i=1 ni

.

Defining x =
∑M

i=1 ni, we arrive at the following discretized

dynamics for the PDE:

ṅ1 = λ−
Mµ(y + x)

x
n1, (16a)

ṅi =
Mµ(y + x)

x
(ni−1 − ni), i = 2, . . . ,M, (16b)

ẏ =
Mµ(y + x)

x
nM − γy. (16c)

Note that the case M = 1 corresponds to the model

described in (2). We have the following proposition, which

is verified directly:

Proposition 6: The equilibrium of this system is:

n∗
i =

λ

M

(

1

µ
−

1

γ

)

, y∗ =
λ

γ
.

We will analyze the local behavior of the dynamics around

the equilibrium. In order to do so it is convenient to choose

all units relative to µ, taking µ = 1 and replacing λ, γ by

λ/µ, γ/µ. With this choice, we are interested in the case

γ > 1 = µ and we define α = γ − 1 > 0. We need the

following lemmas, whose proof is ommitted for brevity:

Lemma 2: The Jacobian of the dynamics (16) around the

equilibrium is the following (M + 1)× (M + 1) matrix:

J =
1

α









1 − M(1 + α) 1 . . . 1 −α
M(1 + α) −M(1 + α) 0 . . . 0

.

.

.
. . .

. . .
.
.
.

.

.

.

0 . . . M(1 + α) −M(1 + α) 0
−1 . . . −1 (M(1 + α) − 1) −α2









Lemma 3: The determinant of J is:

det(J) = (−α)1−M (M(1 + α))M ,

and in particular det(J) 6= 0 for any α > 0 and M > 1,
thus J does not have 0 as eigenvalue.

We are now ready to state the main result of this Section:

Theorem 1: The dynamics (16) are locally asymptotically

stable for any M > 1 whenever α > 2 (i.e. γ > 3µ).
Proof: The proof relies on the Gerschgorin Circle The-

orem [7] applied to the matrix J . Recall that the eigenvalues
of a matrix A = (aij) are contained in the set:

G =
⋃

i

D(aii, Ri),

where D(aii, Ri) is the disk in the complex plane centered

in aii with radius Ri =
∑

j 6=i |aij |.
Direct application of the Gerschgorin Theorem to the

matrix J does not give stability unless α grows linearly inM .

To refine this result, consider the following transformation:

A = T−1(αJ)T with T = diag(1, . . . , 1, β), (17)



where β > 0 is a free parameter that we will choose later.

Note that the eigenvalues of A are the same as those of J
scaled by α > 0, so if the eigenvalues of A lie in the region

{Re(z) < 0}, the matrix J will be stable.

Applying the transformation of (17) only affects the first

and last rows of αJ . We now apply the Gerschgorin result

to the matrix A. The circles for i = 2, . . . ,M are given by:

aii = −M(1 + α) < 0, Ri = M(1 + α),

and thus D(aii, Ri) is entirely contained in the region

{Re(z) < 0} ∪ {0} for any i = 2, . . . ,M .

For the first row we have:

a11 = 1−M(1 + α) < 0, R1 = M − 1 + αβ,

and thus imposing a11+R1 < 0 we have that the circle lies

in the region {Re(z) < 0} whenever β < M . The last row

gives:

aM+1,M+1 = −α2 < 0, RM+1 =
M − 1

β
+
M(1 + α)− 1

β
,

and again imposing aM+1,M+1 + RM+1 < 0 we have that

the circle lies in the region {Re(z) < 0} whenever

β >
2(M − 1)

α2
+

M

α
.

Note that in order to find a value of β that satisfies both

conditions we need:

α2 − α−
2(M − 1)

M
> 0.

In particular, for any α > 2 this is valid for any M .

Combining the above with Lemma 3, we conclude that

the matrix J is Hurwitz and therefore the system is locally

asymptotically stable.

Numerical analysis shows that the system is indeed stable

if α < 2, and even when α → 0 (γ ↓ µ). In particular, for

M = 2 this can be verified via the Routh-Hurwitz criterium.

The case M > 2 is open for future work. In Figure 1 we plot

the evolution of the eigenvalues of J with α > 0 for M = 4,
which captures the general behavior of the dominant poles.

B. Local stability for γ < γcr

In Section III-B we showed that an efficient torrent, with

for γ < γcr, must satisfy ω(F ∗, y∗, σ) = c, ∀σ. The

equilibrium of (4), (5) is therefore:

F ∗(σ) =
λ

c
σ, y∗ =

λ

γ
,

and using the same approach that in V-A, the discretized dy-

namics have the following Jacobian around the equilibrium:

J =









−Mc 0 0 . . . 0
Mc −Mc 0 . . . 0
0 Mc −Mc . . . 0

.

.

.

.

.

.
. . .

. . .
.
.
.

0 . . . 0 Mc −γ









,

which is clearly a Hurwitz matrix. Therefore, in the case

where γ < γcr and the torrent is efficient, the system is

locally asymptotically stable.
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Fig. 1. Complex plane plot of the eigenvalues of J with varying α for
M = 4.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed the dynamics of a P2P file

sharing protocol like BitTorrent. We derived a PDE that de-

scribes the evolution of the content distribution in the system.

We described the general properties of the equilibrium of the

model. In particular, we showed that the download time in

equilibrium of a given torrent is independent of the sharing

mechanism, provided it is efficient. We also analyzed how

the model is suitable to describe different sharing situations,

generalizing previous works on the subject. We also derived

local stability results for the processor sharing discipline

under very general conditions, generalizing the results of [5].

In future work, we plan to address the local stability of

the processor sharing discipline in the case where γ ↓ µ, as
well as the generalized sharing discipline proposed. Another

interesting line of work is the fairness between users. As

we mentioned, the download time in our fluid model is

determined by external parameters, but we can expect the

real system to operate randomly around this equilibrium.

Determining the impact of these fluctuations in the fairness

of the system will be analyzed in future work.
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