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Abstract— Power grid operators require fast balancing ac-
tions to regulate grid frequency; in a Smart Grid scenario this
service may be provided by flexible loads. We consider a load
aggregator that manages a large quantity of loads, and must
align their overall consumption with an operator reference.
Starting from a stochastic queueing model for the set of loads,
we derive a macroscopic differential equation model, excited
by noise, that represents the aggregate, and includes a scalar
deferral action variable. An H2-optimal control method is then
used to optimize the tracking error in power consumption
while keeping the control variable within its hard limits. The
controller is tested with real-world frequency regulation signals,
and achieves high performance using the relevant industry
performance metric. An implementation is given which achieves
these benefits with mild communication requirements.

I. INTRODUCTION

The development of the Smart Grid [10], [18] is opening

new possibilities for Demand Response [11], in which con-

sumer loads may provide services to the grid, with the aid

of information and communication technologies.

We focus here on the frequency regulation service, which

involves power balancing actions at a fast time-scale. The

terminology stems from the fact that imbalance leads to

deviations from nominal frequency of the grid. The system

operator (SO), measuring these deviations, generates a power

reference signal to be tracked by regulation providers. From

the perspective of these providers, the problem becomes one

of tracking such power directives; grid frequency itself will

thus not explicitly appear in what follows.

Traditionally, regulation is provided by fast-responding

generators; here we are interested in the possibility that a

load aggregator entity (e.g. [5], [8]) may track the power

reference by controlling consumption of a set of loads under

its authority. Candidate loads for such task are those whose

service can be partially deferred.

We briefly survey some recent research in this area. A

possible class of loads for this task are electric vehicles [10],

[21]. In particular [21] estimates the frequency regulation

capacity of a fleet of EVs while being charged. Another suit-

able category are thermostatically controlled loads (TCLs)

[9], [12], [13], [20], which exploit thermal inertia to modify

instantaneous power without affecting user comfort. [9]

characterizes a collection of TCLs as an equivalent battery,

showing how this approach can provide frequency regulation

in a real scenario. A recent reference on decentralized control
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of generic TCLs is [20], while [13] focuses on commercial

building HVAC systems to provide frequency regulation.

References which consider load deferability in general are

[7], [14], [19]. In [14] the aim is to characterize the aggregate

flexibility of a cluster of loads in terms of electricity storage.

[19] compares classical scheduling algorithms with a model

predictive control proposal. [7] uses decentralized control of

generic deferrable loads to make the aggregate total power

consumption on the grid as smooth as possible.

In our previous work [1] we proposed the use of a scalar

control signal (fraction of service power) to manage an ag-

gregate of loads in a decentralized way, which we deem more

practical than individual load scheduling by the aggregator.

We obtained excellent regulation tracking with a simple

control based on a first order differential equation model;

its main limitation is that, without load micro-management,

deadlines are only met in a mean sense. By incorporating

a separate state for loads which can no longer be deferred,

in [2] we explored the performance of a classical controller

that tracks the reference while strictly enforcing deadlines.

In this paper we begin in Section II by providing more sub-

stantiation for the two-state model in [2], as a macroscopic

approximation of a natural stochastic queueing model. Then

we move to a systematic control design with tools of H2-

optimal control. First in Section III we design a regulator to

reduce power variance, and in Section IV we tackle the main

problem of tracking an exogenous power signal. In Section

V we discuss how such controller can be implemented in a

decentralized way. Conclusions are given in Section VI.

II. MACROSCOPIC DYNAMIC MODEL

The object of study is an aggregator entity that manages

a set of customer loads; it has procured in advance a mean

consumption power, assumed known. The effective load is,

however, uncertain in advance: it materializes as a sequence

of requests characterized by an arrival time, a service time,

a deadline before which each must be served, and a nominal

power. The purpose of the controlled service deferral is to

align the consumption of the aggregate to a desired trajectory.

In this section we develop a macroscopic dynamic model

of the loads under control, in the sense that it only attempts

to track aggregate quantities; this will make it suitable for

control purposes. To develop it we begin with a microscopic,

discrete counterpart, and then indicate how to approximate

this behavior with a differential equation model.



A. Markov chain model

Consider first the following stochastic queueing model

from [6]. Load requests arrive as a Poisson process of rate λ;

for simplicity assume they all have the same nominal power

p0, but may differ in the required energy. Let τk denote the

nominal service time of load k, i.e. the time (energy/p0) it

would take to serve it at full nominal power. The possibility

of deferring a certain load is specified through its spare time

or laxity Lk; in other words, the load’s hard deadline for

completing service is τk + Lk. We assume here that τk, Lk

are independent, exponential random variables of respective

means τ , L, also independent of the arrival process.

The deferral action is defined by the service level, a scalar

variable u ∈ (0, 1] specifying the fraction of nominal power

at which loads are served. 1 After an interval of time dt,
a load served at power up0 will have reduced its required

service time by udt, but also will have consumed dt−udt =
(1− u)dt of its spare time. Figure 1 shows the trajectory in

(service-time/laxity) space when u is constant.
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Fig. 1. Service-laxity trajectory under service level u

A trajectory reaching the vertical axis completes service

and leaves the system. If, instead, the horizontal axis is

reached first, laxity expires and to keep its deadline the

load can no longer be deferred. We will denote by n(t) the

population of loads that at time t still have remaining laxity,

and thus are served at level u; the remainder of loads m(t)
with expired laxity will be served at full power.

With these notations, under the independence and expo-

nential distribution assumptions the behavior of the popu-

lation variables over time is described by the continuous-

time Markov chain with transition rates depicted in Figure

2. This represents basically two M/M/∞ queues with a

partial transition between the two, as is now explained.

• (n,m) 7→ (n+ 1,m) is a new Poisson(λ) arrival.

• (n,m) 7→ (n,m − 1) represents a departure from the

m queue. Service here is at full power, so service

times are exp( 1
τ
), invoking the memoryless property of

exponentials. The minimum of m such exponentials is

exp(m
τ
), justifying the transition rate m

τ
.

• (n,m) 7→ (n−1,m) represents a load from the n queue

completing service. Since these are served at fractional

power u, their individual service time is exp(u
τ
), which

yields the transition rate nu
τ

.

1Alternatively, one could serve a fraction of loads at nominal power.
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Fig. 2. Markov state diagram with transition rates

• (n,m) 7→ (n − 1,m + 1) represents the transition

between the n and m queues due to expiration of laxity.

Since laxity is consumed at rate (1 − u), the time for

this occurrence in one load is distributed as exp(1−u
L

),

which yields the transition rate
n(1−u)

L
.

In [6] some analysis was provided for the above Markov

chain in the case of a fixed u; in particular it admits a station-

ary distribution of product form. However in this paper we

are interested in controlling u to achieve a desired regulation

objective; for this purpose a more tractable model involves

replacing the Markov chain by a differential equation.

B. Fluid flow model

The fluid-flow counterpart to the Markov chain in Figure 2

is obtained by interpreting n and m as continuous variables,

and replacing the transition rates with different contributions

to their drift, as follows:

ṅ = λ− nu

τ
− n(1− u)

L
, (1a)

ṁ =
n(1 − u)

L
− m

τ
. (1b)

The formal relationship between the two models is beyond

the scope of this paper. We state briefly that the solution to

the differential equation can be seen as the limit of the scaled

stochastic processes ( 1
k
nk(t), 1

k
mk(t)) as k → ∞, where

the (nk,mk) correspond to the Markov chain under scaled

arrival parameter kλ, and suitably scaled initial condition.

For details on such procedure we refer to [17].

In the above system the deferral action u can be seen

as a control input; varying this quantity (at a slower time-

scale than the microscopic load dynamics) influences the

macroscopic population states, and through them the main

output of interest: the aggregate power consumed:

p = p0(nu+m). (2)

A first step in the analysis is to find the equilibrium of this

model for the case of a fixed control u(t) ≡ u∗. Introducing

ν :=
u∗

τ
+

(1 − u∗)

L
, (3)

we have the equilibrium point

n∗ =
λ

ν
, m∗ =

λτ(1 − u∗)

νL
. (4)



The equilibrium power of the cluster is then found to be

p∗ = p0(n
∗u∗ +m∗) = λp0τ. (5)

Note that the latter expression does not depend on u∗, and

matches the mean exogenous demand for power (load arrival

rate times mean energy). All arriving loads must be served

sooner or later, the only influence our control can have is

over the variations around such equilibrium power.

In what follows we will analyze the system locally around

this equilibrium, through the corresponding linearization

around the operating point (n∗,m∗). Writing δ(nu) ≈
u∗δn+ n∗δu, and δ(n(1− u)) ≈ (1− u∗)δn− n∗δu in the

incremental quantities, we obtain the linearized dynamics:

˙δn = −
[
u∗

τ
+

1− u∗

L

]

︸ ︷︷ ︸

ν

δn+

[
n∗

L
− n∗

τ

]

δu; (6a)

˙δm =
1− u∗

L
δn− 1

τ
δm− n∗

L
δu; (6b)

δp = p0(u
∗δn+ δm) + p0n

∗δu. (6c)

C. Introducing noise

The preceding models are purely deterministic, having

removed all randomness from the original Markov chain.

For a more accurate description around the operating point

we will introduce random noise, that results from a diffusion

approximation of the Markov chain dynamics. Formally, (see

[17]) this noise process is the limit in distribution of

√
k

(
nk(t)

k
− n(t),

mk(t)

k
−m(t)

)

where (nk,mk) is the scaled process mentioned before, and

(n,m) the fluid limit. Again this is outside our scope, but

we can motivate our noise model by reviewing the case of a

Poisson process a(t), such as the arrivals to our system. Its

diffusion approximation satisfies the stochastic differential

equation da = λdt +
√
λdW , where W (t) is Brownian

motion. More informally we can write equation

ȧ = λ+
√
λ w(t),

where w(t) is unit white noise. In classical terms, the fluid

model ȧ = λ for Poisson arrivals is modified by additive

white noise of power spectral density equal to the arrival rate

itself. What we are looking for is the analogous modification

to the model (6) to track the fluctuations of the process

(n,m), locally around its equilibrium (n∗,m∗).
First, the Poisson arrivals will introduce a noise term

v1(t) =
√
λ w1(t) in (6a). The two departure terms in (1a)

will also introduce noise terms, with power spectral density

equal to the transition rate, evaluated at equilibrium:

v2 =

√

n∗u∗

τ
w2, v3 =

√

n∗(1− u∗)

L
w3;

here w2, w3 are independent unit white noises. With some

algebra we can also rewrite the above as

v2 =
√
αλ w2, v3 =

√

(1− α)λ w3, (7)

where α :=
u∗

τν
= P

[
τk
u∗

≤ Lk

1− u∗

]

is the probability that a load finishes service before expiring

its laxity. The interpretation of (7) is that departures of the

n queue are equivalent to two Poisson processes, where the

rate is “thinned” by the probability of, respectively, leaving

the system and joining the m queue. The term v3 will also

appear as noise in arrivals to the dynamics (6b) for m(t),
and

v4 =

√

m∗

τ
w4 =

√

(1− α)λ w4

will represent noise in departures from this second queue.

The resulting dynamics with noise is thus

˙δn = −νδn+

[
n∗

L
− n∗

τ

]

δu+ v1 − v2 − v3, (8a)

˙δm =
1− u∗

L
δn− 1

τ
δm− n∗

L
δu+ v3 − v4, (8b)

δp = p0(u
∗δn+ δm) + p0n

∗δu. (8c)

D. State space model and variance calculation

The standard state-space form of the above model is:

ẋ
︷ ︸︸ ︷
[

˙δn
˙δm

]

=

A
︷ ︸︸ ︷
[
−ν 0
1−u∗

L
− 1

τ

]

x
︷ ︸︸ ︷
[
δn
δm

]

+B1

w
︷ ︸︸ ︷






w1

w2

w3

w4






+

B2

︷ ︸︸ ︷
[
−n∗

τ
+ n∗

L

−n∗

L

]

δu;

(9a)

δp =

C
︷ ︸︸ ︷
[
p0u∗ p0

]
[
δn
δm

]

+

D
︷︸︸︷

p0n
∗ δu, (9b)

where

B1 =

[√
λ −

√
αλ −

√

(1− α)λ 0

0 0
√

(1 − α)λ −
√

(1− α)λ

]

.

A first analysis question is to quantify the natural fluctua-

tions of consumed power when there is no active control δu
(i.e. we take a constant deferral action u∗). To compute this

we find the steady-state covariance matrix of the state, given

(see e.g. [4]) by the solution Q to the Lyapunov equation

AQ+QAT +B1B
T
1 = 0;

the resulting variance of the output p is E
[
(δp)2

]
= CQCT .

Carrying out the calculations for the given matrices gives the

following result:

E
[
(δp)2

]
= p∗p0

[

1− 1
1

1−u∗
+ τ

Lu∗

]

. (10)

Note that the choice of u∗ affects the variance. So even with

no real-time control, there is a variance reduction obtained

through fixed deferral, its optimum occurring at

u∗

opt =

√
τ√

L+
√
τ
. (11)

In the remainder of the paper we will add active control of

the signal δu(t) to reduce the variance even further, or more

importantly for tracking an exogenous reference.



III. H2 CONTROL FOR REDUCING POWER VARIANCE

In the present section we assume that the regulation

objective is to stay as close as possible to a constant power

consumption, i.e. to reduce the variability caused by the

randomness in loads. Later on we will extend the solution

to tracking variable external references.

In particular, we design here a state-feedback controller

that minimizes a compromise between output variance and

control effort, expressed by the weighted objective

J := E[(k1δp)
2 + (δu)2]. (12)

Setting up the problem in the standard form for H2-control

(see e.g. [22]), we have a generalized plant

G(s) =





A B1 B2

C1 0 D12

I 0 0



 , (13)

where A,B1, B2 are the same as in (9a), and we introduce

C1 =
1

k2

[
k1C
0

]

=
1

k2

[
k1p0u

∗ k1p0
0 0

]

,

D12 =
1

k2

[
k1D
1

]

=
1

k2

[
k1p0n

∗

1

]

.

The penalized output corresponds to the cost in (12), except

for the constant k2 = (1 + (k1p0n
∗)2)

1

2 which provides the

simplifying normalization D∗

12D12 = 1.

We assumed that the state (n,m) is available for feedback,

later on we discuss the implementation requirements. Under

these conditions the H2-optimal control is (see [22]) the

static state feedback

δu = −Fx = −(B∗

2X +D∗

12C1)

[
δn
δm

]

(14)

where X is the stabilizing solution to the Algebraic Riccati

Equation

(A∗ − C∗

1D12B
∗

2 )X +X(A∗ −B2D
∗

12C1)

−XB2B
∗

2X + C∗

1 (I −D12D
∗

12)C1 = 0. (15)

Obtaining a parametric solution of this equation would be

cumbersome so we analyze it numerically. The parameters

we will use are λ = 0.2 loads/s, τ = 1800s, L = 3600s,

p0 = 2kW . For u∗ we choose the optimal value from (11)

in the uncontrolled case, which yields u∗ = 0.41. It follows

that n∗ = 511, m∗ = 151 and p∗ = 720kW .

Since our main objective is reducing variance, k1 should

be increased as much as possible in relation to the unit

penalty on control effort. The main limitation is that δu(t)
becomes too large nonlinear effects come into play, in

particular saturation of u(t) ∈ (0, 1].

We carried out a linear search for k1 over multiples of
1

p0n∗
(this choice keeps units normalized), simulating the

nonlinear dynamics. We found that when k1 reaches 10
p0n∗

,

the controller exhibits “actuator windup” with u remaining

at zero and consequently deterioration of performance.
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Fig. 3. One day simulation for the system with k1 =
5

u
∗
n
∗

.

From this evaluation, we settled on the value k1 = 5
p0n∗

,

which gives the optimal feedback

F =

[
0.735u∗

n∗
,
0.838

n∗

]

.

In Fig. 3 we see the simulated trajectory of p(t) under this

feedback control, in comparison with the one obtained with

the static deferral action u = u∗ from (11). We observe that

the variance of the output power is significantly reduced.

Also the trajectory for u(t) (not shown here) operates in

the interval [0.33, 0.5], thus varying moderately around its

nominal value u∗ ≈ 0.41.

IV. H2 CONTROL FOR REFERENCE TRACKING

We present now the central part of this work, where we

replace the objective of keeping a constant power with a

more ambitious one: offering a frequency regulation service

by having the aggregate of deferrable loads follow a power

reference signal provided by the system operator (SO).

Specifically, a provider of this ancillary service must

commit to varying its power consumption up to a fraction

θ of its nominal power p∗, in response to a real-time signal

ρ(t) ∈ [−1, 1] that it receives every few seconds from the SO.

Upon receiving this signal the load should ideally become

p(t) = p∗(1 + θρ(t)) = p∗ + θp∗ρ(t)
︸ ︷︷ ︸

r(t)

. (16)

A. Maximum offered regulation

A frequency regulator provider is rewarded by the max-

imum deviation θp∗ it is able to offer, thus it is to our

convenience to make θ as large as possible. The maximum

theoretical value is θ = 1, which would imply varying the

power in the range [0, 2p∗].
In our system of deferrable loads this value is not achiev-

able, because consumed power must lie within the bounds

p0m(t) ≤ p(t) ≤ p0[n(t) +m(t)];

In particular the lower bound is always positive since we have

chosen not to defer the loads m(t) with expired laxity, and

the upper bound is constrained by loads currently present.

Both bounds are time-varying, but we can get an estimate of

the achievable margin by applying the equilibrium values.
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Fig. 4. Artificial regulation signal from filtered white noise, in comparison
with a real regulation signal from PJM.

In particular, imposing that the committed minimal power

p∗(1− θ) is above p0m
∗ and recalling p∗ = p0(n

∗u∗+m∗)
leads to the bound

θ ≤ n∗u∗

n∗u∗ +m∗
=

Lu∗

Lu∗ + τ(1 − u∗)
.

Similarly, the upper bound p∗(1 + θ) ≤ p0[n
∗ +m∗] gives

θ ≤ n∗(1− u∗)

n∗u∗ +m∗
=

L(1− u∗)

Lu∗ + τ(1 − u∗)
.

The above upper bounds on θ are, respectively, increasing

and decreasing in u∗, and they become equal in u∗ = 1
2 ;

therefore this choice is the value that provides the maximum

(symmetric) regulation capability, namely θmax = L
L+τ

. We

will use this choice of u∗ in what follows; note that it need

not coincide with the value from (11) providing minimal

open-loop power variability.

B. Regulation signal characterization

Having decided on the amplitude of reference signals we

are offering to track, the next key requirement for a good

tracking controller is to characterize their spectral content.

For this purpose we turn to a particular family of real-

life regulation signals ρ(t) taken from PJM [15], a regional

transmission operator in the US. We performed a spectral

density estimation based on these PJM signals using MAT-

LAB’s signal identification toolbox. A first observation is

that they have band limited energy, with cutoff frequency

ωr ≈ 1.65× 10−2 rad/s, after which they present a roll-off

of 40 db/dec, indicating a second-order filtering. A closer

inspection shows a resonance in the cutoff frequency with

a damping factor of ζ ≈ 0.4. We therefore approximated

the practical signals as generated by white noise through the

frequency weighting filter

Wρ(s) =
κrω

2
r

s2 + s2ζωr + ω2
r

, (17)

where κr ≈ 3 was chosen to match the mean signal power.

In Fig. 4 we can see a 1- hour simulation of filtered white

noise along with a real regulation signal, with a qualitatively

similar behavior.

G(s)
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Fig. 5. Controller design for tracking the regulation signal

C. H2-optimal control

We now set-up our H2-optimal control problem through

the generalized plant model in Fig. 5. Here, the input weight

is Wr := θp∗Wρ with Wρ in (17), consistent with r(t) in

(16), and is driven by a white noise signal wr(t), independent

of the previously considered noise signals for the loads.

The tracking error signal is

e(t) = r(t) − δp(t) = p∗(1 + θρ(t))− p(t); (18)

the penalized variables for H2 control correspond to the cost

function J2 := E[(k1e)
2 + (δu)2].

We now augment our state-space realization (13) to :

Gr(s) =





Ar Br
1 Br

2

Cr
1 0 Dr

12

I 0 0



 . (19)

The state vector x = [δn, δm, r, ṙ]T now incorporates the

frequency weight, and is assumed available, see below for

implementation details. The augmented matrices are:

Ar =

[
A 0
0 Ar

22

]

, Br
1 =

[
B1 0
0 Br

12

]

, Br
2 =

[
B2

0

]

,

with Ar
22 =

[
0 1

−ω2
r −2ζωr

]

, Br
12 =

[
0

3ω2
r

]

;

Cr
1 =

k1
k2

[
−p0u

∗ −p0 θp∗ 0
0 0 0 0

]

, Dr
12 =

1

k2

[
−k1p0n

∗

1

]

.

The resulting H2-optimal control law is

δu = −F rx = −(Br
2
∗Xr +Dr

12
∗Cr

1 )x (20)

where Xr is the solution to the corresponding Algebraic

Riccati Equation.

As before, the tradeoff parameter k1 is set with the aid of

simulations, seeking the least possible tracking error variance

that keeps u(t) from saturating. For the load parameters

of the previous section, and an offered regulation of θ =
θmax = 0.66, k1 = 6

n∗u∗
provides an adequate tradeoff.

V. DISTRIBUTED IMPLEMENTATION AND PERFORMANCE

A first implementation question is how does the aggregator

obtain the state vector information required for this feedback

law. In regard to the states n and m, they are relatively

easy to track: the aggregator only needs to be notified when

each load arrives, runs out of laxity or leaves the system, a

minimal communication requirement.
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Fig. 6. Tracking a regulation signal with deferrable, interruptible loads.

The regulation signal r(t) = θp∗ρ(t) is obtained directly

from the SO. While ṙ(t) is not directly available, we note that

in practice, ρ(t) is communicated very frequently, e.g. every

Ts = 4 seconds, a sampling rate of 0.25Hz. On the other

hand the bandwidth of r is much lower, in the previously fit

model we have fr ≈ 2.6.10−3Hz. This implies that a simple

estimate ṙ(t) ≈ r(t)−r(t−Ts)
Ts

has high accuracy for control

purposes, so it is not justified to employ a more complex

dynamic control (including the corresponding Kalman filter)

solely for tracking this state variable.

The remaining issue is implementing the actuation part,

i.e. how to impose the deferral action u on the loads.

The most faithful implementation is to have the aggregator

broadcast the signal u(t) every Ts when the value of r
changes. Upon receiving it, loads with adjustable power can

set their consumption to up0; loads of the ON/OFF type can

make such decision randomly with probability u. For a large

enough number of loads, the aggregate service corresponds

to nu active loads. In addition, any load with expired laxity

turns itself on, and thus is guaranteed to meet its deadline.

In Fig. 6 we show one hour of a day-long simulation using

this technique and our H2 controller. All parameters are as

before except λ = 2 loads/s. The RMS error was found to

be 113kW , a 2.4% of the total regulation offered.

For additional validation we computed for our controller

a performance score used by PJM [16] to rank regulation

resources. This score is calculated comparing the reference

signal with the actual response form the system and is

the average of three components: correlation, delay and

precision; all of them measured in a scale from 0 to 1.

A score of 0.75 is required for participation in the market,

and values above 0.9 are considered excellent. The score

corresponding to our control system was found to be 0.97,

indicating a highly satisfactory performance.

One limitation of the preceding solution in regard to

ON/OFF loads, is that they may be interrupted multiple

times during their service. A different approach is required

to handle non-interruptible loads, or those with a limit on the

number of interruptions. Space limitations preclude us from

addressing this here, we refer to [3] for more details.

VI. CONCLUSIONS

We have shown a methodology for an aggregator of de-

ferrable loads to provide frequency regulation to the electric

grid. Its main feature is the simplicity of the macroscopic

model, in terms of an ODE with a scalar control signal. This

enables the use of H2-optimal control to design a controller

to track power directives from the SO, which achieves an

excellent performance using the industry standard. It also

allows for a streamlined interface between aggregator and

loads for a decentralized implementation.

The main implementation challenge which remains is to

handle constraints on service interruptions. Partial results in

this direction are given in [3]; improving them is a topic of

future research.
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