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The caching problem

Consider a cache system with a catalog of N objects.

Requests for objects arrive at random at rate λ.

The cache can locally store C < N of them.

If item is in cache, we have a hit.

λ Cache

File 1

File 2

File 3
...

File N

Objective: for a given arrival process, maximize the steady-state hit probability.
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Populating a cache
Two main approaches

Eviction-based policies:

Upon request arrival, check for presence, if new decide whether to store.

If cache is full, evict a content based on some historical rule.

Example: Least-Recently-Used

Store the most recent C requests.

If new request is present → serve and move to the front of the queue.

If not present → retrieve, store at the front and drop the oldest one.
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Populating a cache
Two main approaches

Timer based (TTL) policies:
Upon request arrival for item i, check for presence.

If new, store item and start a timer Ti to evict.

If present, reset timer to Ti.

Keep timers Ti such that average cache occupation is C .

t

T T T

τk τk+1 τk+2 τk+3eviction
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Eviction vs TTL

Eviction based policies work with a fixed cache size.

Difficult to analyze: dynamics are coupled over requests.

TTL policies have a soft cache constraint.

But analysis decouple over requests, thus simpler to get results.

What are the optimal policies in both families? Are they related?
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Request arrival model

The classical arrival model is the independent reference model:

Requests arrive as a Poisson process of intensity λ.

Request is for item i with probability pi (popularity).

Poisson thinning: each request process is Poisson λpi.

Succesive requests are independent with distribution (pi : i = 1, . . . , N).
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Request arrival model
Beyond the IRM...

Problem: caches work best when requests are bursty, i.e. successive requests are correlated.

However, under the IRM we have purely random requests.

Point process approach [Fofack et al. 2014]:

Assume requests for item i come from a point process of intensity λi := λpi.

If inter-request times are heavy tailed, this can model burstiness.
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Example: Pareto arrivals
Consider two items, with equal popularity...

Poisson arrivals:

t
Homogeneous

Heavy tailed arrivals (Pareto α = 2):

t
Bursty!
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A bit of point process theory...

Let N = {τk : k ∈ Z} be a stationary point process representing requests from an item:

t0τ−2 τ−1 τ0 τ1

X ∼ F , E[X] = 1/λ

Two main probability measures:

P : the steady-state probability, seen from an arbitrary point in time.

P 0
N : the Palm probability, measures things from the perspective of the points.
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Age distribution at a random point in time

tτ0 τ10

τ1 − τ0 ∼ F

−τ0 ∼ F̂

Age process:

tτ0 τ10

age process

Inter-arrival distribution:

F (t) := P 0
N (τ1 − τ0 ⩽ t), E0

N [τ1] = 1/λ.

Age distribution:

F̂ (t) := P (−τ0 ⩽ t) = λ

∫ t

0
(1− F (s))ds,
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Application: TTL policies

Consider a single item with a timer T and its request process:

Hit probability: next arrival occurs before timer
expires.

t

T

X ∼ F (x)

Hit probability = F (T )

Occupation probability: probability that timer
hasn’t expired by 0 since last arrival.

t0

T

X̂ ∼ F̂ (x)

Avg. occupation = F̂ (T )
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Choosing the optimal timers

Requests come from independent sources with intensities λi and inter-arrival distribution Fi:

Problem (Optimal TTL policy)
Choose timers Ti ⩾ 0 such that:

max
Ti⩾0

∑
i

λiFi(Ti)

subject to: ∑
i

F̂i(Ti) ⩽ C

Remark: non-convex non-linear program.
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Choosing the optimal timers

Idea: Change of variables ui = F̂i(Ti) (occupation).

Problem (Optimal TTL policy)
Choose timers Ti = F̂−1

i (ui) such that:

max
ui∈[0,1]

∑
i

λiFi(F̂
−1
i (ui))

subject to: ∑
i

ui ⩽ C
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The hazard rate function

Define Gi(u) := λiFi(F̂
−1
i (u)), then:

∂Gi

∂u
= λifi(F̂

−1
i (u))

∂

∂u
F̂−1
i (u) =

λifi(F̂
−1
i (u))

λi(1− Fi(F̂
−1
i (u)))

= ηi(Ti)

where ηi(t) is the hazard rate function of the inter-arrival distribution:

ηi(t) :=
fi(t)

1− Fi(t)

Idea: the hazard rate measures the probability that we have a request at time t, given that the
current interval is larger than t.
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Increasing hazard rates

Poisson arrivals: constant hazard rate (memoryless property), ηi(t) ≡ λi → objective is linear.

Increasing hazard rates: ηi(t) increasing (more regular traffic) → objective is convex!

Optimal TTL policy, constant or IHR, [F’,Rodriguez, Paganini 18].
In both cases, the optimal TTL policy is static:

T ∗
i = ∞, (u∗i = 1) for the C contents with higher λi
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Decreasing hazard rates

The decreasing hazard rate case corresponds to heavy tails and thus more bursty traffic →
where caching is more useful!

If ηi(t) is decreasing, objective is concave, we have a non-trivial optimum:

L(u, µ) =
∑
i

λiFi(F̂
−1(ui))− µ

(∑
i

ui − C

)

KKT conditions:

ηi(F̂
−1(u∗i )) = ηi(T

∗
i ) ⩾ µ ∀i, µ

(∑
i

u∗i − C

)
= 0
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Decreasing hazard rates

Optimal TTL policy, DHR, [F’,Rodriguez, Paganini 18].
The optimal TTL caching policy for DHR is such that:

ηi(T
∗
i ) ⩾ µ∗

for every stored content.

Idea: we have a fixed memory budget to allocate. ηi(Ti) is the marginal increase in hit rate (utility)
for enlarging the timer Ti.

Optimal allocation: equalize marginal utilities.
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Parametric heavy tailed case

For Pareto arrivals and Zipf popularities you can obtain
a nice fluid limit.

Let N go to ∞ and C = cN , then u∗i has a
functional limit.

The hit probability is given by [FRP ’18]:

H∗ = (1−β)

∫ 1

0
x−β

[
1− (1− u∗(x))

α
α−1

]
dx,

F (t) = 1−
(

θi
θi+t

)α

t

CD
F

η(t) = α
θi+t

t

Ha
z.

rat
e

pi ∝ i−β , β < 1

i

Po
pu

lar
ity

Andres Ferragut, Univ. ORT Uruguay SINE Seminar UIUC 2023 22/44



Conclusions so far...

The hazard rate function of F plays a crucial role in determining the optimal TTL policy!

For IHR: just store the most popular content.

For DHR: proper optimization problem, equalize hazard rates.

Asymptotic analysis has explicit expressions.
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Back to replacement policies

Assume now that you have a fixed capacity C . We have to decide which contents to store.

Naïve idea: just keep the C most popular ones (higher λi). ¿Can we do better?

Problem
Given some independent stationary request processes with intensities λi, what is the optimal
non-anticipative policy?

Idea: we should keep track of some local notion of intensity!
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Stochastic intensity

Consider a simple stationary point process N with intensity λ, defined in some probability space
(Ω,F , P ). Let some filtration {Ft}t∈R be a history of the process.

Define the stochastic intensity λ(t) of N as:

lim
h→0

1

h
E[N((t, t+ h]) | Ft] = λ(t) P − a.s.,

Idea: If the process is simple (isolated points), E[N((t, t+ h]) = λh+ o(h), so the average
stochastic intensity is λ. But given the history, the value of λ(t) may change.
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Stochastic intensity
A local notion of intensity...

If traffic is bursty, the stochastic intensity rises near arrivals:

λ(t)

λ

t
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Stochastic intensity of a renewal process

Let now N be a renewal process → inter-request times are iid ∼ F .

Let Ft be the natural history of the process (i.e. the information of points up to t).

Theorem (cf. Brémaud 21)
Let η(t) := f(t)/(1− F (t)) be the hazard rate function of F . Define:

λ(t) = η(t− τ∗t ),

where τ∗t is the last point before t. Then λ(t) is a stochastic intensity for (N,Ft).
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Some examples...

λ(t) ≡ λ

t

Constant hazard rate → Poisson process.

λ(t)
λ

t

Increasing hazard rate → more periodic!

λ(t)
λ

t

Decreasing hazard rate → more bursty!
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Non anticipative caching policies

Consider a cache system fed by N independent renewal processes.

Let FT = σ({F i
t : i = 1, . . . , N}) their aggregate history.

Definition
A non anticipative caching policy is a Ft predictable stochastic process

C : Ω× R → 2{1,...,N}

i.e. C(t) = {i1, . . . , iC} is the subset cached at time t, and only depends on the past history of
item requests.
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The hit process
Stochastic intensity

Focus now on a particular content i, its hit process is the point process given by:

Hi(B) =
∑
n∈Z

1{τ in∈B}1{i∈C(τ in)}
t

Since 1{i∈C(τ in)} is Ft predictable, its stochastic intensity is:

hi(t) = λi(t)1{i∈C(t)}

i.e., hi = λi while i ∈ C and otherwise 0.
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The hit process
The hit rate

If we now consider the aggregate of requests, the total hit process is given by:

H =

N∑
i=1

Hi

And its stochastic intensity is just:

h(t) =

N∑
i=1

hi(t) =
N∑
i=1

λi(t)1{i∈C(t)}

The hit rate and hit probabilities of the policies are given by:

hit rate = λH := E[h(t)], hit probability := λH

λ
.
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Maximizing the hit rate

In order to maximize λH , consider the policy:

C∗(t) = {i1, . . . , iC} such that
∑

i∈{i1,...,iC}

λi(t) is maximized.

Then, for any non-anticipative policy and for each realization:

h(t) =
∑
i∈C(t)

λi(t) ⩽
∑

i∈C∗(t)

λi(t) = h∗(t).

Theorem (Towsley et al 22)
The optimal non-anticipative policy is to keep in the cache the C objects with the highest stochastic
intensity at any time.

Andres Ferragut, Univ. ORT Uruguay SINE Seminar UIUC 2023 33/44



Outline

Problem formulation

System model

Optimal timer policy

Optimal non-anticipative policy

Asymptotic equivalence and optimality

Conclusions

Andres Ferragut, Univ. ORT Uruguay SINE Seminar UIUC 2023 34/44



The threshold process
We can rewrite this optimal policy as a threshold policy:

i ∈ C∗(t) ⇔ λi(t) ⩾ θ(t) := the C largest stochastic intensity

Example: Pareto requests, Zipf popularities, N = 20, C = 4.

θ(t)

t

We want to understand θ(t).
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The threshold value in steady state

Now we have N independent renewal processes with λi(t).

At time 0, we have a sample:

{λ1(0), λ2(0), . . . , λN (0)}

of independent, but not identically distributed random variables, with known distribution.

The threshold θ(0) is the C−th order statistic (in decreasing order) of the sample.

Problem: for non iid random variables, no closed form → Can we say something about the large
scale limit?
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Asymptotic equivalence result

Theorem [F’, Carrasco, Paganini, last week...]
Consider a cache system fed by N independent renewal processes with DHR inter-arrival times, and
the optimal non-anticipative policy. Let N → ∞ with C = cN . Then, in steady state:

The (appropriately scaled) threshold θN (t) converges almost surely to a constant θ∗.

θ∗ is the dual value of the optimal TTL policy, i.e. the value that equalizes hazard rates.

If popularities are slowly decaying (i.e. β < 1) then the hit probability of the optimal policy
converges to H∗, the hit probability of the optimal TTL policy.
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Simulation example

N = 1000, C = 100. Pareto α = 2 requests, Zipf β = 0.5 popularities.
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Why this happens?

Because, for decreasing hazard rates, the TTL policy is also a threshold policy!

τ0

θ

η(t− τ0)

1{η(s)>θ}
T t

Key idea: replace the timer Ti by θi = η−1
i (Ti), the corresponding hazard rate at the timer.
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Some key steps in the proof

Identify the distribution of λi(t), the i−th stochastic intensity, with F̂i(η
−1
i (θi)).

Rewrite the optimal timer policy problem using the variables θi = η−1
i (Ti).

Use a statistics functional law of large numbers to prove that the sample empirical distribution
of the sample (λ1(0), . . . , λN (0)) converges to the average of the F̂i ◦ η−1

i .

Identify the threshold in the average as the solution of the TTL optimization problem.
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Key takeaways...

We analyzed two types of caching policies: replacement and TTL.

We identified the hazard rate function as a crucial component of optimal policies.

Using the point process framework, we can model burstiness and exactly compute asymptotics
for TTL policies.

We provide a large scale equivalence result for the optimal non-anticipative policy and the
optimal TTL policy, enabling us to compute universal bounds on asymptotic performance!
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Future work

Analyze other distributions (not just Pareto), using the framework.

Discuss the increasing hazard rate case:
Caching is a bad idea! If you receive a request, it’s less likely to see it again!

The TTL policy is suboptimal

Key idea to explore: pre-fetching!

Apply some learning techniques to estimate the hazard rates and the threshold in an online
fashion.
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Thank you!

Andres Ferragut
ferragut@ort.edu.uy
http://aferragu.github.io
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