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Abstract— We consider a computing system based on sum-
moning server instances on the fly, possibly from a remote cloud
service. A feedback rule must be designed to track the exoge-
nous load with the right service capacity, taking into account
the inherent lags in server creation and deletion. We use fluid
and diffusion queueing models to analyze control schemes that
manage the tradeoff between job queueing and idle capacity, in
the large scale limit. In particular we propose a method in which
the system can achieve negligible queueing while minimizing
idle capacity. Theoretical results are supported by simulations.

I. INTRODUCTION

With the emergence of the cloud computing model, com-
puting tasks are nowadays often performed by a mutualized
infrastructure, where processing capacity, memory and stor-
age can be summoned dynamically by the customers from the
cloud service provider. Vendors like Google or Amazon offer
a large catalog of computing instances that can be spawned
to match a given load of requests on the fly.

In this context, consider a facility offering computing
services to an exogenous customer load, by either managing
a local server system, or alternatively contracting servers
from an external cloud infrastructure. In either case, cost
considerations dictate that the active (or contracted) capacity
must be “right-sized” to the external demand [9]: a shortage
of capacity causes queueing delay in the tasks to be per-
formed, while over-provisioning naturally incurs extra costs.
The desirable operating point is with load matching capacity.

In the queueing literature, this situation has been termed
heavy traffic [4]; classical results (see [7] and references
therein) describe the asymptotic behavior of large scale
systems with multiple servers, in the limit where load reaches
the boundary of their service capacity. From a practical
perspective, however, it is highly unlikely that the exogenous
demand (measured e.g. in Erlangs of offered traffic) would
coincidentally match exactly the available service capacity.
What makes this situation relevant is the more likely scenario
of load matching capacity as a result of the latter being
actively controlled to follow the (uncertain) load; i.e. when
servers are turned on (or remotely summoned) as needed for
the current demand. Thus, service capacity becomes variable
and a feedback rule must be implemented to control it.

A separate aspect of cloud computing is load balancing:
how arriving tasks should be distributed between the de-
ployed servers. The very active and recent literature on this
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problem (e.g. [3]), again typically poses the question in terms
of an inelastic number of instances that grows with the scale
of the system. Under appropriate scaling conditions, fluid
or diffusion approximations to the corresponding stochastic
queues can be derived, leading to interesting conclusions
on the performance of different job scheduling policies,
such as join-the-idle-queue and its variants which have been
thoroughly analyzed in this fashion [2], [6], [10], [11].

In this paper, we focus on the problem of controlling the
number of active computing instances in feedback with the
current system occupation. The simplest, classical model of
variable service capacity is the infinite-server queue: here for
each arriving job, a new server is summoned to take care of it,
and the server disappears upon job completion. A computing
system that could create/destroy server instances quickly and
with no penalty would adapt to an arbitrary uncertain load,
with no idle capacity or queueing delay. However, practical
considerations stand in the way of such fast control of server
instances. In the local server scenario, it takes some time to
activate a server which is currently turned off; in the remote
case there is also a delay in the response of a cloud provider.
Finding adequate control rules under this delayed scenario
is the subject of this paper. These control rules can then be
matched with suitable load balancing mechanisms. Relevant
references in this regard are [5], [12]–[14].

We begin in Section II with a two-state, switched dif-
ferential equation model of a fluid queue under controlled
capacity, summoned with a first-order lag; we show the
desired equilibrium is globally stable. In a stochastic setting
fluctuations will arise; to analyze these we look at the
associated Markov chain model, and its diffusion limit;
we find undesirable job queueing. This motivates us to
consider in Section III a variation of the control to ensure
nearly zero queueing; we analyze the corresponding fluid and
diffusion models for this alternative. In Section IV we refine
the control rule to achieve this reduction in queue length
with minimal over-provisioning, making the system work
automatically in a similar way to the well known Halfin-
Whitt regime [7]. In Section V we discuss implementation
issues. Conclusions are provided in Section VI and some
proofs are deferred to the Appendix.

II. ON DEMAND SERVERS WITH A STARTUP LAG

We consider a queueing system with arrivals at rate λ
jobs/sec, served by a set of computing instances, each with
individual capacity µ jobs/sec. The offered traffic load will be
denoted ρ = λ/µ Erlangs, i.e. the number of server instances
required to cover the load on average.



At a given time t, there will be n(t) jobs present in the
system, and m(t) active servers. Note that n > m means
there are n−m jobs waiting with no service, whereas m > n
means there are m−n idle servers. In either case min{m,n}
is the number of working servers in the system.

A. Differential equation model

Taking these variables as fluid (real-valued) quantities, our
basic model for the queue dynamics is

ṅ = λ− µmin{m,n}. (1)

The right-hand side of this ODE is continuous and Lipschitz,
but nonsmooth; switching occurs at the line m = n.

Assuming an unknown, and perhaps variable, arrival rate
of jobs, the active server pool m(t) must be controlled in
real time to cover the demand. Since idle servers consume
resources, and queueing jobs penalizes customers, our ideal
objective would be to keep m(t) = n(t) at all times.
As mentioned in the introduction, this corresponds to the
infinite-server queue that simply summons or kills server
instances triggered by job arrivals and departures.

The main hurdle that we encounter is, however, the natural
delay in the control of server instances; the simplest possible
model is, in transfer function notation, the first order lag

m̂(s) =
1

1 + τs
n̂(s)

with delay parameter τ . Equivalently, letting β = 1/τ , we
have the time-domain model

ṁ = β(n−m). (2)

Our first model for the full dynamics is thus (1)-(2). We
are implicitly assuming the dynamics are constrained to the
quadrant {m ≥ 0, n ≥ 0}; note that the field naturally
points inwards at the boundary. For a given constant λ, the
dynamics (1)-(2) have a unique equilibrium point x∗ with
coordinates m∗ = ρ and n∗ = ρ, as desired. We begin by
showing that this equilibrium is a global attractor.

Proposition 2.1: The above equilibrium point x∗ = (ρ, ρ)
of equation (1)-(2) is globally asymptotically stable.

The proof relies on observing that the dynamics are
piecewise-linear, switching at the line m = n, and finding
a common quadratic Lyapunov function for the dynamics in
each subset; we defer it to the Appendix.

An alternative, and somewhat more complex model of the
server dynamics, would be

ṁ = β[n−m]+ − γ[m− n]+ with β, γ > 0. (3)

The rationale is that the lags 1/β for server creation and
1/γ for server destruction could possibly differ. The joint
dynamics (1)-(3) are still switching only at the line m = n,
and have the same equilibrium (ρ, ρ). In this case we do not
always have a common quadratic Lyapunov function for the
two switched fields, but still it is possible to establish that
the equilibrium is a global attractor, the proof is similar to
that of Proposition 3.1 below.

B. Modeling stochastic fluctuations

The preceding study shows that, at a macroscopic level, a
simple first-order model for the control of server instances
appears to achieve the purpose of matching load, leaving no
idle servers or queues. In practice, however, fluctuations will
occur around the equilibrium values, which warrants a closer
look at the dynamics from a microscopic perspective.

A natural stochastic model of our queuing system is to
write the continuous time Markov chain X = (M,N) that
corresponds to our fluid dynamics; this process with state-
space N2 has the transition rates depicted in Fig. 1.
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Fig. 1. Transition rates of the Markov chain model.

Here the integer number of jobs n is driven by a Poisson
process of arrivals with intensity λ, and service times are
exponential with mean 1/µ. The server dynamics can be
interpreted as follows: a new server is summoned whenever
a job has to be queued; the setup1 time of this server is
exponential with mean τ = 1/β. Also, each idle server
shuts down after an exp(γ) deletion time. The stochasticity
in these transition times is especially justified in a cloud
environment, where server creation is invoked by a load
scaling feature, which is then executed in the infrastructure,
where availability is uncertain.

The connection between the Markov and differential equa-
tion models can be formalized through a standard fluid
limit procedure: define Xl = (Ml, Nl) to be a continuous
time Markov chain such that Ml and Nl correspond to the
number of active servers and jobs, respectively, for an arrival
rate of lλ. Letting the scale parameter l → ∞ we can
model the behavior of large scale systems. Consider now
the normalized processes X̄l = Xl/l. Since the field of the
dynamics (1)-(3) is Lipschitz, we can establish the following
result as a straightforward consequence of the strong law-of-
large-numbers for density dependent families of continuous
time Markov chains (see [1, Chapter 11]).

Theorem 2.2: Assume that the deterministic initial condi-
tions of the processes X̄l converge to some x0 ∈ [0,+∞)2

as l → ∞, and let x(t) be the unique solution to (1)-(3)
when the initial condition is x0.

sup
t∈[0,T ]

∣∣∣∣X̄l(t)− x(t)
∣∣∣∣ a.s.−−→ 0 as l→∞ ∀ T ≥ 0.

1If one of the active servers becomes available, this initialization is
cancelled before the setup is finished. This keeps the number of summoned
servers aligned with n−m.



The above law-of-large-numbers type limit helps justify
our macroscopic ODE model; however it has removed all
stochasticity from the dynamics. To retain a view of local
fluctuations around the equilibrium of the macroscopic model
one can carry out a diffusion limit of the Markov chain by
considering the processes Zl =

√
l(X̄l − x∗), which models

fluctuations around the equilibrium on the scale of
√
l. We

have the following result.
Theorem 2.3: Assume that the deterministic initial con-

ditions of the processes Zl converge to some Z0 ∈ R2 as
l → ∞. Then, the processes Zl converge weakly, in the
Skorokhod space DR2 [0,∞), to the process Z = (M̃, Ñ),
whose initial condition is Z0, and solves the following
stochastic differential equation (SDE).

dM̃ =
[
β(Ñ − M̃)+ − γ(M̃ − Ñ)+

]
dt, (4a)

dÑ = −µmin{M̃, Ñ}dt+
√

2λdW. (4b)

Here W (t) is a standard one-dimensional Wiener process.
The diffusion limit for a Markov chain, around a given

fluid limit, is covered in the classical work of Kurtz [8]:
the construction rule is to replace each transition of rate
qi(M̃, Ñ) of Fig. 1 with a drift term qidt plus a noise term√
qidWi, where the Wi(t) are independent Wiener processes.

These noise coefficients are evaluated at the nominal solution
x(t) of the fluid dynamics; in our case we are picking the
equilibrium solution x(t) ≡ (ρ, ρ), which implies the noise
terms in (4a) disappear. Also the two noise terms in (4b)
have been combined into one with twice the variance.

The Proof of Theorem 2.3 requires an extension of the
results in [8], due to the nonsmooth vector field of the
dynamics (1)-(3); this is discussed in the Appendix.

Finding the stationary distribution of Z in (4) would help
us understand the steady-state behavior of X , and compute
estimates for the main performance metrics of interest: the
mean queue length E[N −M ]+, and the mean number of
idle servers in the system E[M − N ]+. Unfortunately, the
nonlinear switching in (4) precludes us from finding closed
form expressions for this steady-state distribution, or the
above expectations. Still, from the symmetric nature of the
noise we can expect both of these metrics to be nonzero.

This is confirmed by the simulations shown in Fig. 2.
Our system incurs both performance penalties: on one hand,
the systematic appearance of queueing means that a non-
trivial number of jobs must be held before servers become
available for them; on the other, idle servers imply an excess
provisioning cost. The relative size of these two factors is
dictated by the parameter ratio β/γ. Indeed, since the drift
of X equals zero in steady-state, then looking at the drift in
the m-direction we see that

E[M −N ]+

E[N −M ]+
=
β

γ
.

Now, since the above ratio depends on time lags inherent
to the system and not under our direct control, we cannot use
it as a way of managing the queue length/over-provisioning
tradeoff. In the next section, we will discuss an alternative
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Fig. 2. Empirical distribution of N −M in steady state for the Markov
chain of Fig 1. Different values of β/γ, λ = 1000, µ = 1.

control strategy for this purpose. For simplicity, then, we will
assume β = γ in the remainder of the paper.

The question arises as to which of the two penalties
is more troublesome from a practical perspective. We will
aim at the (almost) complete elimination of queueing. The
rationale is that in these cloud-based systems the entity in
control of the server dynamics is a dispatcher which may
not have enough local storage, and/or would rather avoid the
overhead of holding jobs; this is in line with recent literature
on the subject [14].

III. CONTROLLING FOR ZERO QUEUE-LENGTH

In the search for a variant of our instance controlling
rule, we return to the fluid setting of Section II-A. We
first note that (1) is our physical model of the queue and
cannot be modified; this implies that our equilibrium point
will necessarily verify min{m∗, n∗} = ρ. Thus, the potential
equilibria lie in the L-shaped curve depicted in Fig. 3.
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Fig. 3. Feasible equilibria and the result of control (5).

The degree of freedom available to us is the provisioning
rule for summoning servers; still, this rule must preserve the
time lags that are part of our physical constraints. With this
in mind, we propose the following variant of (2). For some
constant α > 0 define the server provisioning dynamics:

ṁ = β[(1 + α)n−m]. (5)



The main idea in equation (5) is to anticipate the spawning
of servers to account for the delay. We defer for now the
discussion on implementation issues. The overall dynamics
then become

ṁ = β[(1 + α)n−m], (6a)
ṅ = λ− µmin{m,n}. (6b)

The unique equilibrium x∗ has coordinates m∗ = (1 + α)ρ
and n∗ = ρ, as shown in Fig. 3. The number of jobs still
operates at ρ, which is a hard lower bound; however we are
accepting an over-provisioning of αρ servers in mean, with
the aim of avoiding operation in the queuing region n > m.

Proposition 3.1: The equilibrium x∗ of the dynamics (6)
is globally asymptotically stable.

Proof: The dynamics (6) are piecewise-linear switching
at the line m = n. The Jacobian matrix of the field has
negative (real) eigenvalues in {m > n}. Hence, it is easy
to see that solutions starting in this set stay in the same set
forever, and approach x∗ as t→∞.

Now consider the restriction of (6) to the set {m < n}.
The linear extension of these dynamics to the entire quadrant
would have (ρ, ρ/(1 + α)) as a global attractor. Since this
point is outside the region, solutions starting in {m < n}
eventually leave this set into the already analyzed contiguous
set, where they remain and approach x∗ as t→∞.

As in Section II-B, to model stochastic fluctuations we
resort to the continuous time Markov chain X = (M,N)
corresponding to the dynamics (6). The state-space is N2, as
before, and the transitions for this case are shown in Fig. 4.
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Fig. 4. Transition rates of the modified Markov chain.

A fluid limit, analog of Theorem 2.2, is also possible in
this setting. Here again the processes Xl = (Ml, Nl) are
defined by scaling the arrival rate to lλ and X̄l = Xl/l.

Theorem 3.2: Assume that the deterministic initial condi-
tions of the processes X̄l converge to some x0 ∈ [0,+∞)2

as l → ∞, and let x(t) be the unique solution to (6) with
initial condition x0.

sup
t∈[0,T ]

∣∣∣∣X̄l(t)− x(t)
∣∣∣∣ a.s.−−→ 0 as n→∞ ∀ T ≥ 0.

The proof again follows from [1, Chapter11] since the
fluid dynamics have a Lipschitz field.

Furthermore, the analog of Theorem 2.3 is also true; a
sketch of the proof can be found in the Appendix. In order
to state this result consider the processes Zl =

√
l(Xl−x∗).

Theorem 3.3: Assume that the deterministic initial con-
ditions of the processes Zl converge to some Z0 ∈ R2 as
l → ∞. Then, the processes Zl converge weakly, in the
Skorokhod space DR2 [0,∞), to the process Z = (M̃, Ñ),
whose initial condition is Z0, and solves the following SDE.

dM̃ = β[(1 + α)Ñ − M̃ ]dt, (7a)

dÑ = −µÑdt+
√

2λdW. (7b)

Here W is a standard one-dimensional Wiener process.
Note that equation (7b) is now linear, this change with

respect to equation (4b) is due to the shift in the operating
point x∗, allowing us to compute the stationary distribution
of the limiting process Z. Indeed, if we let η = µ/β be the
ratio between mean setup delays and mean service times,
then the stationary distribution of Z is a bivariate Gaussian
N (0,Σ), with mean zero and covariance matrix

Σ = ρ
1 + α

1 + η

[
1 + α 1

1 1+η
1+α

]
. (8)

The latter is obtained by solving the Lyapunov equation
AΣ + ΣAT + BBT = 0, where dZ = AZdt + BdW is
the SDE (7) written in matrix form.

Theorems 3.2 and 3.3 tell us that Xl ≈ lx∗ +
√
lZ

is a reasonable steady-state approximation when l is large
enough. Recall that Ml and Nl are the number of servers and
jobs, respectively, in a system where the arrival rate is lλ.
Also, the fluid equilibrium of this system is lx∗ = (lρ, lρ),
and the steady-state covariance of

√
lZ is the same as in

equation (8) but replacing ρ by lρ. Hence, another way to
express this estimate, incorporating the scaling into λ, is to
say that X ≈ x∗ + Z, when λ is large enough. Therefore,
M −N ≈ N (αρ, σ2) where the variance is

σ2 =
[
1 −1

]
Σ

[
1
−1

]
=
α2 + η

1 + η
ρ. (9)
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Fig. 5. Simulation for λ = 1000, µ = 1, β = 10 and α = 3%.

The simulation of Fig. 5 validates this analysis; in par-
ticular it shows that in steady-state M −N spends most of
its time within the confidence interval [αρ − 2σ, αρ + 2σ].
The parameter α in the simulation has been chosen such that



αρ− 2σ > 0; in this way the queue remains empty most of
the time as desired. From equation (9), this design condition2

on α becomes:

1

ρ(1 + η)
+

η

ρα2(1 + η)
<

1

4
. (10)

We may also use our Gaussian approximation to estimate
the mean queue length. Denoting by ϕ and φ the density
and, respectively, cumulative distribution of the standard
Gaussian, we have:

E[N −M ]+ ≈ σϕ
(αρ
σ

)
− αρΦ

(
−αρ
σ

)
.

This function of α is plotted in Fig. 6, for different values
of the load ρ. We see that the mean queue length approaches
zero rapidly as α increases. Recall that αρ = E[M − N ],
so α reflects the fraction of over-provisioning. We find, for
instance, that for the traffic intensity ρ = 1000 Erlangs, a
2% over-provisioning yields a mean queue length of order
two, and a 5% over-provisioning results in nearly zero queue
at the dispatcher.
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Fig. 6. Mean queue length for η = 1

For the plots in Fig. 6 we assumed η = 1, i.e. the mean
setup time of servers is equal to the mean job service time.
Clearly the performance will not be as good if setup delays
are higher. This is captured by our model, since an increase in
η causes an increase in the variance σ2. Still, for reasonable
values of η a moderate amount of over-provisioning yields
almost zero queue at the dispatcher.

We also note that the queue decays more sharply with
α for higher values of ρ. This suggests that perhaps, rather
than selecting a fixed fraction of over-provisioning, we could
choose one that adapts to the uncertain load ρ. We return
to equation (10) with this in mind, and see that in order to
satisfy our zero queue condition, one must set α = O(1/

√
ρ).

This means that O(
√
ρ) is the minimum over-provisioning

needed to avoid queueing almost completely. In the next
section we propose a method that self-adjusts the number
of idle servers to this level.

2The constant on the right can be adjusted for other confidence levels.

IV. AUTOMATIC CONTROL OF THE OVER-PROVISIONING

We now focus on an automatic rule, independent of the
load, with the aim of achieving the desired over-provisioning
level of O(

√
ρ) servers. The main idea is to replace the

terms αn in the transitions of Fig. 4 with δ
√
n; the most

suitable value of the constant δ will depend on the ratio
η, as discussed in the previous section. Note that we are
just approximating

√
ρ by its instantaneous estimate

√
n,

the current occupation level. This modification is inspired in
the Halfin-Whitt regime of [7], but adapted to the automatic
feedback setting of this paper.

A. Fluid approximation

Consider the Markov chain depicted in Fig. 7, where we
have replaced the terms αn in Fig. 4 by δ

√
n. Also, let

X = (M,N) denote this process (overloading the notation).
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Fig. 7. Transition rates for the O(
√
n) control rule.

As before, consider the scaled processes Xl = (Ml, Nl)
where λ is replaced by lλ in Fig. 7, and the renormalized
processes X̄l = Xl/l. In the macroscopic level we recover
the fluid behavior of Section II.

Theorem 4.1: Assume that the deterministic initial condi-
tions of the processes X̄l converge to some x0 ∈ [0,+∞)2

as l→∞, and let x(t) be the unique solution to:

ṁ = β(n−m), (11a)
ṅ = λ− µmin{m,n}, (11b)

with initial condition x0. The processes X̄l satisfy:

sup
t∈[0,T ]

∣∣∣∣X̄l(t)− x(t)
∣∣∣∣ a.s.−−→ 0 as l→∞ ∀ T ≥ 0.

The proof is sketched in the Appendix, and relies on
a suitable modification to the strong law-of-large-numbers
in [1, Chapter 11]. The intuition behind this result is that
the set point δ

√
n is of order

√
ρ, and hence negligible

in the asymptotic regime ρ → ∞ with respect to the
system’s operating point (ρ, ρ). As a result, in the fluid
scale we see the same system as in Section II-B, with zero
over-provisioning. To see how this system counteracts the
queueing delay we need to look into the diffusion scale.

B. Diffusion approximation

We now analyze fluctuations around the fluid equilibrium
by considering again the processes Zl =

√
l(X̄l−x∗). In this

scale, the system manages to move away from the region



{n > m}, thus minimizing delay and achieving an over-
provisioning of the order

√
ρ. More formally, we have the

following result; whose proof is sketched in the Appendix.
Theorem 4.2: Assume that the deterministic initial con-

ditions of the processes Zl converge to some Z0 ∈ R2 as
l → ∞. Then, the processes Zl converge weakly, in the
Skorokhod space DR2 [0,∞), to the process Z = (M̃, Ñ),
whose initial condition is Z0, and solves the following SDE.

dM̃ = β[Ñ − M̃ + δ
√
ρ]dt, (12a)

dÑ = −µmin{M̃, Ñ}dt+
√

2λdW. (12b)

Here W is a standard one-dimensional Wiener process.
If we compare equations (11) and (12), there is an extra

drift term in (12a) that accounts for the O(
√
ρ) over-

provisioning. Indeed, (12a) implies that E[M̃ − Ñ ] = δ
√
ρ

for the steady-state distribution. Thus, the system’s over-
provisioning, which disappeared in the fluid scale, becomes
apparent in the diffusion scale.

Unfortunately, the switching in equation (12b) precludes
us from computing the stationary distribution of the above
process. Nevertheless, the analysis at the end of Section III
tells us that the system operates with nearly zero queue at the
dispatcher. The main difference between this system and the
one in Section III is that we have replaced the constant α in
Fig. 4 by a function α(n) = δ/

√
n that tracks δ/

√
ρ. Thus,

the system’s mean queue length should be approximately as
in Fig. 6 for α = δ/

√
ρ.

The advantage of the present provisioning rule is that we
do not need to know the traffic intensity that the system will
face. Furthermore, when the load changes, the control that
we have designed adapts to the new load automatically.

V. IMPLEMENTATION

We begin with an implementation of the provisioning rule
that we described in Section III. Note that the boundary case
α = 0 corresponds to the control of (1)-(2), whose imple-
mentation was discussed in Section II-A. Unfortunately, an
exact implementation is not possible for a generic α > 0.
This would require to keep a number of (1+α)n−m servers
in the setup stage, waiting to join the working servers, that
in general will not be an integer.

Nevertheless, an approximate implementation is possible.
Indeed, define q(m,n) = (1 + α)n − m and consider the
following provisioning rule.
• If a job arrives while q(m,n) ≥ 0, then one server is

summoned with probability 1 − α and two servers are
summoned with probability α.

• If a job departs while q(m,n) ≥ 0 and there are
servers undergoing the setup stage, then one of them
is dismissed with probability 1−α and two of them are
dismissed with probability α, if possible.

• While q(m,n) < 0 the dispatcher maintains a list of
idle servers with m− (1 + α)n (rounded to the closest
integer) entries. These servers are dismissed, shutting
down at rate β.

With this policy we aim to keep [(1 +α)n−m]+ servers
in the setup stage, on average, and a set of [m− (1 +α)n]+

idle servers that shut down at rate β. Thus, we expect to see
the same performance as in Section III.

For the policy in Section IV we exploit the same idea. The
algorithm is as above but replacing the constant α with the
function α(n) = δ/

√
n, as in Section IV. The experiment

in Fig. 8 compares the ideal system described in Section IV
with the proposed implementation, note the similarity.
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Fig. 8. Approximate implementation of the O(
√
n) control rule; simulation

for λ = 1000, µ = 1, β = 10 and δ = 1.

At the end of Section IV we pointed out that the (ideal)
provisioning rule, that we proposed in the same section,
should perform similarly to the rule that we analyzed in
Section III for α = δ/

√
ρ. This claim is supported by

the following table, which compares time averages of the
implementation of the policy of Section IV with the estimates
of Section III. Thus, not only the the system proposed in
Section IV behaves as described in Section III, but also its
implementation.

Time averages Estimates

E[M ] 1041 1032

E[N ] 1004 1000

E[N −M ]+ 2.10−5 10−3

Note that the algorithms described above do not require the
use of a significant amount of additional resources. Clearly,
the dispatcher should keep track of the variables α(n) and
q(m,n), updating them whenever m or n change, which
is inexpensive in terms of resources. Also, the list of idle
servers, that the dispatcher already needs to maintain, should
incorporate a tag indicating whether an idle server can be
dismissed or is reserved as over-provisioning.

VI. CONCLUSIONS

In this paper, we analyzed the dynamic behavior of feed-
back policies to scale instance deployment in the cloud under
startup lag. We focused on deriving simple control rules that
explore the tradeoffs between queueing delay and overprovi-
sioning. Based on fluid models and difussion approximations
of the underlying queueing processes, we showed that it is



possible to work under a reduced amount of queueing delay,
provided the overprovisioning is appropriately scaled with
demand. In particular we showed that a simple dynamic
version of the the square-root staffing rule of [7] reduces
queueing delay to zero while keeping the overprovisioning
scaling sublinearly with the load.

In future work, we plan to analyze the performance of this
feedback control rule when combined with distributed load
balancing algorithms.

APPENDIX A - STABILITY OF SWITCHED DYNAMICS

Proof: [of Proposition 2.1] The dynamics (2)-(1) are
piecewise-linear, switching at the line m = n, hence we
have different Jacobian matrices in the sets {m < n} and
{m > n}, respectively:

A1 =

[
−β β
−µ 0

]
, A2 =

[
−β β
0 −µ

]
.

Note that the state variable is [m n]T .
We claim that there exists a common quadratic Lyapunov

function. Namely, a positive definite symmetric matrix

P =

[
1 q
q r

]
such that ATi P + PAi is negative definite for i = 1, 2.

Let Ti and Di denote, respectively, the trace and determi-
nant of the matrix ATi P +PAi. We must find q, r ∈ R such
that P is positive definite and the next equations hold:

T1(q, r) = 2(β − µ)q − 2β < 0,

D1(q, r) = −4β(β + µq)q − (β − µr − βq)2 > 0,

T2(q, r) = 2β(q − 1)− 2µr < 0,

D2(q, r) = −4β(βq − µr)− [β − (β + µ)q]2 > 0.

The set {D1(q, r) > 0} is the interior of an ellipse, located
inside the set {q ≤ 0} and tangent to the line q = 0 at the
point (0, β/µ). Also, {D2(q, r) > 0} is the open set above
the graph of a parabola, that contains the point (0, β/4µ),
and has positive concavity. As a result, the two sets intersect,
moreover there exists δ > 0 such that (−ε, β/µ) lies in the
intersection for all ε ∈ (0, δ). Since T1(ε, β/µ)→ −2β and
T2(ε, β)→ −4β as ε→ 0, there exists some ε > 0 such the
desired matrix is

P =

[
1 −ε
−ε β/µ

]
,

which is clearly positive definite for small values of ε.

APPENDIX B - STOCHASTIC LIMITS

We describe here how the methodology in [1, Chapter 11]
may be extended to prove the results of Sections II-B and
IV.

To begin, we consider the Markov chain X = (M,N)
of Section IV, whose transition rates appear in Fig. 7. Let
Xl = (Ml, Nl) be the scaled process, obtained by replacing
λ by lλ in Fig. 7, and denote by q

(l)
v (x) the transition rate

of this process in the direction v ∈ Z2 away from state x.

A. Fluid limit

Following [1, Chapter 11] the Markov chain dynamics can
be equivalently written as:

Xl(t) = Xl(0) +
∑
v

vNv
(∫ t

0

q(l)v (Xl(τ))dτ

)
,

where Nv are independent Poisson processes with intensity
one, defined over some probability space (Ω,F ,P). It is con-
venient to introduce the centered process Yv(t) = Nv(t)− t.
Defining the rescaled process X̄l = Xl/l as before, we have:

X̄l(t) = X̄l(0) +
∑
v

v

l
Yv

(∫ t

0

q(l)v (lX̄l(τ))dτ

)
+
∑
v

v

l

∫ t

0

q(l)v (lX̄l(τ))dτ.

(13)

The classical density-dependent result from [1] is based
on the homogeneity condition q

(l)
v (lx) = lqv(x), for some

suitable maps qv; the main difference is that here homogene-
ity holds only in the limit. To address this we decompose the
transition rates into a homogeneous part and a perturbation:

q(l)v (lx) = lγv(x) + lδ(l)v (x).

Then equation (13) can be rewritten as:

X̄l(t) = X̄l(0) +
∑
v

v

l
Yv

(∫ t

0

q(l)v (lX̄l(τ))dτ

)
+
∑
v

v

∫ t

0

γv(X̄l(τ))dτ +
∑
v

v

∫ t

0

δ(l)v (X̄l(τ))dτ.

Alternatively, we write

X̄l(t) = X̄l(0) +
∑
v

v

l
Yv

(∫ t

0

q(l)v (lX̄l(τ))dτ

)
+

∫ t

0

F (X̄l(τ))dτ +

∫ t

0

Gl(X̄l(τ))dτ,

(14)

where we have introduced the vector fields:

F (x) =
∑
v

vγv(x), Gl(x) =
∑
v

vδ(l)v (x).

To prove asymptotic results based on this representation,
the key is to control the perturbation terms contained in the
vector field Gl(x). For this purpose we make the following
set of assumptions.

Assumption 6.1:
• The maps γv are bounded in compact sets, and locally

Lipschitz; particularly F is locally Lipschitz.
• The maps δlv are bounded in compact sets and

lim
l→∞

sup
x∈K
||Gl(x)|| → 0 K compact.

Note that these assumptions are valid for the Markov
chain considered in Section IV, where in particular the non-
homogenous term affects only the horizontal transitions:

Gl(m,n) = β
δ
√
n√
l

[
1
0

]
.



Fix some initial condition x0 ∈ [0,∞)2 and suppose that
the unique solution x to the initial value problem ẋ = F (x)
is defined on the interval [0, T ].

Theorem 6.2: Assume that X̄l(0)→ x0 as l→∞, then:

sup
t∈[0,T ]

∣∣∣∣X̄l(t)− x(t)
∣∣∣∣ a.s.−−→ 0 as l→∞.

The proof is essentially as in [1, Chapter 11]; the last term
in equation (14) vanishes after taking the limit as a result of
Assumption 6.1. Also, the strong law-of-large-numbers for
the Poisson process is key to control the summation in (14).

B. Diffusion approximation

Before proceeding with the diffusion approximation, we
state the following Lemma which serves as a refinement of
the weak law-of-large-numbers of the Poisson process. Its
proof follows after applying Doob’s maximal inequality.

Lemma 6.3: Consider a centered Poisson process Y with
unitary intensity.

sup
t∈[0,T ]

∣∣∣∣Y (lt)

l1−α

∣∣∣∣ P−−→ 0 ∀ T ≥ 0, ∀ α ∈ [0, 1/2).

The previous lemma allows to prove the following exten-
sion of Theorem 6.2, which will be useful later.

Theorem 6.4: Fix some α ∈ [0, 1/2). Furthermore, as-
sume that lα

∣∣∣∣X̄l(0)− x0
∣∣∣∣→ 0 as l→∞, then:

sup
t∈[0,T ]

lα
∣∣∣∣X̄l(t)− x(t)

∣∣∣∣ P−−→ 0 as l→∞.

Let x∗ be an equilibrium point of the dynamics ẋ = F (x),
and define the processes Zl =

√
l(X̄l − x∗) and

Ul(t) =
∑
v

v√
l
Yv

(∫ t

0

q(l)v (lX̄l(τ))dτ

)
.

The following relation follows from equation (14).

Zl(t) = Zl(0) + Ul(t) +

∫ t

0

√
lF (X̄l(τ))dτ

+

∫ t

0

√
lGl(X̄l(τ))dτ.

(15)

Assumption 6.5: Suppose that there exists a Lipschitz
field ∂F : R2 −→ R2 with the two following properties.
• ∂F (λx) = λ∂F (x) for all λ ≥ 0 and x ∈ R2.
• The remainder R(x) = F (x)−∂F (x−x∗) is such that

the following limit holds:

lim
x→x∗

R(x)

||x− x∗||
= 0.

Moreover, assume that there exists a field G : R2 −→ R2,
locally Lipschitz at x∗, such that:

lim
l→∞

sup
x∈K

∣∣∣∣∣∣√lGl(x)−G(x)
∣∣∣∣∣∣→ 0 K compact.

The first part of the previous assumption holds for the
density dependent families in sections II-B and IV. They
have the same drift, with γ = β in Section IV, which is

piecewise-linear, switching at the line perpendicular to the
vector v = [−1 1]T . Thus, we may take:

∂F (u) =

[
−β β
−µ 0

]
u1〈u,v〉>0 +

[
−γ γ
0 −µ

]
u1〈u,v〉<0,

which satisfies Assumption 6.5, as a matter of fact R(u) ≡ 0.
The second part of this assumption, which applies only to

Section IV, also holds taking:

G(m,n) = βδ
√
n

[
1
0

]
.

Returning to the general setting, note that we may write

Zl(t) = Zl(0) + Ul(t) + δl(t) +

∫ t

0

∂F (Zl(τ))dτ,

where δl is the following process

δl(t) =

∫ t

0

√
l
[
Gl(X̄l(τ)) +R(X̄l(τ))

]
dτ.

Now consider an independent family {Wv}v of Wiener
processes and define the processes:

U(t) =
∑
v

Wv(γv(x
∗)t), Ũ(t) = U(t) + tG(x∗).

Also, let Z be the solution to the following SDE, which we
state in integral form:

Z(t) = Z0 + U(t) +

∫ t

0

∂F (Z(τ)) +G(x∗)dτ.

Existence and uniqueness follows from standard results.
Theorem 6.6: Assume that Zl(0)→ Z0 as l→∞. Then,

Zl ⇒ Z in the Skorokhod space DR2 [0,∞) as l→∞.
It is enough to show that Zl ⇒ Z in DR2 [0, T ] for all

T ≥ 0. The strategy is, first, to prove that there exists a
continuous function φ : DR2 [0, T ] −→ DR2 [0, T ] such that:

Zl = φ(Zl(0) + Ul + δl), Z = φ(Z0 + Ũ).

Afterwards one shows that Ul + δl ⇒ Ũ in DR2 [0, T ], and
the claim follows from the continuous mapping theorem.

In order to show that such map φ exists, we fix some
f ∈ DR2 [0, T ] and use the fixed point theorem, as in the
classical proof of Picard’s theorem, to prove local existence
and uniqueness of solutions to:

ϕ(t) = x0 + f(t)− f(t0) +

∫ t

t0

∂F (ϕ(τ))dτ.

Since ∂F is uniformly Lipschitz, the size of the neigh-
borhood where local solutions exist, and are unique, is
independent of the initial condition (t0, x0). This allows to
prove that solutions defined in [0, T ] exist and are unique.
Hence, there exists a unique φ(f) ∈ DR2 [0, T ] such that:

φ(f)(t) = f(t) +

∫ t

0

∂F (φ(f)(τ))dτ.

Moreover, it is possible to prove that φ is continuous in the
Skorokhod topology.



In order to show that Ul + δl ⇒ Ũ in DR2 [0, T ], it is
enough to prove that Ul ⇒ U in DR2 [0, T ] and

sup
t∈[0,T ]

||δl(t)− tG(x∗)|| P−−→ 0 as l→∞. (16)

By the central limit theorem for the Poisson process:∑
v

v√
l
Yl (lγv(x

∗)t)⇒ U(t) in DR2 [0, T ] as l→∞.

Also, picking some α ∈ (0, 1/2) and using Theorem 6.4,
and Assumption 6.1, we see that we may write:∣∣∣∣∫ t

0

q(l)v (lX̄l(τ))dτ − lγv(x∗)t
∣∣∣∣ = O(l1−α) in Ωcl ,

for some sets such that P(Ωl) → 0 as l → ∞. Elaborating
on this it is possible to show that:

sup
t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣Ul(t)−∑

v∈D

v√
l
Yl (lγv(x

∗)t)

∣∣∣∣∣
∣∣∣∣∣ P−−→ 0 as l→∞.

This implies that Ul ⇒ U in DR2 [0, T ] as l→∞.
Finally, we may prove (16) using Assumption 6.5.
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