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Abstract— This paper considers an electrical vehicle recharg-
ing infrastructure made up of physically separate stations
serving spatially distributed requests for charge. Arriving EVs
receive feedback on transport times to each station, and waiting
times at congested stations, based on which they make a
selfish selection. We present a fluid model of the resulting
dynamics, in particular modeling queueing delays as a function
of fluid queues, and two different models of client departures:
given sojourn times, or given service times. In each case, the
joint load balancing dynamics is related to a convex program,
suitable variant of a centralized optimal transport problem. In
particular, we show the correspondence between equilibrium
points and the corresponding optima, and use Lagrange duality
to interpret the convergence properties of the dynamics. The
results have similarities and differences with classical work
on selfish routing for transportation networks. We present
illustrative simulations, which also explore the validity of the
model beyond the fluid assumption.

I. INTRODUCTION

In the roadmap towards the generalized use of Electrical
Vehicles (EVs) (see e.g., [17]), a key component is the
deployment of a suitable charging infrastructure. We are
interested in particular on a network of charging stations,
which may be distributed at parking lots over a certain
geographical area, e.g. a city center. The deployment and
operation of these facilities is a topic of active research [8]–
[10], [18].

The coverage of a fixed demand for charging from the
point of view of a central planner was analyzed in [11]
with optimization tools, considering the spatially distributed
nature of the problem. When station locations are part of
the design we are in the realm of facility location problems
(e.g., [3], [6]), which have also been applied to other forms of
energy refueling (e.g. [7]). Given the stations, the assignment
of a distributed demand yields versions of the optimal
transport problem (cf. [14]).

Charging demand does not, however, materialize in a
single batch; rather, we have a dynamic situation in which
requests for service arise asynchronously in time and in
different spatial locations. This traffic must be directed to
an adequate charging station. If these routing decisions were
in the hands of a central planner, we would have a load
balancing problem similar in nature to those considered in
computer networks (see e.g. [15] and references therein).
However, compulsory routing may not be assumed here;
rather, drivers will select a station consistent with their own
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incentives, typically to obtain the fastest possible service.
In this regard, the problem has common features with the
classical analysis of selfish routing in transportation networks
(see, e.g. [2], [13]).

This paper draws from the above extensive background,
but addresses some distinguishing features. In contrast with
the transportation literature where all traffic is subject to
selfish routing, and transport latency is modeled as a static
function of resulting road flows, here we will assume EVs
routing to charging stations to be a small portion of the
traffic. Hence, transport delays of EVs to each charging
station are given exogenously, but we must worry about
congestion delays at the stations themselves, as it is habit-
ual in networking. This mix of transport + queueing has
interesting new features from a mathematical perspective.
Furthermore, in contrast to other kinds of services, charging
could be partial, limited by customer time availability, and
still retain value; this aspect presents differences with respect
to mainstream queueing analysis of load balancing.

In order to capture the aforementioned features, we model
demand for EV charging service as arrival rates at different
points, distributed across a region. EVs route selfishly to
charging stations seeking the shortest time to service, using
information on the transport time to each station, as well as
congestion signals indicating queueing delay at the stations.
The queues resulting from these inflows are modeled as fluid
quantities; different departure models are considered: either a
sojourn time is specified for EVs, independent of the service
obtained, or a service time dictates departures. For each case,
we present a convex optimization problem that characterizes
the equilibrium allocation, a suitable variant of the centrally
planned optimal transport problem. Dynamic convergence to
equilibrium is established by analyzing the time evolution of
the respective Lagrangian dual function.

The rest of the paper is organized as follows. In Section
II we briefly review the relevant background, and present
our general model. In Section III we analyze the dynamics
for the sojourn time model of departures; we introduce an
appropriate optimization problem and establish its connec-
tion with the equilibrium, as well as results on convergence.
A similar analysis is carried out in Section IV for the
service time model of departures. Simulations that support
this theory are provided in Section V. In particular, we
explore experimentally the behavior of our control system
under discrete stochastic arrivals, showing good fit, and we
illustrate the equilibrium behavior. Conclusions are given in
Section VI.



II. BACKGROUND AND PROBLEM FORMULATION

We first define some notation. Let ej , j = 1, . . . , n be the
canonical vectors in Rn, and ∆n = co({ej}) be their convex
hull, i.e. the unit simplex. Define φ : Rn → R by

φ(x) = min
j

(xj) = min
z∈∆n

∑
j

xjzj . (1)

This is a concave function. Its superdifferential (set of
supergradient vectors) at a given point x is characterized by:

∂φ(x) = arg min
z∈∆n

∑
j

xjzj = co
(
{ek : k ∈ argmin(xj)}

)
;

these are vectors in the unit simplex, equal to zero in non-
minimizing coordinates. At points x where there is a single
minimizing index k, ∂φ(x) = {∇φ(x)} = {ek}.

Next, we will briefly review three independent areas of
research relevant to this paper, as mentioned in the introduc-
tion. At the end of the section we will formulate our model
for spatially distributed load balancing.

A. Optimal transport

The optimal transport problem has ancient roots in the
18th century work of Monge, and a fundamental relaxation
by Kantorovich in the 20th; [14] is a recent reference. It
concerns the mapping between two mass distributions, origin
and destination, in a way that minimizes total transport cost.
For our context, we will consider a discrete version:

• Demand originates at locations i = 1, . . .m, with
respective quantities q̄i. For our application, these are
discrete points in the plane (e.g. city corners) from
where EVs request charging service.

• Supply is situated at stations j = 1, . . . , n, each offering
s̄j units of service, e.g. EV charging spots.

• The matrix cij specifies the transport cost between i and
j; this often represents travel distance. In this paper we
will associate it with travel time.

With the above definitions, the Kantorovich version of the
optimal transport problem is to find the matrix Π of quantities
πij transported between location i and station j, solving:

min
∑
ij

cijπij , (2)

subject to:

πij ≥ 0 ∀i, j;
∑
j

πij = q̄i ∀i;
∑
i

πij = s̄j ∀j.

For feasibility, it is required that total supply matches total
demand, i.e.

∑
j s̄j =

∑
i q̄i. Less restrictive variants of this

optimization were discussed in [11], some of which will be
used later in the paper.

It can be shown that if s̄j , q̄i are integer, the above problem
admits an integer solution Π, compatible with routing indi-
vidual EVs to a single station (cf. [11]). We will not address
such issues in this paper, and rather treat EV quantities as
fluid (real valued); the effect of this approximation will be
validated in simulation.

B. Load balancing between fluid queues

In communication and computing networks, load balanc-
ing refers to active control carried out by a dispatcher that
distributes tasks between servers. The analysis is usually
framed in terms of stochastic queues (see e.g. [15]); here we
introduce a fluid model. Suppose a single dispatcher receives
jobs at a rate r jobs/sec, and assigns each to a server from
the set j = 1, . . . , n. If sj is the current queue at location
j, then a natural (and under some conditions, optimal [4])
strategy is to route to the shortest queue, with ties broken
arbitrarily. To capture this control in a fluid model, the vector
a = (aj)

n
j=1 ∈ Rn of arrival rates to each server must satisfy

a ∈ r∆n, with aj nonzero only at minimizing coordinates
of φ(s) = min(sj). Namely:

a(s) ∈ r arg min
z∈∆n

∑
j

sjzj = r∂φ(s). (3)

Assuming we have specified as well a vector field for
departure rates d(s) = (dj(s)), we can write the following
dynamics for the fluid queues:

ṡ = a(s)− d(s) ∈ r ∂φ(s)− d(s). (4)

Remark 1: Eq. (4) is a differential inclusion, with a
switching, discontinuous right-hand side. This complicates
the rigorous treatment of solutions, requiring e.g., the notion
of Filippov solutions (see e.g. [1]).

A natural workaround is to apply regularization techniques
to approximate the switching dynamics by a smooth gradient
flow (cf. [5], [12]). We briefly outline the idea here, let:

φϵ(s) := max
y

(
φ(y)− 1

2ϵ
∥s− y∥22

)
be the Moreau envelope of φ(s); this is a smooth, concave
function with an ordinary gradient ∇φϵ(s). It can be shown
that this gradient coincides with ∇φ(s) at points where the
minimizing coordinate sk is at least ϵ away from the rest;
in regions of approximate parity, ∇φϵ(s) gives a continuous
interpolation to avoid switching. Replacing ∂φ(s) by ∇φϵ(s)
in eq. (4) turns it into an ordinary differential equation, which
may be studied by simpler tools, and approximates the target
behavior to any desired accuracy.

C. Selfish routing

The above load balancing rule assumes a central dispatcher
with full routing authority. For our problem we are interested
in selfish decisions. In his classical paper on road traffic [16],
Wardrop studied the effect of these selfish driver choices
in the resulting equilibrium flow. We recall briefly this
approach, following the notation from [13].

In selfish routing models, each road is an edge e in a
graph, carrying a flow fe; the delay or latency associated
with traveling on this road is modeled by an increasing
function le(fe). A path P through the network has total
latency lP (f) =

∑
e∈P le(fe).

Each source-destination pair or commodity, indexed by i,
has an input traffic rate ri, which may be split among the
set of compatible paths Pi. Under these conditions:



• The (socially) optimal flow is the one that minimizes
the number of vehicles in travel C(f) =

∑
e fele(fe),

subject to supporting the input rates.
• The Nash-Wardrop equilibrium (WE) is a flow configu-

ration where each commodity uses only minimal latency
paths. The WE exists and is equivalent to minimizing
the integrated latency∑

e

∫ fe

0

le(σ)dσ. (5)

These two notions do not coincide and a price of anarchy
appears due to selfish decisions on the part of drivers.
[13] contains an extensive analysis on bounding this price
of anarchy. For dynamic studies of selfish routing beyond
equilibrium, we refer to [2] and references therein.

D. The spatially distributed EV charging problem

We are now ready to present our spatial EV load balancing
model, integrating all the different aspects considered above.

• Demand arises at locations i = 1, . . . ,m in the plane,
each of which receives a rate ri of charging requests.

• Charging stations are indexed by j = 1, . . . , n. The
transport delay cij to reach station j from location i
is considered exogenous, determined by distance and
traffic conditions; it is available to drivers. For our
analysis we will assume it is constant in time.

• Drivers are also informed of the current queueing delay
µj(t) at station j. They self-route selfishly to the station
j with minimum total time to service cij + µj . Mathe-
matically, if we denote by aij(t) the rate of requests sent
from location i to station j; the vector ai = (aij)

n
j=1

of rates originating from location i satisfies

ai ∈ ri∂φ
i(µ), (6)

which is analogous to (3), introducing the function

φi(µ) := min
j

(cij + µj). (7)

• The total flow rate arriving into station j is

aj :=
∑
i

aij . (8)

• The state variable sj(t) represents the current assign-
ment of station j; it evolves according to the fluid queue

ṡj = aj − dj , j = 1, . . . , n, (9)

where dj is the departure rate from station j. Two
specific departure functions dj(s) will be analyzed, both
with dj(0) = 0 so queues in (9) remain non-negative.

Remark 2: Eq. (8) does not distinguish between the time
a vehicle arrives into the system and selects a station,
and the time it effectively reaches it. Recalling that cij is
the transportation delay, one might write instead aj(t) =∑

i aij(t − cij), which would give us a delay-differential
equation, with heterogeneous delays and the consequent
increase in complexity. Our simpler model is applicable

provided transport delays are much smaller than EV service
times.

To close the loop, it remains to model the dependence of
queueing delay µj with station occupation sj . If sj ≤ s̄j ,
there is no queueing. Otherwise, excess EVs sj − s̄j will
wait for service slots to become available; since these are
liberated at the departure rate dj , a natural fluid model for
the waiting time is:

µj :=
[sj − s̄j ]

+

dj(sj)
. (10)

Our full model for the dynamics is thus given by (9), with
arrival rates specified by (6–8), µ(s) given in (10), and the
departure model dj(sj).

Regarding these departures, we note that there are two
possible reasons for leaving the system: completed service, or
the customer running out of available time. The former is the
usual assumption in queueing theory. Note, however, that for
EV charging there is value for partial service (e.g. a partial
recharge); it is thus arguable that in shared public facilities
the customer may leave the system earlier for independent
reasons. In the following sections both departure models will
be analyzed separately.

As in Remark 1, our dynamics involves switching and
a complete analysis would require either differential inclu-
sions, or a regularization to obtain a smooth approximation.
This paper does not address such issues: we will note below
where our analysis may be subject to this limitation.

III. SOJOURN TIME MODEL

Our first model assumes sojourn time is an independent
quantity, unrelated to received service. Customers have a
time budget that must be split between traveling to the
station, waiting for and receiving service. Travel and waiting
constitute the cost, so routing according to (6) will maximize
service time. These sojourn times may be random; in our
fluid framework we simply let T represent the average
sojourn time across customers.

Focusing on the population sj assigned to each station, if
there are no new arrivals, all the customers will leave after
T time units, hence the appropriate departure rate is

dj(sj) =
sj
T
. (11)

Substituting in (10), our congestion signal becomes:

µj(sj) =
[sj − s̄j ]

+

dj(sj)
= T

[
1− s̄j

sj

]+
. (12)

Note again that µj has units of time; it varies in the interval
[0, T ). It will be convenient to introduce as well the function

ϕj(sj) :=

∫ sj

0

µj(σ)dσ (13)

=

{
0 sj ≤ s̄j ,

T
(
sj − s̄j − s̄j log

(
sj
s̄j

))
sj > s̄j .

This is a convex, monotonically increasing function, whose
derivative ϕ′

j(sj) = µj(sj) in (12). We next introduce a
convex optimization problem involving this function.



A. Barrier optimization and its dual

In Section II-A we wrote the static transport optimization
problem (2) assuming perfect balance. Consider now the
following variation, in which the fixed supply constraint is
replaced with a barrier cost:

min
∑
ij

cijπij +
∑
j

ϕj(sj) (14a)

subject to: πij ≥ 0 ∀i, j;
∑
j

πij = q̄i ∀i; (14b)∑
i

πij = sj ∀j. (14c)

The optimization variables are Π = (πij) and s = (sj). The
barrier function ϕj(sj) from (13) does not operate when sj
is below capacity; above that, a penalty term is applied. The
problem is always feasible for q̄i ≥ 0.

Our analysis of the preceding optimization and its connec-
tion to the dynamics will be based on duality. We write the
Lagrangian with respect to the constraint (14c):

L(Π, s,µ) =
∑
i,j

cijπij +
∑
j

ϕj(sj) +
∑
j

µj

[∑
i

πij − sj

]
=

∑
i,j

(cij + µj)πij︸ ︷︷ ︸
L1(Π, µ)

+
∑
j

[ϕj(sj)− µjsj ]︸ ︷︷ ︸
L2(s, µ)

. (15)

Suggestively, we have denoted the multipliers by µj ; to
obtain the dual function we minimize the Lagrangian over
the primal variables Π and s, each of which appears in a
separate term, as indicated.

Note that constraints (14b) on Π are decoupled across
i: the vector πi := (πij)

n
j=1 varies over q̄i∆n, the unit

simplex scaled by a constant factor. Reasoning as in (1), the
corresponding minimum will be q̄i minj(cij+µj) = q̄iφ

i(µ),
using the notation in (7). Therefore:

D1(µ) = min
Π∈(14b)

L1(Π, µ) =
∑
i

q̄iφ
i(µ);

we further note that its superdifferential satisfies:

∂D1(µ) =

{∑
i

π̂i : Π̂ ∈ arg min
Π∈(14b)

L1(Π, µ)

}
. (16)

The second sum L2(s, µ) is unconstrained, and decoupled
over sj ; we minimize each term [ϕj(sj)− µjsj ] separately.
If µj ∈ (0, T ) (interior to the range of ϕ′

j(sj)), we impose

ϕ′
j(ŝj) = µj =⇒ ŝj = [ϕ′

j ]
−1(µj) =

T s̄j
T − µj

. (17)

Substitution of ŝj into ϕj(sj) − µjsj yields the minimum
T s̄j log

(
1− µj

T

)
, which is also valid for µj = 0; the

minimum is −∞ for µj ̸∈ [0, T ). We conclude that

D2(µ) = min
s

L2(s, µ) =
∑
j

T s̄j log
(
1− µj

T

)
,

for µ ∈ [0, T )n, and −∞ outside this set.

For coordinates where µj > 0, D2(µ) is differentiable:
in fact ∂D2

∂µj
= −ŝj , with ŝj in (17). At µj = 0, the right

partial derivative is −s̄j ; hence, any −ŝj ≥ −s̄j is a valid
supergradient. We thus have the superdifferential:

∂D2(µ) =
{
− ŝ ∈ Rn : ŝj =

T s̄j
T − µj

if µj > 0;

ŝj ≤ s̄j if µj = 0
}
. (18)

The overall dual function D(µ) = D1(µ)+D2(µ) is bounded
above (note D(µ) → −∞ as µj ↑ T ). A maximizing point
µ∗, together with the minimizing variables Π̂, ŝ described
above provide a saddle point of the Lagrangian in (15).

B. Equilibrium characterization

We proceed to relate the modified transport problem
(14) to our model of dynamic load balancing under selfish
routing and departures determined by sojourn times. For
convenience, it is summarized below:

ṡ = a− d =

m∑
i=1

ai − s

T
; (19a)

µj(sj) = ϕ′
j(sj) = T

[
1− s̄j

sj

]+
∀j. (19b)

ai ∈ ri∂φ
i(µ) ∀i. (19c)

We will denote by A = (aij) the matrix of route flows.
An equilibrium of the above dynamics requires a choice

of occupation states s∗j , congestion delays µ∗
j = ϕ′

j(s
∗
j ), and

route flows A∗ consistent with (19c) for µ = µ∗, such that
the right-hand side of (19a) is zero.

Theorem 1: The following are equivalent:
(i) (s∗, A∗, µ∗) is an equilibrium point of (19), under

constant ri.
(ii) (s∗,Π∗, µ∗) is a saddle point of the Lagrangian L in

(15), with Π∗ = A∗T , q̄i = riT .
In particular, an equilibrium of the dynamics always exists.

Proof: Starting from (i), conditions (19c) imply that A∗ min-
imizes

∑
ij(cij + µ∗

j )aij , subject to aij ≥ 0 and
∑

j aij =
ri for each i. Multiplication by T yields π∗

ij = Ta∗ij
that is a minimizer for L1(Π, µ

∗), under constraints (14b).
Also, (19b) implies that s∗ is a minimizer of L2(s, µ

∗), as
discussed around equations (17)-(18). So L(Π, s, µ∗) is at a
minimum, as required for a saddle point.

From the equilibrium in (19a) we have
∑

i a
∗
ij =

s∗j
T ;

multiplying by T we conclude that
∑

i π
∗
ij = s∗j for each j,

i.e. (π∗, s∗) is primal feasible for Problem (14). L(π∗, s∗, µ)
in (15) is independent of µ and therefore at a maximum in
this variable. The saddle condition is established.

The steps are reversible: starting with a saddle point
(Π∗, s∗, µ∗) of L, defining A∗ = 1

T Π
∗ we obtain a selection

of rates satisfying (19c) for multipliers µ∗; also, the saddle
condition on s∗ is consistent with (19b). Due to primal
feasibility we have a∗j = s∗j/T , as required for equilibrium.

For the final statement, we have already justified the
existence of a saddle point.



We have found that equilibrium flows for dynamic load
balancing map to solutions of an optimal transport problem.
Further interpretations of this relationship are as follows:

• The demand quantity q̄i = riT , product of arrival rate
and sojourn time, is the average number of customers
present in the system originating from location i.

• The transported quantities πij = Taij represent the
average number of customers from location i assigned
to station j.

• The total assignment sj to station j is associated with
the corresponding steady-state queue.

• The dual variable or shadow price µj of station j is
associated with the queueing delay at the station.

Remark 3: The preceding analysis has some similarity
with the results of selfish routing reviewed in Section II-C. In
both cases, the equilibrium resulting from selfish balancing
actions is characterized by an optimal cost, involving the
integral of a latency cost function (compare (13) with (5)).

The main difference is that latencies in Section II-C were
functions of network flows. For the transport latencies cij ,
the resulting cost term would be

∑
i,j cijaij ; this is equal to

our transport cost up to a constant factor. However, for the
waiting cost, our latency is a function of station queues, not
directly mapped to flows as in the other model.

Nevertheless, a price of anarchy arises here as well: the
total waiting cost experienced by consumers is

∑
j µjsj ,

different from
∑

j ϕj(sj); the equilibrium will not deliver
the social optimum (minimum overall time to service).

C. Convergence

Beyond the characterization of the equilibrium, we aim at
using optimization arguments to establish convergence of the
dynamics (19). The main observation is that when (A, s, µ)
follow these dynamics, we have

T ṡ = Ta− s ∈ ∂D(µ), (20)

subdifferential of the dual function of Problem 14, with
q̄i = riT . This follows from our characterization of superdif-
ferentials: for ai satisfying (19c), Ta =

∑
i Ta

i =
∑

i π
i ∈

∂D1(µ), as follows from (16); similarly, if s, µ are related
by (19b), −s is a supergradient of D2(µ), invoking (18).

Note also that from (19b) we have

µ̇ = diag
(
ϕ′′
j (sj)

)
ṡ.

If the dual function D(µ) were differentiable, we could apply
the chain rule and write:

d

dt
D(µ(s(t))) = (∇D)T µ̇ = (∇D)Tdiag

(
ϕ′′
j (sj)

)
ṡ. (21)

However, we only have piecewise differentiability of D(µ);
we will proceed under the simplification that ∇D can be
replaced by the supergradient in (20).1

1It would suffice to guarantee that differentiability holds for almost all t
along trajectories; however this is still potentially restrictive.

Also note that2 ϕ′′
j (sj) =

s̄j
s2j

> 0 for sj > s̄j , and
ϕ′′
J(sj) = 0 for sj < s̄j . We arrive at:

d

dt
D(µ(t)) =

∑
j:sj>s̄j

T s̄j

[
ṡj
sj

]2
≥ 0. (22)

We state the following conclusion:
Proposition 2: The dual function D(µ) for Problem 14

(with q̄i = riT ) is non-decreasing along trajectories µ(t)
arising from (19).
The preceding derivation does not qualify as a full proof of
Proposition 2, given the simplification performed. Accepting
the validity of (22), we have the following consequence:

Proposition 3: Consider a trajectory of the dynamics (19),
such that d

dtD(µ(t)) ≡ 0 for all time. Then µ(t) ≡ µ∗. Also:
• for any j : µ∗

j > 0, sj(t) ≡ s∗j ;
• for any j : µ∗

j = 0, sj(t) → s∗j ;
the resulting s∗ is an equilibrium of the dynamics.
Proof: The equality condition in (22) implies that ṡj ≡ 0 and
so sj ≡ s∗j , constant in time for all j : sj > s̄j ; therefore
µj = ϕ′

j(sj) ≡ µ∗
j > 0 for such stations. Non-saturated

stations will have µj = 0, and cannot exit from this condition
without violating (22). Therefore, µ(t) ≡ µ∗.

As a consequence, the prices cij + µ∗
j seen by arriving

customers remain constant, which implies3 constant assigned
rates a∗ij and station arrival rates: aj(t) ≡ a∗j for all j.

Stations with µj(t) ≡ 0 (sj(t) ≤ s̄j) need not be in
equilibrium; however they receive a constant rate a∗j and
thus evolve according to the first-order linear dynamics

ṡj = a∗j − sj/T,

converging exponentially to s∗j = Ta∗j ∈ [0, s̄j ]. Combined
with sj ≡ s∗j whenever µ∗

j > 0, the limiting behavior is thus
an equilibrium point of the dynamics.

With the stated limitations in the analysis of switching,
we see that D(µ(t)) is increasing and bounded above, so
it must approach a finite limit as t → ∞. Furthermore,
Proposition 3 is suggestive of a LaSalle invariance argument
to establish global convergence to the equilibrium set. This
method is, however, also difficult to formalize in the presence
of a discontinuous field. Hence, convergence is at this point
a (plausible) conjecture. Below, we observe it in simulations.

A variant of the dynamics, more amenable to standard
Lyapunov analysis, could be to replace switching by a
regularization, as outlined in Remark 1.

IV. SERVICE TIME MODEL

In this section we turn to a more traditional departure
model in queueing systems: tasks depart when completing
a service requirement, specified by T0 in units of service
time. Here again, in a fluid model we apply this quantity to
all participants. The number of tasks in service at station j
is min(sj , s̄j); hence the departure rate is

dj(sj) =
min(sj , s̄j)

T0
. (23)

2We ignore the isolated point of non-differentiability of ϕ′
j(sj).

3Assuming the tie-breaking rule is time-invariant.



With this choice, our queueing delay from (10) becomes

µj(sj) =
[sj − s̄j ]

+

dj(sj)
= T0

[
sj
s̄j

− 1

]+
. (24)

A. Constrained optimization and its dual

We now formulate an alternate transport optimization
problem, also a variant of (2) in Section II-A:

min
∑
ij

cijπij (25a)

subject to: πij ≥ 0 ∀i, j;
∑
j

πij = q̄i ∀i; (25b)∑
i

πij ≤ s̄j ∀j. (25c)

Instead of a barrier penalty for exceeding capacity as in (14),
here we impose hard constraints; for feasibility, our problem
will require the condition

∑
i q̄i ≤

∑
j s̄j .

The Lagrangian with respect to the supply constraints
(25c), with multipliers µj ≥ 0 takes the form

L̃(Π, µ) =
∑
i,j

cijπij +
∑
j

µj

[∑
i

πij − s̄j

]
=

∑
i,j

(cij + µj)πij −
∑
j

µj s̄j . (26)

The minimum over Π (the only primal variables in this
problem) under constraints (25b) can be solved analogously
to the previous section, giving the dual function

D̃(µ) =
∑
i

q̄i min
j

(cij + µj)−
∑
j

µj s̄j . (27)

The corresponding subdifferential can be expressed in terms
of any Π̂ ∈ argmin L̃(Π, µ):

∂D̃ =
∑
i

q̄i∂φ
i − s̄ =

∑
i

π̂i − s̄. (28)

Under the feasibility condition for the primal problem, D̃(µ)
is bounded in µ ≥ 0, and has a global maximum a certain
µ∗. Together with any

Π∗ ∈ argmin L̃(Π, µ∗), subject to (25b), (29)

it defines a saddle point of the Lagrangian. A saddle point
(Π∗, µ∗) is characterized by the following requirements: Π∗

must be primal feasible for (25) and satisfy (29); µ∗ ≥ 0,
and complementary slackness must hold:

µ∗
j

(∑
i

π∗
ij − s̄j

)
= 0 ∀j. (30)

B. Equilibrium characterization

We now relate Problem (25) to the load-balancing dy-
namics under the service time departure model, summarized

below:

ṡ = a− d =

m∑
i=1

ai − min(sj , s̄j)

T0
; (31a)

µj(sj) = T0

[
sj
s̄j

− 1

]+
. ∀j. (31b)

(aij)
n
j=1 =: ai ∈ ri∂φ

i(µ) ∀i. (31c)

Theorem 4: The following are equivalent:
(i) (s∗, A∗, µ∗) is an equilibrium point of (31), under

constant ri.
(ii) (Π∗, µ∗) is a saddle point of the Lagrangian L̃ in (26),

with Π∗ = A∗T0, q̄i = riT0, and s∗ is given by:

s∗j =

{
s̄j

(
1 +

µ∗
j

T0

)
if µ∗

j > 0;∑
i π

∗
ij if µ∗

j = 0.
(32)

An equilibrium exists provided that
∑

i ri ≤
∑

j s̄j/T0.

Proof: Starting with (i), note that (31c) implies that A∗ mini-
mizes

∑
ij(cij +µ∗

j )aij , subject to aij ≥ 0 and
∑

j aij = ri
for each i. Multiplication by T0 yields that Π∗ = A∗T0

satisfies (25b) with q̄i = riT0, and (29) holds.
Also, by the equilibrium condition we have:∑

i

π∗
ij = T0a

∗
j = T0dj(s

∗
j ) = min(s∗j , s̄j) ≤ s̄j ; (33)

hence π∗ satisfies (25c) and is primal feasible.
µ∗ ≥ 0 holds by (31b). For complementary slackness,

suppose that µ∗
j > 0. Then (31b) gives s∗j = s̄j

(
1 +

µ∗
j

T0

)
.

In particular s∗j > s̄j , so there is no gap in the rightmost
inequality of (33); we have

∑
i π

∗
ij = s̄j and the second

factor in (30) vanishes.
The above also establishes the first case of (32). In the

alternative case µ∗
j = 0, min(s∗j , s̄j) = s∗j from (31b), and

therefore from (33) we obtain
∑

i π
∗
ij = s∗j as claimed.

Now start from (ii), with a saddle point (Π∗, µ∗) and s∗

as in (32). Choosing A∗ = Π∗/T0, it follows directly from
(29) that (31c) holds for µ = µ∗. For convenience denote

ŝj :=
∑
i

π∗
ij ≤ s̄j ; (34)

we claim that the following conditions both hold at each j:

µ∗
j = T0

[
s∗j
s̄j

− 1

]+
; (35a)

ŝj = min(s∗j , s̄j). (35b)

Indeed, if µ∗
j = 0, (32) and (34) give s∗j = ŝj ≤ s̄j ; both

conditions above can be checked in this case.
If µ∗

j > 0, now by (32) we have s∗j > s̄j ; this immediately
yields (35a). Also, in this case by complementary slackness
(30) we must have ŝj =

∑
i π

∗
ij = s̄j and then (35b) holds.

Note finally that (35a) is just a re-statement of (31b), and
that (35b) and (23) imply that the departure rate at s∗j is

dj(s
∗
j ) =

ŝj
T0

=
1

T0

∑
i

π∗
ij = a∗j ,



consistent with equilibrium in (31a).
For the final statement, note the feasibility conditions for

existence of saddle points.
We provide the following comments for our result:
• The stability condition (for existence of equilibrium)

has a natural interpretation: since vehicles do not depart
without completing service, their total arrival rate

∑
i ri

cannot exceed the maximum total service rate; note that
service rates at station j are bounded by s̄j/T0.

• Quantities in the optimization have a different interpre-
tation from those in the previous section. q̄i = riT0 now
represents average number of service slots requested
from location i. The resulting matrix Π∗ distributes
these requests between stations, resulting in a number
ŝj as in (34) of service slots occupied in each station.

• ŝj may differ from s∗j , equilibrium population of EVs at
station j under load balancing. The difference appears
in saturated stations with queueing delay µ∗

j > 0.
Remark 4: If there were a centralized dispatcher splitting

requests according to A∗ = Π∗/T0, queueing delay could
be completely avoided. This is the price of anarchy in our
dynamics: station delays must build up to coax selfish drivers
to the optimal transport allocation.

C. Convergence

We sketch the analysis which parallels the one in the
previous section. We differentiate the dual function along
trajectories of the dynamics (31), replacing ∇D̃(µ) by a
valid supergradient. Invoking (28), we note that (A,S, µ)
are constrained by (31c)- (31b), then

T0a− s̄ ∈ ∂D̃(µ);

this leads to:
d

dt
D̃(µ(t)) =

∑
j

[T0aj − s̄j ]µ̇j(t) =
∑
sj>s̄j

T0ṡj
T0

s̄j
ṡj ≥ 0.

Above, we first eliminate terms where sj(t) < s̄j , which
have µ̇j(t) = 0. For saturated stations, the positive part in
(31b) is inactive, and T0aj − s̄j = T0ṡj , invoking (31a). The
following statements parallel Propositions 2 and 3. Again,
we are not carefully addressing discontinuous switching.

Proposition 5: The dual function D̃(µ) for Problem (25)
(with q̄i = riT0) is non-decreasing along trajectories µ(t)
arising from the dynamics (31).

Proposition 6: Consider a trajectory of the dynamics (31),
such that d

dtD̃(µ(t)) ≡ 0 for all time. Then µ(t) ≡ µ∗. Also:
• for any j : µ∗

j > 0, sj(t) ≡ s∗j ;
• for any j : µ∗

j = 0, sj(t) → s∗j ;
the resulting s∗ is an equilibrium of the dynamics.

V. STOCHASTIC SIMULATIONS

In this section we provide simulations of our load balanc-
ing dynamics for illustration purposes, and also to contrast
our fluid models with more realistic scenarios, involving
discrete EVs with stochastic arrival locations and times, as
well as random sojourn times.
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Fig. 1. Time evolution of station occupations for the sojourn time model
in the simulated stochastic system (solid), the fluid solution (dashed) and
the predicted equilibrium of Theorem 1 (dotted).

Our spatial domain is taken to be a square region, where
recharge requests arrive as a Poisson process of overall rate
r = 10 EVs/min, spawning in a random spatial location,
uniformly chosen in the region. Travel times cij are modeled
as the Euclidean distance divided by a speed v chosen such
that the maximum travel time across the region is 10 minutes.
We also fix 5 charging station locations at random in the
region, each with capacity for charging s̄j = 150 EVs
simultaneously. In Figure 2 we mark the positions of these
charging stations.

In our first example, we follow the sojourn time model of
Section III, and choose EV sojourn times as exponentially
distributed with mean T = 60 minutes; Therefore, in steady
state there should be an average of rT = 600 EVs in the
system, split among the service points. Note that rT <∑

j s̄j , so the system can cope well with demand, but due
to the random location of chargers, some of them may
experience congestion.

Upon arrival, vehicles are routed to stations in accordance
to the minimum time rule based on the current congestion
prices µj given by (12), and the charging station occupation
sj is updated accordingly. In order to simulate our fluid
model, with finite arrival locations m, we discretize the space
in a grid of 10000 points.

Figure 1 shows the evolution of the stochastic occupations
and their comparison with the solutions of the fluid model
under (19) through an ordinary differential equation solver.

Initially, all stations are uncongested and thus EVs are
routed to the closest station. However, with our arrival and
stations pattern, the rightmost station which is far from the
others gets congested. This forces the µ1(t) upwards, and
thus the other two closer stations start to receive more traffic,
until eventually the first two stations experience congestion,
the third one operates near congestion and the other two
remain operating below capacity. The fluid dynamics reaches
the equilibrium predicted by the optimization problem (14),
shown in Figure 1 in dotted lines.

In order to better visualize this congestion pattern, in
Figure 2 we represent the attraction regions for each station
in equilibrium. We note that the rightmost cell has shrunk



Fig. 2. Charging station positions and attraction regions in equilibrium for
the sojourn time model.
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Fig. 3. Time evolution of station occupations for the service time model
in the simulated stochastic system (solid), the fluid solution (dashed) and
the predicted equilibrium of Theorem 4 (dotted).

with respect to the Voronoı̈ tessellation which would appear
in the uncongested case.

We now turn our attention to the service time model from
Section IV. Arrivals are as before, but now EVs only leave
the system after completing their charge, which is randomly
chosen from an exponential distribution with mean T0 =
60 min. Note that, with this choice of parameters, the total
demand

∑
i q̄i = rT0 <

∑
i s̄i so the stability condition for

existence of equilibrium in Theorem 4 is satisfied. As before,
upon arrival, vehicles are routed according to the minimum
time rule, but with the congestion price given by (24) to
represent queueing delay.

In Figure 3 we plot again the evolution of station occu-
pations, starting from an empty system. We can see that
the fluid model again captures the right trend from the
stochastic occupations. In steady state, the system converges
to the equilibrium given in Theorem 4, also shown in the
Figure, where two stations become congested. The steady
state attraction regions in this case are similar to the ones in
Figure 2, and we omit them.

VI. CONCLUSIONS AND FUTURE WORK

For a distributed EV charging infrastructure, we have
analyzed through a fluid model the load balancing dynamics
of selfish users responding to information on delay to service,

comprised of transport and queueing delays. Two departure
models were considered, depending on whether sojourn
times or service times are taken to be given. Under stationary
arrivals, we established in each case a connection, in terms
of equilibrium and dynamic evolution, with an appropriate
convex optimization problem. A complete treatment of the
switching dynamics in our model is left for future work.

Other future directions are: (i) the more extensive analysis
of the price of anarchy and mitigation strategies for these
problems; (ii) the consideration of elastic demand, where
some arriving load is curtailed due to the unwillingness of
customers to accept the current level of delay.
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