On the optimality of timer based caching policies

The role of hazard rates

Andres Ferragut

joint work with Matias Carrasco and Fernando Paganini

Universidad ORT Uruguay

SINE Seminar – University of Illinois at Urbana-Champaign – November 2023

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

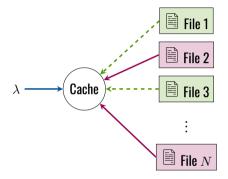
Asymptotic equivalence and optimality

Conclusions

Consider a cache system with a catalog of N objects.

- **Requests for objects arrive at random at rate** λ .
- **The cache can locally store** C < N of them.
- If item is in cache, we have a hit.

Objective: for a given arrival process, maximize the steady-state hit probability.



Eviction-based policies:

- Upon request arrival, check for presence, if new decide whether to store.
- If cache is full, evict a content based on some historical rule.

Example: Least-Recently-Used

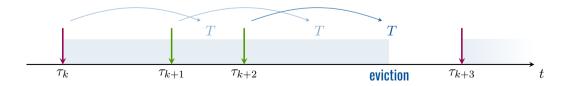
- Store the most recent *C* requests.
- \blacksquare If new request is present \rightarrow serve and move to the front of the queue.
- \blacksquare If not present \rightarrow retrieve, store at the front and drop the oldest one.

Populating a cache

Two main approaches

Timer based (TTL) policies:

- Upon request arrival for item *i*, check for presence.
- If new, store item and start a timer T_i to evict.
- If present, reset timer to T_i .
- Keep timers T_i such that average cache occupation is C.



Eviction based policies work with a fixed cache size.

- Difficult to analyze: dynamics are coupled over requests.
- TTL policies have a soft cache constraint.
- But analysis decouple over requests, thus simpler to get results.

Eviction based policies work with a fixed cache size.

- Difficult to analyze: dynamics are coupled over requests.
- TTL policies have a soft cache constraint.
- But analysis decouple over requests, thus simpler to get results.

What are the optimal policies in both families? Are they related?

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

The classical arrival model is the independent reference model:

Requests arrive as a Poisson process of intensity λ .

- **Request is for item** i with probability p_i (popularity).
- **Poisson thinning: each request process is Poisson** λp_i .

Succesive requests are independent with distribution $(p_i : i = 1, ..., N)$.

Problem: caches work best when requests are bursty, i.e. successive requests are correlated.

However, under the IRM we have purely random requests.

Point process approach [Fofack et al. 2014]:

Assume requests for item *i* come from a point process of intensity $\lambda_i := \lambda p_i$.

■ If inter-request times are heavy tailed, this can model burstiness.

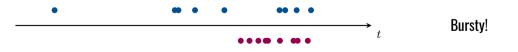
Example: Pareto arrivals

Consider two items, with equal popularity...

Poisson arrivals:

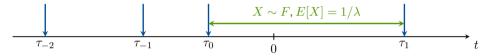
Homogeneous

• Heavy tailed arrivals (Pareto $\alpha = 2$):



A bit of point process theory...

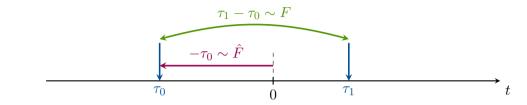
Let $N = \{\tau_k : k \in \mathbb{Z}\}$ be a stationary point process representing requests from an item:



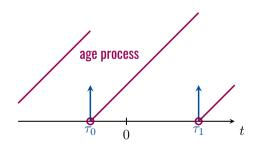
Two main probability measures:

- P: the steady-state probability, seen from an arbitrary point in time.
- \blacksquare P_N^0 : the Palm probability, measures things from the perspective of the points.

Age distribution at a random point in time



Age process:



Inter-arrival distribution:

$$F(t) := P_N^0(\tau_1 - \tau_0 \leqslant t), \quad E_N^0[\tau_1] = 1/\lambda.$$

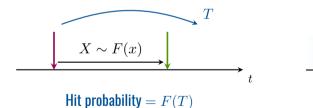
Age distribution:

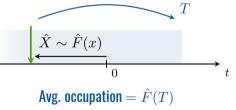
$$\hat{F}(t) := P(-\tau_0 \leqslant t) = \lambda \int_0^t (1 - F(s)) ds,$$

Consider a single item with a timer T and its request process:

Hit probability: next arrival occurs before timer expires.

Occupation probability: probability that timer hasn't expired by 0 since last arrival.





Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

Choosing the optimal timers

Requests come from independent sources with intensities λ_i and inter-arrival distribution F_i :

Problem (Optimal TTL policy)

Choose timers $T_i \ge 0$ such that:

$$\max_{T_i \ge 0} \sum_i \lambda_i F_i(T_i)$$

subject to:

$$\sum_{i} \hat{F}_i(T_i) \leqslant C$$

Remark: non-convex non-linear program.

Choosing the optimal timers

Idea: Change of variables $u_i = \hat{F}_i(T_i)$ (occupation).

Problem (Optimal TTL policy)

Choose timers $T_i = \hat{F}_i^{-1}(u_i)$ such that:

$$\max_{u_i \in [0,1]} \sum_i \lambda_i F_i(\hat{F}_i^{-1}(u_i))$$

subject to:

$$\sum_{i} u_i \leqslant C$$

The hazard rate function

Define $G_i(u) := \lambda_i F_i(\hat{F}_i^{-1}(u))$, then:

$$\frac{\partial G_i}{\partial u} = \lambda_i f_i(\hat{F}_i^{-1}(u)) \frac{\partial}{\partial u} \hat{F}_i^{-1}(u) = \frac{\lambda_i f_i(\hat{F}_i^{-1}(u))}{\lambda_i (1 - F_i(\hat{F}_i^{-1}(u)))} = \eta_i(T_i)$$

where $\eta_i(t)$ is the hazard rate function of the inter-arrival distribution:

$$\eta_i(t) := \frac{f_i(t)}{1 - F_i(t)}$$

Idea: the hazard rate measures the probability that we have a request at time t, given that the current interval is larger than t.

Poisson arrivals: constant hazard rate (memoryless property), $\eta_i(t) \equiv \lambda_i \rightarrow \text{objective is linear}$.

Increasing hazard rates: $\eta_i(t)$ increasing (more regular traffic) \rightarrow objective is **convex**!

Optimal TTL policy, constant or IHR, [F',Rodriguez, Paganini 18].

In both cases, the optimal TTL policy is static:

 $T_i^* = \infty, \quad (u_i^* = 1) \quad \text{for the } C \text{ contents with higher } \lambda_i$

Decreasing hazard rates

 \blacksquare The decreasing hazard rate case corresponds to heavy tails and thus more bursty traffic \rightarrow where caching is more useful!

If $\eta_i(t)$ is decreasing, objective is concave, we have a non-trivial optimum:

$$\mathcal{L}(u,\mu) = \sum_{i} \lambda_i F_i(\hat{F}^{-1}(u_i)) - \mu\left(\sum_{i} u_i - C\right)$$

$$\eta_i(\hat{F}^{-1}(u_i^*)) = \eta_i(T_i^*) \ge \mu \quad \forall i, \quad \mu\left(\sum_i u_i^* - C\right) = 0$$

Optimal TTL policy, DHR, [F',Rodriguez, Paganini 18].

The optimal TTL caching policy for DHR is such that:

 $\eta_i(T_i^*) \geqslant \mu^*$

for every stored content.

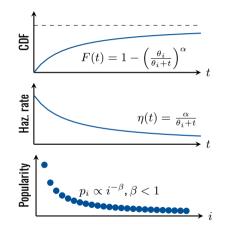
Idea: we have a fixed memory budget to allocate. $\eta_i(T_i)$ is the marginal increase in hit rate (utility) for enlarging the timer T_i .

Optimal allocation: equalize marginal utilities.

Parametric heavy tailed case

- For Pareto arrivals and Zipf popularities you can obtain a nice fluid limit.
- Let N go to ∞ and C = cN, then u_i^* has a functional limit.
- The hit probability is given by [FRP '18]:

$$H^* = (1 - \beta) \int_0^1 x^{-\beta} \left[1 - (1 - u^*(x))^{\frac{\alpha}{\alpha - 1}} \right] dx,$$



■ The hazard rate function of *F* plays a crucial role in determining the optimal TTL policy!

For IHR: just store the most popular content.

For DHR: proper optimization problem, equalize hazard rates.

Asymptotic analysis has explicit expressions.

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

Back to replacement policies

Assume now that you have a fixed capacity C. We have to decide which contents to store.

Naïve idea: just keep the C most popular ones (higher λ_i). ¿Can we do better?

Problem

Given some independent stationary request processes with intensities λ_i , what is the optimal non-anticipative policy?

Idea: we should keep track of some local notion of intensity!

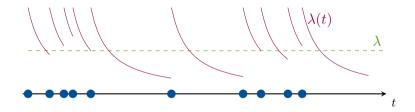
Consider a simple stationary point process N with intensity λ , defined in some probability space (Ω, \mathcal{F}, P) . Let some filtration $\{\mathcal{F}_t\}_{t\in\mathbb{R}}$ be a history of the process.

Define the stochastic intensity $\lambda(t)$ of N as:

$$\lim_{h \to 0} \frac{1}{h} E[N((t, t+h]) \mid \mathcal{F}_t] = \lambda(t) \quad P-a.s.,$$

Idea: If the process is simple (isolated points), $E[N((t, t + h]) = \lambda h + o(h)$, so the average stochastic intensity is λ . But given the history, the value of $\lambda(t)$ may change.

If traffic is bursty, the stochastic intensity rises near arrivals:



Stochastic intensity of a renewal process

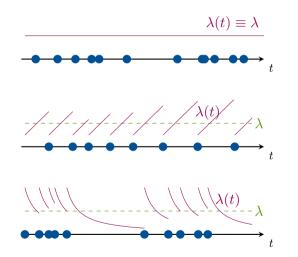
Let now N be a renewal process \rightarrow inter-request times are $iid \sim F$.

• Let \mathcal{F}_t be the natural history of the process (i.e. the information of points up to t).

Theorem (cf. Brémaud 21) Let $\eta(t) := f(t)/(1 - F(t))$ be the hazard rate function of F. Define: $\lambda(t) = \eta(t - \tau_t^*),$

where τ_t^* is the last point before t. Then $\lambda(t)$ is a stochastic intensity for (N, \mathcal{F}_t) .

Some examples...



Constant hazard rate \rightarrow Poisson process.

Increasing hazard rate \rightarrow more periodic!

Decreasing hazard rate \rightarrow more bursty!

Non anticipative caching policies

Consider a cache system fed by N independent renewal processes.

Let $\mathcal{F}_T = \sigma(\{\mathcal{F}_t^i : i = 1, \dots, N\})$ their aggregate history.

Definition

A non anticipative caching policy is a \mathcal{F}_t predictable stochastic process

 $\mathcal{C}: \Omega \times \mathbb{R} \to 2^{\{1, \dots, N\}}$

i.e. $C(t) = \{i_1, \ldots, i_C\}$ is the subset cached at time t, and only depends on the past history of item requests.

Focus now on a particular content *i*, its hit process is the point process given by:

$$H_i(B) = \sum_{n \in \mathbb{Z}} \mathbf{1}_{\{\tau_n^i \in B\}} \mathbf{1}_{\{i \in \mathcal{C}(\tau_n^i)\}} \xrightarrow{\times \bullet \bullet \bullet \bullet} t$$

Since $\mathbf{1}_{\{i \in \mathcal{C}(\tau_{\alpha}^{i})\}}$ is \mathcal{F}_{t} predictable, its stochastic intensity is:

$$h_i(t) = \lambda_i(t) \mathbf{1}_{\{i \in \mathcal{C}(t)\}}$$

i.e., $h_i = \lambda_i$ while $i \in C$ and otherwise 0.

The hit process The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

$$H = \sum_{i=1}^{N} H_i$$

And its stochastic intensity is just:

$$h(t) = \sum_{i=1}^{N} h_i(t) = \sum_{i=1}^{N} \lambda_i(t) \mathbf{1}_{\{i \in \mathcal{C}(t)\}}$$

The hit rate and hit probabilities of the policies are given by:

hit rate
$$= \lambda_H := E[h(t)],$$
 hit probability $:= \frac{\lambda_H}{\lambda}.$

In order to maximize λ_H , consider the policy:

$$\mathcal{C}^*(t) = \{i_1, \dots, i_C\}$$
 such that $\sum_{i \in \{i_1, \dots, i_C\}} \lambda_i(t)$ is maximized.

Then, for any non-anticipative policy and for each realization:

$$h(t) = \sum_{i \in \mathcal{C}(t)} \lambda_i(t) \leqslant \sum_{i \in \mathcal{C}^*(t)} \lambda_i(t) = h^*(t).$$

Theorem (Towsley et al 22)

The optimal non-anticipative policy is to keep in the cache the C objects with the highest stochastic intensity at any time.

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

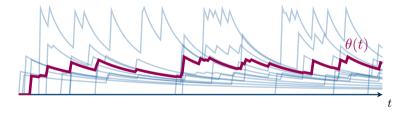
Asymptotic equivalence and optimality

Conclusions

We can rewrite this optimal policy as a threshold policy:

 $i \in \mathcal{C}^*(t) \Leftrightarrow \lambda_i(t) \ge \theta(t) :=$ the *C* largest stochastic intensity

Example: Pareto requests, Zipf popularities, N = 20, C = 4.



We want to understand $\theta(t)$.

The threshold value in steady state

Now we have N independent renewal processes with $\lambda_i(t)$.

At time 0, we have a sample:

 $\{\lambda_1(0),\lambda_2(0),\ldots,\lambda_N(0)\}$

of independent, but not identically distributed random variables, with known distribution.

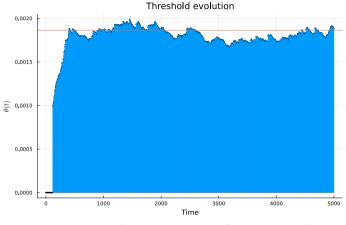
The threshold $\theta(0)$ is the *C*-th order statistic (in decreasing order) of the sample.

Problem: for non iid random variables, no closed form \rightarrow Can we say something about the large scale limit?

Theorem [F', Carrasco, Paganini, last week...]

Consider a cache system fed by N independent renewal processes with DHR inter-arrival times, and the optimal non-anticipative policy. Let $N \to \infty$ with C = cN. Then, in steady state:

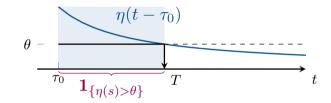
- **The (appropriately scaled) threshold** $\theta_N(t)$ converges almost surely to a constant θ^* .
- \bullet θ^* is the dual value of the optimal TTL policy, i.e. the value that equalizes hazard rates.
- If popularities are slowly decaying (i.e. $\beta < 1$) then the hit probability of the optimal policy converges to H^* , the hit probability of the optimal TTL policy.



N = 1000, C = 100. Pareto $\alpha = 2$ requests, Zipf $\beta = 0.5$ popularities.

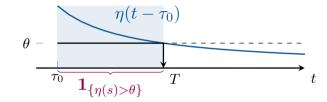
Why this happens?

Because, for decreasing hazard rates, the TTL policy is also a threshold policy!



Why this happens?

Because, for decreasing hazard rates, the TTL policy is also a threshold policy!



Key idea: replace the timer T_i by $\theta_i = \eta_i^{-1}(T_i)$, the corresponding hazard rate at the timer.

Identify the distribution of $\lambda_i(t)$, the *i*-th stochastic intensity, with $\hat{F}_i(\eta_i^{-1}(\theta_i))$.

Rewrite the optimal timer policy problem using the variables $\theta_i = \eta_i^{-1}(T_i)$.

- Use a statistics functional law of large numbers to prove that the sample empirical distribution of the sample $(\lambda_1(0), \ldots, \lambda_N(0))$ converges to the average of the $\hat{F}_i \circ \eta_i^{-1}$.
- Identify the threshold in the average as the solution of the TTL optimization problem.

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

• We analyzed two types of caching policies: replacement and TTL.

• We identified the hazard rate function as a crucial component of optimal policies.

 Using the point process framework, we can model burstiness and exactly compute asymptotics for TTL policies.

We provide a large scale equivalence result for the optimal non-anticipative policy and the optimal TTL policy, enabling us to compute universal bounds on asymptotic performance!

Future work

Analyze other distributions (not just Pareto), using the framework.

- Discuss the increasing hazard rate case:
 - Caching is a bad idea! If you receive a request, it's less likely to see it again!
 - The TTL policy is suboptimal
 - Key idea to explore: pre-fetching!

Apply some learning techniques to estimate the hazard rates and the threshold in an online fashion.

Thank you!

Andres Ferragut ferragut@ort.edu.uy http://aferragu.github.io