
Proximal optimization for resource allocation in distributed computing
systems with data locality

Diego Goldsztajn, Fernando Paganini and Andres Ferragut
Universidad ORT Uruguay

Abstract— We consider resource allocation questions for
computing infrastructures with multiple server instances. In
particular, the joint optimization of active service capacity,
load balancing between clusters of servers, and task scheduling
at each cluster, under conditions of data locality which imply
different service rates for different cluster locations.

Building on previous work, we formulate a convex optimiza-
tion problem, and use Lagrange duality to decompose it between
the different decision variables. We include regularization terms
from proximal methods to obtain continuous control laws for
load balancing and scheduling, and optimize the remaining
variables through primal-dual gradient dynamics. We prove
convergence of the resulting control laws to the desired optimal
points, and demonstrate its behavior by simulations.

I. INTRODUCTION

Convex optimization has proven to be a powerful tool for
solving resource allocation problems in telecommunication
networks [15]. These continuous variable methods, with in-
gredients from control and dynamics, provide a macroscopic
view that is difficult to attain within the more classical
discrete models of queueing theory. Of particular importance
are convex optimization methods for allocation decisions at
multiple layers, where useful decompositions are found via
Lagrange duality [4].

In recent years, the focus has shifted away from the com-
munication substrate and into higher layers, in particular the
now prevalent cloud computing infrastructures. Rather than
packets and flows, the discrete entities are server instances,
but resource allocation issues are still of crucial importance:
right sizing of the active service capacity [8], load balancing
of tasks between server locations [10], and scheduling of
server instances [16]. Most of these recent references employ
stochastic queueing theory tools.

Is there a role for convex optimization in this area? Our
recent exploration [12] reveals that optimization decompo-
sitions are very natural in this context: in particular, the
recent proposal [16] of Join-the-Shortest-Queue (JSQ) load
balancing with MaxWeight (MW) scheduling, for MapRe-
duce systems under data locality, can be naturally justified by
Lagrange duality. And within this framework, the additional
degree of freedom of sizing the server capacity is naturally
included through primal-dual gradient dynamics [1], [6].

One difficulty with the approach taken in [12], framed in
continuous time, is that JSQ and MW exhibit discontinuous
switching around the optimal values. In this paper we address

This work was partially supported by ANII–Uruguay under grant
FCE 1 2017 1 136748.

E-mail: goldsztajn@ort.edu.uy.

this issue by introducing quadratic regularization terms taken
from the literature in proximal methods [13]. With this addi-
tion, load balancing and scheduling now evolve continuously,
and still reach the same optimal solution. Establishing this
fact is our main result, which requires extensions to the
theory of saddle point dynamics.

The paper is organized as follows. Section II describes
the model for the cloud computing infrastructure under
consideration, and reviews the results from [12] on resource
allocation via convex optimization. The regularization is
introduced in Section III, showing how a partial minimization
reduces the problem to an equivalent, smooth reduced La-
grangian. Section IV presents the corresponding saddle point
gradient dynamics and its convergence proof. Some ideas on
implementation of these laws without prior knowledge of the
load are presented in Section V, together with illustrative
simulations. Conclusions are given in Section VI, and some
proofs are relayed to the Appendix.

II. MODEL DESCRIPTION AND PRIOR WORK

We consider a distributed computing system with several
clusters of servers, indexed by j = 1, . . . , N . Each cluster
may be regarded as occupying a different geographical
location or, alternatively, as a group of servers within a single
facility that share a common physical rack. The number of
active servers at cluster j is denoted by sj , and it may
be changed over time: for example, by switching servers
between an active and a sleep mode.

All instances at the same cluster have the same standard
processing capacity, and thus are interchangeable for each
arriving task. However, service differentiation may appear
between different cluster/task matchings, due to the data
locality issue. Namely, the amount of data a server must
retrieve from a remote cluster, to perform a certain task, will
impact its processing speed. We model this by classifying
tasks into different types: i = 1, . . . ,M , as in [16] the type
of a task reflects the location of all data required to perform
the task. We let µij denote the units of type i tasks that one
server from cluster j can perform per unit of time; the matrix
µ ∈ RM×N+ is assumed given.

The arrival rate of type i tasks is denoted by λi; let
λ ∈ RM+ be the vector of these rates, which is typically
unknown, and often time varying. The decision variables to
be controlled over time are the following:
• The number of active servers sj across clusters. The

vector of cluster sizes is denoted by s ∈ RN+ and its
selection is called the right sizing problem.

• The rates λij in which traffic of type i is split between
clusters, subject to the conservation constraint

N∑
j=1

λij = λi ∀ i = 1, . . . ,M.

Λ ∈ RM×N+ is the matrix formed by the rates λij , its
selection is called the load balancing problem.

• The aggregate service rate rij that tasks of type i receive
from cluster j. This means, the units of type i tasks that
are performed at cluster j per unit of time. Providing
this aggregate service requires the allocation of rij/µij
servers. The constraint on the aggregate server resources
at each cluster is:

M∑
i=1

rij
µij

= sj ∀ j = 1, . . . , N.

The matrix with entries rij is denoted by R ∈ RM×N+

and its selection is called the scheduling problem.
In the fluid models to be considered in this paper, all the

above variables are taken to be real-valued. This is a suitable
approximation for large-scale systems. In a similar vein, we
use a fluid model for the queue qij of type i tasks present
at cluster j; its evolution is given by

q̇ij = [λij − rij]+qij . (1)

This is simply flow balance plus a saturation to maintain non-
negative queues. We use the positive projection notation:

[z]+q =

{
z if q > 0 or z ≥ 0,

0 if q = 0 and z < 0;

the projection is called active in the latter case. A funda-
mental requirement of any useful control policy is that the
queues remain stable, i.e. bounded in time.

If we let Q denote the matrix with entries qij , a compact
matrix notation for equation (1) is

Q̇ = [Λ−R]+Q. (2)

Notation 〈·, ·〉 will be used for the standard inner product of
matrices, and || · || for the corresponding Frobenius norm.

A. Optimization approach

Much of the previous literature on task-cluster assignment
concerns the case where the service capacity of clusters
is fixed: sj is constant over time for all j. An interesting
question in this case is to characterize the capacity region of
the system: the space of arrival rate vectors λ for which there
exist a load balancing Λ and a scheduling R that yield stable
queues. It is shown in [16], using queueing theory tools, that
a combination of JSQ load balancing and MW scheduling
is throughput optimal: it stabilizes the full capacity region.
The delay performance of this policy is also studied in [16]
under heavy traffic assumptions.

Our model differs from the above in allowing the number
of servers sj to be controlled over time. The rationale is that
there is a large underlying capacity that, if activated, could

stabilize any practical arrival rate vector, but one would like
to keep active only the “right” amount. This right sizing
problem has been studied for a single server class [7], [8],
[11], but to our knowledge the multi-class, multi-cluster
setting had not been addressed prior to our recent work [12].

Typically there is a cost (e.g. energy) associated with
active server instances, so we would like to stabilize the
load in the cheapest way, exploiting the available degrees
of freedom. The following optimization problem from [12]
expresses this objective:

Problem 1: Minimize c(s) =
∑N
j=1 cj(sj),

subject to
N∑
j=1

λij = λi, i = 1, . . . ,M ; (3a)

M∑
i=1

rij
µij

= sj , j = 1, . . . , N ; (3b)

0 ≤ λij ≤ rij ∀ i, j. (3c)

We assume that cj(sj) are increasing, strictly convex, and
differentiable with a locally Lipschitz derivative.

As in the cited precedent from communication networks
[4], [15], we aim to use convex optimization to obtain useful
decompositions of this problem.

B. JSQ/MW policy via duality and gradient dynamics

We briefly review our results in [12], using duality to de-
compose the problem into suitable load balancing, schedul-
ing and right sizing policies. Introduce the Lagrangian

L(Λ, R, s,Q) :=
∑
j

cj(sj) +
∑
i,j

qij (λij − rij) ,

where only the constraints λij − rij ≤ 0 from Problem 1
have been dualized. We have named the Lagrange multipliers
qij because they will correspond to queues in the gradient
dynamics to be introduced below.

The remaining constraints in (3) remain implicit; minimiz-
ing now over the variables (Λ, R) where Λ ≥ 0 satisfies (3a),
R ≥ 0 satisfies (3b), leads to the reduced Lagrangian

L̄(s,Q) := min
Λ,R

L(Λ, R, s,Q)

= c(s) + min
Λ

∑
i,j

qijλij

−max
R

∑
i,j

qijrij

 .

This partial minimization defines instantaneous load bal-
ancing and scheduling rules, decoupled in Λ and R. In
particular, the second term is minimized by any traffic split
Λ∗(Q) that sends all type i tasks to the clusters j for
which qij is minimum; if the latter correspond to queues,
this is exactly the Join the Shortest Queue load balancing
policy. Similarly, the last term is maximized by the schedules
R∗(s,Q) that assign the servers of cluster j to the tasks i
which maximize µijqij , a Max-Weight scheduling policy.

To complete the optimization we used in [12] the saddle
point gradient dynamics [1], [6] for the reduced Lagrangian,
which are shown to have the form:

ṡj =

[
− ∂L̄
∂sj

]+

sj

=
[
max
i
{µijqij} − c′j(sj)

]+
sj

, (4a)

q̇ij =

[
∂L̄

∂qij

]+

qij

=
[
λ∗ij − r∗ij

]+
qij
. (4b)

Here Λ∗(Q) and R∗(s,Q) are as discussed before, the right-
hand side of (4b) is a supergradient of L̄, and the positive
projections ensure non-negative cluster sizes and multipliers.

If we compare equations (1) and (4b), we verify that the
Lagrange multiplier qij corresponds to the queue of type
i tasks at cluster j, justifying the preceding references to
JSQ/MW as in [16]. The stability of (4) is proved in [12].

An undesirable feature of the JSQ/MW in this continuous
formulation is that they exhibit “chattering” around the equi-
librium point: for instance, when queues are approximately
equal, the load balancing Λ∗(Q) will switch rapidly between
them, as illustrated in the simulation traces of Fig. 1; a
similar behavior occurs with R∗(s,Q).

10 10.02 10.04 10.06 10.08 10.1

0

50

100

t

λ11

λ12

λ13

λ21

λ22

λ23

λ31

λ32

λ33

Fig. 1. JSQ load balancing Λ∗(Q) once (s,Q) has reached an equilibrium.

These discontinuities make the mathematical analysis
challenging1, so we would like to find a smoother alternative
in which the variables Λ and R settle into well defined
equilibrium values. This motivates our next proposal, which
consists of formulating an equivalent optimization problem
where the reduced Lagrangian has continuous gradients.

III. PROXIMAL REGULARIZATION

Proximal methods have a long history in optimization
[14], and have gained recent popularity for non-smooth
or distributed problems [5], [13]. There are various such
methods, all based on adding quadratic regularization
terms to the cost. Our regularization below is of a similar
nature to the one carried out in [9] for multipath routing
problems. Specifically, we consider the modified problem
with additional variables α, β ∈ RM×N :

1To some extent this limitation is due to the fluid model; in discrete terms,
the alternation of jobs between queues is less problematic.

Problem 2: Minimize

c(s)+
1

2
||Λ − α||2 +

1

2
||R− β||2

subject to
N∑
j=1

λij = λi, i = 1, . . . ,M ; (5a)

M∑
i=1

rij
µij

= sj , j = 1, . . . , N ; (5b)

0 ≤ λij ≤ rij ∀i, j. (5c)

Since the constraints (5) are the same as (3), not involving
the new variables, this is clearly equivalent to Problem 1.
More precisely, both problems have the same infimum, and
(Λ, R, s) is an optimum of (1) if and only if (Λ, R, s, α, β)
is an optimum of (2) with α = Λ and β = R.

As in the previous section, we will derive saddle point
dynamics for a reduced Lagrangian of this problem. In
this case, the gradients of the reduced Lagrangian will be
continuous, avoiding the chattering exhibited by JSQ/MW.

A. Reduced Lagrangian

As before, let us dualize Problem 2 with respect to the
constraints λij − rij ≤ 0, introducing the multipliers qij .
The corresponding Lagrangian is

L(Λ, R, s, α, β,Q) := c(s) +
∑
i,j

qij (λij − rij)

+
1

2

∑
i,j

(λij − αij)2
+

1

2

∑
i,j

(rij − βij)2
.

(6)

We now perform the partial minimization in Λ and R,
with the aim of obtaining instantaneous load balancing and
scheduling policies as before. The reduced Lagrangian is

L̄(s, α, β,Q) := min
Λ,R

L(Λ, R, s, α, β,Q).

Completing the squares in the right-hand side of (6), and
taking the minimum with respect to Λ and R, we see that

L̄(s, α, β,Q) = c(s) +
∑
i,j

[
(αij − βij)qij − q2

ij

]
+ min

Λ

1

2

∑
i,j

(αij − qij − λij)2

+ min

R

1

2

∑
i,j

(βij + qij − rij)2

 .

The first minimum is taken across all Λ in the set

∆Λ :=

Λ ∈ RM×N+ :

N∑
j=1

λij = λi, ∀ i = 1, . . . ,M

 .

The minimizer may be regarded as the closest point in this
set to α−Q, in the Frobenius norm. Since ∆Λ is closed and
convex, it defines a projection

πΛ(X) := argmin
Y ∈∆Λ

||X − Y || .

Therefore, we now have the load balancing policy

Λ∗(α,Q) := πΛ(α−Q). (7)

Remark 1: Since the set ∆Λ depends on λ, implementing
the policy (7) would require knowledge of the arrival rates.
This goes against our objective that the system should
automatically scale to the incoming load, a deficiency
which will be amended in Section V through a specific
implementation proposal.

Introducing the notation ◦ for the Hadamard (component-
wise) product of matrices, the constraints in R take the form
R ∈ ∆R(s) ◦ µ, with

∆R(s) =

{
X ∈ RM×N+ :

M∑
i=1

xij = sj ∀ j = 1, . . . , N

}
.

Hence, the optimal schedule R∗ is the point in ∆R(s) ◦ µ
that lies closest to β + Q. Again, the sets ∆R(s) ◦ µ are
closed and convex, so the projections

πR(s,X) := argmin
Y ∈∆R(s)◦µ

||X − Y ||

are well defined for each s. Then, the optimal schedule is

R∗(s, β,Q) := πR(s, β +Q). (8)

Consider now the real-valued functions

dΛ(X) :=
1

2
||X − πΛ(X)||2 and

dR(s,X) :=
1

2
||X − πR(s,X)||2 ∀ X ∈ RM×N .

These compute the squared distance to ∆Λ and ∆R(s) ◦ µ,
respectively, and the reduced Lagrangian is given by

L̄(s, α, β,Q) = c(s) +
∑
i,j

[
(αij − βij)qij − q2

ij

]
+ dΛ(α−Q) + dR(s, β +Q).

Theorem 2: L̄ is convex in (s, α, β), concave in Q, and
differentiable, with locally Lipschitz continuous gradients:

∂L̄

∂s
= ∇c(s) +∇sdR(s, β +Q);

∂L̄

∂α
= α− Λ∗(α,Q);

∂L̄

∂β
= β −R∗(s, β,Q);

∂L̄

∂Q
= Λ∗(α,Q)−R∗(s, β,Q).

The proof is given in the Appendix, based on a study of
projections over a scaled simplex.

B. Equivalence of saddle points
Before proposing a gradient dynamics to seek saddle

points of L̄, we show that these are in one-to-one
correspondence with the primal-dual optima of (2).

Proposition 3: (Λ̂, R̂, ŝ, α̂, β̂, Q̂) is a saddle point of L if
and only if (ŝ, α̂, β̂, Q̂) is a saddle point of L̄ such that

Λ∗(α̂, Q̂) = Λ̂ and R∗(ŝ, β̂, Q̂) = R̂.

Here the word saddle point is used under the convention that
the variables s and Q lie in RN+ and RM×N+ , respectively.

Proof: Suppose that (Λ̂, R̂, ŝ, α̂, β̂, Q̂) is a saddle point
of L. Then Λ∗(α̂, Q̂) = Λ̂ and R∗(ŝ, β̂, Q̂) = R̂ because

L(Λ̂, R̂, ŝ, α̂, β̂, Q̂) = min
Λ,R

L(Λ, R, ŝ, α̂, β̂, Q̂).

To show that (ŝ, α̂, β̂, Q̂) is a saddle point of L̄, note that

L̄(ŝ, α̂, β̂, Q̂) = L(Λ̂, R̂, ŝ, α̂, β̂, Q̂)

≤ L(Λ∗(α, Q̂), R∗(s, β, Q̂), s, α, β, Q̂)

= L̄(s, α, β, Q̂)

for all (s, α, β), and that for all Q we have

L̄(ŝ, α̂, β̂, Q̂) = L(Λ̂, R̂, ŝ, α̂, β̂, Q̂)

≥ L(Λ̂, R̂, ŝ, α̂, β̂, Q) ≥ L̄(ŝ, α̂, β̂, Q).

Suppose now that (ŝ, α̂, β̂, Q̂) is saddle point of L̄, and let
Λ̂ := Λ∗(α̂, Q̂) and R̂ := R∗(ŝ, β̂, Q̂). We first note that

L(Λ̂, R̂, ŝ, α̂, β̂, Q̂) = L̄(ŝ, α̂, β̂, Q̂)

≤ L̄(s, α, β, Q̂) ≤ L(Λ, R, s, α, β,Q)

for all (Λ, R, s, α, β). Also, since Q̂ maximizes L̄(ŝ, α̂, β̂, ·)
over RM×N+ , then we have[

Λ̂− R̂
]+
Q̂

=

[
∂L̄

∂Q
(ŝ, α̂, β̂, Q̂)

]+

Q̂

= 0.

As a result, for all Q ∈ RM×N+ we have

〈Q− Q̂, Λ̂− R̂〉 = 〈Q− Q̂, Λ̂− R̂−
[
Λ̂− R̂

]+
Q̂
〉 ≤ 0;

here 〈x− y, z− [z]+y 〉 ≤ 0 for all x, y ∈ Rn+ and all z ∈ Rn.
From this inequality we conclude that

L(Λ̂, R̂, ŝ, α̂, β̂, Q) = L(Λ̂, R̂, ŝ, α̂, β̂, Q̂) + 〈Q− Q̂, Λ̂− R̂〉
≤ L(Λ̂, R̂, ŝ, α̂, β̂, Q̂)

for all Q ∈ RM×N+ , which completes the proof.

IV. SADDLE POINT GRADIENT DYNAMICS

We may find the saddle points of L̄ by means of gradient
descent in (s, α, β) and gradient ascent in Q, as follows:

ṡj =

[
−c′j(sj)−

∂

∂sj
dR(s, β +Q)

]+

sj

, (9a)

α̇ij = λ∗ij(α,Q)− αij , (9b)

β̇ij = r∗ij(s, β,Q)− βij , (9c)

q̇ij =
[
λ∗ij(α,Q)− r∗ij(s, β,Q)

]+
qij
. (9d)

Here we used the expressions from Theorem 2; the field
is locally Lipschitz continuous, except for the positive pro-
jections at the boundary points sj = 0, qij = 0, to ensure
that cluster sizes and multipliers (as before, corresponding
to queues) remain non-negative.

Comparing with (4), we have removed the most problem-
atic discontinuities: the chattering caused by JSQ and MW.
The switching caused by the positive projections remains, but
there are tools for dealing with projected dynamical systems
of this kind, particularly in the setting of gradient dynamics
arising from optimization problems [3].

It is easily seen that any equilibrium point of (9) is a saddle
point of L̄; we establish the existence of such equilibria.

Proposition 4: For a separable cost c(s) =
∑
j cj(sj),

with increasing cj , solutions to Problems 1 and 2 exist.
Furthermore, the equilibrium set of (9) is non-empty and
(s, α, β,Q) is an equilibrium if and only if (α, β, s, α, β,Q)
is a primal-dual optimum of Problem 2.

Proof: We first note that there exists some (Λ0, R0, s0)
that is feasible for (3). Moreover, it is clear that Slater’s
condition holds for the two formulations of the problem, and
thus strong duality holds in either case.

The set of those (Λ, R, s) feasible for Problem 1, such that
sj ≤ s0j for all j, is compact and non-empty, so Problem 1
has a minimizer, and the same happens with Problem 2.

By Proposition 3, we know that (Λ, R, s, α, β,Q) is a
primal-dual optimum of (2) if and only if (s, α, β,Q) is a
saddle point of L̄, and thus an equilibrium point of (9), with

Λ = Λ∗(α,Q) and R = R∗(s, β,Q).

It is clear that α = Λ and β = R in this case; for instance,
from (9b) and (9c). We have shown that Problem 2 has a
solution if the cj are increasing, and since Slater’s condition
holds for this problem, there exists a primal-dual optimum.
Particularly, the equilibrium set of (9) is non-empty.

A. Global asymptotic stability

We will prove that each trajectory of (9) converges to an
equilibrium point.

Suppose that a primal-dual optimum (Λ̂, R̂, ŝ, α̂, β̂, Q̂) of
Problem 2 exists, and consider the Lyapunov function

V (s, α, β,Q) =
1

2
||s− ŝ||2 +

1

2
||α− α̂||2

+
1

2

∣∣∣∣∣∣β − β̂∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣Q− Q̂∣∣∣∣∣∣2 . (10)

Proposition 5: V is monotone along the trajectories of the
dynamics (9). Specifically, V̇ (s, α, β,Q) ≤ 0 if (s,Q) ≥ 0.

This first result follows from first order convexity and
concavity conditions for the reduced Lagrangian; the argu-
ments are standard, and may be found, for instance, in [6].
In particular we conclude the stability of the saddle points
in the broad Lyapunov sense.

To establish asymptotic stability, an argument based on
a LaSalle invariance principle may be given, based on the
characterization of the set where V̇ = 0. In this regard,
the following lemma is not standard, and its proof rather
technical; it will be reported elsewhere.

Lemma 6: V̇ (s, α, β,Q) = 0 and (s,Q) ≥ 0 imply:
(a) s = ŝ,
(b) Λ∗(α,Q) = α and R∗(s, β,Q) = β,
(c) L̄(s, α, β,Q) = L̄(ŝ, α̂, β̂, Q̂).

Theorem 7: Suppose that a primal-dual optimum of Prob-
lem 2 exists. Then each solution of (9) converges to an
equilibrium (s, α, β,Q) and (α, β, s, α, β,Q) is primal-dual
optimal for Problem 2.

Proof: We use a LaSalle invariance principle for
Caratheodory solutions2 of saddle point dynamics with pro-
jections, stated in [3]. It requires that L̄ has locally Lipschitz
gradients, which we have established in Theorem 2. It states
that the solutions of (9) converge to the largest invariant
subset contained in the closure clE, where

E =
{

(s, α, β,Q) : V̇ (s, α, β,Q) = 0, (s,Q) ≥ 0
}
.

This set E is contained in the set F of those (s, α, β,Q)
satisfying the conditions of Lemma 6; the latter set is closed,
since the projections Λ∗ and R∗ are continuous, as well as
L̄, which is differentiable. Therefore clE ⊂ F .

Let M denote the largest invariant subset of clE; fix some
(s, α, β,Q) ∈ M and consider the solution η(t) starting at
this point; we will use the notation η = (ηs, ηα, ηβ , ηQ).

Since M ⊂ F , we know that η satisfies the conditions
of Lemma 6 at each instant of time, so we conclude that
ηs ≡ ŝ from (a), and η̇α ≡ η̇β ≡ 0 from (b), (9b) and (9c).
In particular, we have ηα ≡ α and ηβ ≡ β. Furthermore,

c(ŝ) + 〈ηQ, α− β〉 ≡ L̄(η) ≡ L̄(ŝ, α̂, β̂, Q̂). (11)

Here the last identity follows from (c), whereas the first is a
consequence of

α ≡ ηα ≡ Λ∗(ηα, ηQ) and β ≡ ηβ ≡ R∗(ηs, ηβ , ηQ).

Differentiating equation (11) with respect to t, we see that

〈[α− β]
+
ηQ
, α− β〉 ≡ 〈η̇Q, α− β〉 ≡ 0.

It is easy to check that 〈[x]+y , x〉 =
∣∣∣∣[x]+y

∣∣∣∣2 for all vectors
x and y. Therefore, we conclude that

||η̇Q||2 ≡
∣∣∣∣∣∣[α− β]

+
ηQ

∣∣∣∣∣∣2 ≡ 0.

This proves that M consists exclusively of equilibrium points
of (9). It is easy to conclude from the continuity of Λ∗ and
R∗ that the equilibrium set is closed, hence M is closed too.

Now let η(t) be any trajectory of (9). Proposition 5
implies that η(t) is bounded, so its omega-limit set is non-
empty, and the LaSalle principle implies that η(t) converges
to the closed set M ; so the omega-limit set is made of
equilibrium points of (9), which are saddle points of L̄. Now
applying Proposition 5, the distance from η(t) to any given
equilibrium is non-increasing. As a result, the omega-limit
set must contain exactly one equilibrium point.

2These are the absolutely continuous functions that satisfy the differential
equation almost everywhere with respect to the Lebesgue measure.

V. IMPLEMENTATION AND SIMULATION

From an implementation standpoint, the aim is to distribute
the control between the different agents in the system: a
central task dispatcher in charge of load balancing; and, at
each cluster location, a controller of both task scheduling
and server population right sizing. Looking at our dynamics
(9), the variables (Λ, α) naturally reside at the load balancer,
and the rest at the cluster locations. Feedback information of
the queues Q to the load balancer is naturally required.

However, a difficulty already noted in Remark 1, is that
to implement the control law Λ∗(α,Q) using equation (7),
requires knowledge of the arrival rates λi of all traffic types.
This goes against the desired automatic adaptation of our
system to uncertainty or variability in the exogenous load.

Nevertheless, it is possible to suppress this dependence
through a change of variables. To this end, define

γij =
αij
λi

and p∗ij(α,Q) =
λ∗ij(α,Q)

λi
,

and let γ and P ∗(α,Q) denote the respective matrices. Note
that p∗ij represents the fraction of type i traffic that is routed
to cluster j when the load balancing Λ∗ is used.

Introduce the notation ∆a for the simplex

∆a =

x ∈ RN+ :

N∑
j=1

xj = a

 . (12)

For each matrix X ∈ RM×N let Xi denote its i-th row; from
equation (7) we conclude that

P ∗i (α,Q) = λ−1
i argmin

x∈∆λi

||αi −Qi − x||

= argmin
y∈∆1

||αi −Qi − λiy||

= argmin
y∈∆1

∣∣∣∣γi − λ−1
i Qi − y

∣∣∣∣ . (13)

Also, dividing both sides of (9b) by λi, we obtain

γ̇ij = p∗ij − γij ; (9b’)

this suggests using (γ, P) as control variables at the dis-
patcher, instead of (α,Λ). Now, the computation of P ∗

in (13) requires knowledge of the ratios qij/λi. For this
purpose, introduce the variables:
• qi =

∑
j qij , total number of type i tasks in the system.

• τi, mean queueing delay experienced by type i tasks;
using Little’s law, τi = qi/λi. In practice, we may
tag some tasks and measure their queueing delay by
requesting a timed report of entrance to a server. Then
we can estimate τi as the running average of these
measurements over some window.

Writing
qij
λi

=
qij
qi

qi
λi

=
qij∑N
j=1 qij

τi,

we see that P ∗ in (13) can be computed with knowledge
of (γ,Q, τ); therefore (13)-(9b’) may replace (7)-(9b) as
an implementation for the load balancer, without requiring
knowledge of the arrival rates λi.

0 20 40 60 80 100 120 140

0

100

200

300

400

t

λ11

λ12

λ13

λ21

λ22

λ23

λ31

λ32

λ33

Fig. 2. Traffic split resulting from the routing probabilities P ∗. Namely,
the plot shows the rates λ∗ij = p∗ijλi.

On the cluster side, implementation is decentralized:
• The rates r∗ij(s, β,Q) and the dynamics (9c) only de-

pend on information (sj , βij , qij) local to cluster j.
• The dynamics (9a) only depend on information that

is local to cluster j. Indeed, the projection terms
∇sdR(s, β +Q) decouple across j.

The Appendix contains information on how to compute
efficiently projections onto a simplex (see Proposition 8), as
required for P ∗ and R∗; and also formulas for the derivatives
∂sjdR (see Proposition 9).

A. Simulation experiments

We implemented in Matlab the control rules for
(P,R, s, β, γ,Q). The chosen parameters were:

µ =

2 1 1
1 2 1
1 1 2

 ,
and the arrival rates were time-varying, of the form

λ(t) =

250
50
50

 1t∈[0,50)∪(100,150] +

500
100
100

 1t∈[50,100].

The traffic split trajectories λ∗ij = p∗ijλi, that result from
the routing probabilities P ∗, are shown in Fig. 2. We see that
the rates λ∗ij adopt a well defined equilibrium soon after the
load changes. We note the absence of chattering, as compared
to the situation of Fig. 1.

We also simulated a discrete system, using a continuous
time Markov chain for arrival/service times, and estimating
the mean queueing delays τi as explained above. More
precisely, for each task type i, we measure the queueing
delay of 1 out of 10 tasks and we take the average over a
window of 30 tasks.

The evolution of cluster sizes is shown in Fig. 3. Here we
see how the fluid dynamics provide an excellent macroscopic
approximation to the discrete system’s behavior, capturing
both equilibrium values and transients. We further see, both
in Fig. 2 and Fig. 3, how our control rules react quickly to
variations of the load, stabilizing each new equilibrium point.

0 20 40 60 80 100 120 140
0

50

100

150

200

t

s1
s2
s3

Fig. 3. Evolution of all cluster sizes s over time. Both the fluid dynamics
and the discrete Markovian simulation are represented.

VI. CONCLUSIONS

This paper continues a line of research on using convex
optimization tools to design controllers to manage simulta-
neously the load balancing, scheduling and capacity right-
sizing for a cloud computing system. In particular, we used
Lagrange duality to obtain useful decompositions of the
problem, and saddle point gradient dynamics for its solution.

Our previous work motivated the introduction of switching
policies, such as JSQ and MW, for load-balancing and
scheduling, which are difficult to analyze with continuous
time methods. Motivated by this, we introduced here a
proximal regularization of the cost function, which led to a
new, smooth alternative for the saddle point dynamics. The
analysis has technical difficulties due to the appearance of
projections onto a simplex and the fact that the cost function
is not strictly convex; the latter complicates the asymptotic
convergence proof for the saddle point dynamics.

We also described a procedure to implement these laws
with available information, and tested in simulation the
performance of these methods for situations outside our
theory, such as time-varying loads.

APPENDIX

To prove Theorem 2 we must differentiate the functions
dΛ(X) and dR(s,X) that measure the squared distance to a
generalized simplex in matrix space.

A. Projection and squared distance to a simplex

We work first with the standard simplex in Rn, ∆a from
(12) and its scaled version ∆a ◦ µ, where µ = (µj) ∈ Rn++

is a vector of fixed positive parameters, and ◦ denotes the
componentwise product of vectors. Since ∆a ◦µ is compact
and convex, the projection operator

π(a, x) := argmin
y∈∆a◦µ

||x− y||

is well defined (gives a unique point). The squared distance
function is given by

d(a, x) :=
1

2
||x− π(a, x)||2 =

1

2
min

y∈∆a◦µ
||x− y||2 .

Introducing the convex indicator function

I∆a◦µ(x) :=

{
∞ if x /∈ ∆a ◦ µ,
0 if x ∈ ∆a ◦ µ,

d(a, x) can be identified with the Moreau-Yosida regulariza-
tion (see [13]) of I∆a◦µ(x); namely,

d(a, x) = min
y∈Rn

{
I∆a◦µ(y) +

1

2
||x− y||2

}
.

This function is known to be differentiable in x, with gradient

∂d

∂x
(a, x) = x− π(a, x). (14)

We characterize first the projection operator in this case.
Proposition 8: For each x ∈ Rn and a ≥ 0 we have

π(a, x)i =
[
xi − θ(a, x)µ−1

i

]+
,

where θ(a, x) ∈ R satisfies∑
i

µ−2
i [xiµi − θ(a, x)]+ = a. (15)

Proof: The projection π(x, a) is the vector y that
minimizes 1

2 ||y − x||
2, subject to yi ≥ 0 and

∑
i
yi
µi

= a.
We write the Lagrangian with respect to the last constraint:

L(y, θ) =
∑
i

[
(yi − xi)2

2
+ θ

yi
µi

]
− θa.

Minimizing L with respect to each yi ≥ 0 yields

yi = [xi − θ/µi]+ = µ−1
i [xiµi − θ]+; (16)

imposing the constraint in y leads to (15).
We wish to give a formula for θ(a, x) in (15)3, extending

those in [2], which apply to the case a = 1 and µ = 1 (un-
scaled). We will state the formula and sketch its derivation.

The main idea is that for a given θ, the nonzero terms
in (15) are those with zi := xiµi ≥ θ. As a ≥ 0 grows,
satisfying (15) requires lowering θ, and more terms will enter
the sum in decreasing order in zi. In particular, when n− k
nonzero terms are incorporated, solving for θ yields

θσk (a, x) :=

(
n∑

r=k+1

1

µ2
σ(r)

)−1(
−a+

n∑
r=k+1

xσ(r)

µσ(r)

)
;

here σ is a permutation of {0, 1, . . . , n} such that zσ(r) is
monotonically increasing4. The overall formula is:

θ(a, x) :=

n−1∑
k=0

θσk (a, x)1zσ(k)<θ
σ
k (a,x)≤zσ(k+1)

. (17)

An alternate formula can be obtained with the indicator
functions applying to intervals in a. For this purpose, let
a0(x) = +∞ and let aσn(x) ≤ · · · ≤ aσ1 (x) be such that

zσ(k) < θσk (a, x) ≤ zσ(k+1) ⇐⇒ aσk+1(x) ≤ a < aσk(x)

3θ(a, x) is uniquely defined by (15) except at a = 0; here we will choose
the smallest compatible value, namely θ(0, x) = maxi(xiµi).

4For consistency, let z0 = −∞. The permutation σ may not be unique,
but the expression (17) for θ(a, x) does not depend on this choice.

holds for all k = 0, . . . , n− 1. Specifically,

aσk(x) =

n∑
r=k

(
xσ(r)

µσ(r)
−
zσ(k)

µ2
σ(r)

)
.

This leads to the expression below:

θ(a, x) =

n−1∑
k=0

θσk (a, x)1aσk+1(x)≤a<aσk (x); (18)

This formula is instrumental to the following result.
Proposition 9: The derivative of a 7−→ d(a, x) exists for

each a ≥ 0 and each x ∈ Rn. Moreover, we have

∇ad(a, x) = −θ(a, x). (19)

The proof is omitted due to space limitations. We now use
this result to establish that ∇ad is also a Lipschitz function.

Proposition 10: θ : R+ × Rn −→ R is continuous and
piecewise linear, and therefore locally Lipschitz.

Proof: Continuity of the function in (18) can be estab-
lished by a careful consideration of the boundary between
intervals, details are omitted. For piecewise linearity, for each
k = 0, . . . , n − 1, and each permutation σ, consider the set
Eσk of all (a, x) ∈ R+ × Rn such that

µσ(1)xσ(1) ≤ · · · ≤ µσ(n)xσ(n) and
aσk+1(x) ≤ a < aσk(x).

The union of these n! × n polyhedrons is R+ × Rn and
θ(a, x) = θσk (a, x) if (a, x) ∈ Eσk , for some permutation σ.
This completes the proof because θσk is linear on Eσk .

B. Proof of Theorem 2

Proof: Since L(· , Q) is convex, then

(s, α, β) 7−→ L̄(s, α, β,Q) = min
Λ,R

L(Λ, R, s, α, β,Q)

is also convex. Moreover, if we fix P,Q ∈ RM×N , and we
let Λ∗Q = Λ∗(α,Q) and R∗Q = R∗(s, β,Q), then

L̄(s, α, β, P) = min
Λ,R

L(Λ, R, s, α, β, P)

≤ L(Λ∗Q, R
∗
Q, s, α, β, P) (20)

= L̄(s, α, β,Q) + 〈P −Q,Λ∗Q −R∗Q〉;

Therefore, L̄(s, α, β, ·) has a supergradient at any point, and
is thus concave. In fact, differentiability to be shown below
implies that Λ∗Q −R∗Q is actually the gradient ∂L̄

∂Q .
The non-trivially differentiable components of L̄ are the

distance functions dΛ(α − Q) and dR(s, β + Q); but these
are covered by the results of the previous subsection.

Focusing first on dΛ(·), we note that the constraints (3a)
decouple over the rows of λ, and each row i involves the
squared distance to a simplex (in this case, unscaled, and
with constant a = λi). Hence, the gradient of dΛ exists and
from (14) it is given by

∇dΛ(X) = X − πΛ(X),

where πΛ(X) is defined, row by row, by the expressions of
the preceding section, and is locally Lipschitz continuous.

For dR(s,X), the problem now decouples by columns of
X; for each column j we have a scaled simplex ∆a ◦ µ(j)

(here µ(j) is the j-th column of the matrix µ), and the sum
a = sj is now a variable. We can still follow (14) to compute

∇XdR(s,X) = X − πR(s,X),

and (19) to compute ∇sdR(s,X); both are locally Lipschitz.
We have already found in (20) the expression for the

gradient of L̄ with respect to Q; we can also verify the given
formulas for the gradients in α, β. For instance:

∂L̄

∂β
= −Q+∇XdR(s, β +Q)

= −Q+ β +Q− πR(s, β +Q) = β −R∗(s, β,Q).

REFERENCES

[1] K. Arrow, L. Hurwitz, and H. Uzawa, Studies in Linear and Non-
Linear Programming. Stanford University Press, Stanford, California,
1958.

[2] Y. Chen and X. Ye, “Projection onto a simplex,” arXiv preprint
arXiv:1101.6081, 2011.

[3] A. Cherukuri, E. Mallada, and J. Cortés, “Asymptotic convergence
of constrained primal–dual dynamics,” Systems & Control Letters,
vol. 87, pp. 10–15, 2016.

[4] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[5] N. K. Dhingra, S. Z. Khong, and M. R. Jovanovic, “The proximal
augmented lagrangian method for nonsmooth composite optimization,”
IEEE Transactions on Automatic Control, 2018.

[6] D. Feijer and F. Paganini, “Stability of primal–dual gradient dynamics
and applications to network optimization,” Automatica, vol. 46, no. 12,
pp. 1974–1981, 2010.

[7] D. Goldsztajn, A. Ferragut, and F. Paganini, “Feedback control of
server instances for right sizing in the cloud,” in 2018 56th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton). IEEE, 2018, pp. 749–756.

[8] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions
on Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[9] X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multipath routing,” IEEE Transactions on Automatic
Control, vol. 51, no. 5, pp. 766–781, 2006.

[10] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg,
“Join-idle-queue: A novel load balancing algorithm for dynamically
scalable web services,” Performance Evaluation, vol. 68, no. 11, pp.
1056–1071, 2011.

[11] D. Mukherjee, S. Dhara, S. C. Borst, and J. S. van Leeuwaarden,
“Optimal service elasticity in large-scale distributed systems,” ACM
SIGMETRICS Performance Evaluation Review, vol. 1, no. 1, p. 25,
2017.

[12] F. Paganini, D. Goldsztajn, and A. Ferragut, “An optimization ap-
proach to load balancing, scheduling and right sizing of cloud comput-
ing systems with data locality,” in 58th IEEE Conference on Decision
and Control, 2019, to appear.

[13] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[14] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM journal on control and optimization, vol. 14, no. 5, pp.
877–898, 1976.

[15] R. Srikant and L. Ying, Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University
Press, 2013.

[16] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling
in mapreduce with data locality: Throughput and heavy-traffic optimal-
ity,” IEEE/ACM Transactions on Networking (TON), vol. 24, no. 1, pp.
190–203, 2016.

