
Queueing analysis of service deferrals for load management in power
systems

Andrés Ferragut and Fernando Paganini
Universidad ORT Uruguay

Abstract— With the advent of renewable sources and Smart-
Grid deployments, it is increasingly common to control de-
mands in order to reduce power consumption variability
and thus the need for regulation, with load aggregators now
exploiting the deferability of some power loads to smooth the
consumption profile.

In this paper, we analyze the impact of service deferrals
and scheduling on power consumption variability using tools
from queueing theory. We consider a generic model for a
load aggregator that receive job requests, involving a certain
amount of energy to be provided and a deadline. We analyze
different scheduling policies and examine the impact of service
deferrals, quantifying the tradeoff between variance reduction
and attained deadlines.

I. INTRODUCTION

One of the basic functions of a power system is to maintain
instantaneous balance between demand and supply, due to
the limited availability of storage. Since the first-order effect
of any imbalance is a deviation of AC frequency from its
nominal value, the term frequency regulation is normally
used to describe the real-time actions by the system operator
to correct such imbalance.

Historically, frequency regulation has been implemented
by adjusting the amount of power injected by fast ramping
generators (hydro or gas turbines) in real time into the
power grid [1]. This procedure comes from the traditional
rationale of an exogenous uncertain demand, and supply
under control of the operator. However, with the advent
of renewable energy sources, supply is now also becoming
unpredictable, which may require the installation of extra
regulation capacities [2]. On the other hand, Smart-Grid de-
ployments open the possibility of controlling power demand
in real time by signaling users. While such demand response
could include modifying mean consumption levels, in the
context of short-term regulation it is more meaningful to
focus on merely deferring some consumption (heating, AC,
EV battery charging, etc.) to contribute to power balance.

Such a regulation service on the demand side could be
provided by a load aggregator (e.g., [3], [4]) making dispatch
decisions on behalf of a large enough number of individual
loads. Some recent references exploring this potential for
thermostatically controlled loads are [5]–[7]. More generi-
cally, [8], [9] analyze a collection of loads characterized by
arrival times, deadlines, and power and energy requirements.
In [8] different scheduling methods are studied from a
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numerical perspective, comparing classical approaches from
processor scheduling (earliest deadline first, least laxity first
[10]) with a model predictive control proposal. In [9] the
authors attempt to characterize the aggregate flexibility pro-
vided by such load arrival profile in deterministic terms,
invoking an equivalent electricity storage.

From a control perspective, recently [11] propose an archi-
tecture which enables the approximation of an aggregation of
loads by a linear time invariant model to enable tracking of an
external reference signal. Our previous work [12] pursues a
similar objective with fluid models of the load arrival/service
process, similar to those of large-scale queueing systems1.
Also in [12] is a study, from a fluid aggregate perspective,
of a basic tradeoff for stochastically arriving loads: deferring
service can reduce consumed power variability (and thus
helps with regulation), but also impacts quality expectations
of users in terms of meeting deadlines.

This tradeoff is the central focus of the present paper,
this time using more detailed stochastic queueing models,
and considering a wider variety of service disciplines. The
problem formulation is laid out in Section II, setting the
main assumptions and parameters. In Section III we assume
a fixed level of service deferral, and study the impact of this
choice on both the consumption variance and the probability
of missing deadlines. In particular we analyze an equal
sharing policy with tools of M/G/∞ queues, and provide
approximate results for the LLF policy. In Section IV we
consider an alternate situation in which deadlines are strictly
enforced, and the remaining laxity is administered to reduce
consumption variance. We use tools of point-process theory
and Markov processes to characterize the variability for two
relevant policies. Conclusions are given in Section V.

II. QUEUEING MODEL FOR FIXED DEFERRED SERVICE

We now formulate the problem and notation by means of
an initial queueing model, which will be later extended in
Section IV. Consider a load aggregator entity which receives
random energy requests, arriving as a Poisson process of
intensity λ. The nominal power of each request is for
simplicity taken to be a common parameter p0, but the
amount of energy Qk of request k is random. Its nominal
service time is thus given by

σk =
Qk
p0
.

1See also [13] for queueing analysis of aggregation, without deferability.



Individual load requests may also have a deadline, before
which they should have received full service. We model this
by assuming that request k has an initial laxity `k, which is
the amount of spare time or slackness it has on arrival. In
other words, each load has a service deadline of dk = σk+`k
time units after its arrival. If not served after `k time units,
laxity expires and service must be provided at full power to
meet the deadline. If remaining laxity becomes negative, the
job will miss its deadline even at full power.

Our initial focus is on the case where both σk and `k
are independent exponential random variables, with E[σk] =
1/µ and E[`k] = 1/γ. Nevertheless other cases will be
considered below and we will indicate when the results
remain valid for more general distributions.

The load profile is thus characterized by the parameters λ,
µ and γ, and the nominal power of each load p0. The mean
aggregate power needed for a given load profile is given by:

p̄ = λE[Qk] = λp0E[σk] = p0
λ

µ
, (1)

and this quantity is independent of any decision on load de-
ferral or scheduling. In particular, given the expected energy
requirements this amount of power would be purchased in
advance by the load aggregator.

At any given time t, the load aggregator has a queue of
n(t) jobs present in the system, all of which may receive
service or be deferred. To model service deferrals, we
consider a fixed service level u ∈ (0, 1], which represents
the fraction of nominal power used by the system. Under
this policy, the power consumed by the load aggregate at
any time t is:

p(t) = p0n(t)u.

Setting u = 1 represents no service deferral, all loads are
served at full power upon arrival. Choosing u < 1 means that
either fewer loads are served at any given time, or that they
are served with less power and consuming laxity, leading to
deadline misses. Once the service level is chosen, the system
has also the choice of which loads to serve, i.e. the detailed
scheduling mechanism.

If we assume that all loads are eventually served (before
or after deadline), then the average consumed power should
match the average power of the load profile given by (1) and
therefore in steady state:

p̄ = p0
λ

µ
= E[p(t)] = E[p0n(t)u],

meaning that for a fixed service level u the expected number
of loads in the system is:

n̄ =
λ

uµ
. (2)

We now state the two main objectives of the load ag-
gregator in mathematical terms. The main purpose of the
aggregation is to smooth the consumed power profile, min-
imizing deviations from the mean power p̄. Let us denote
by δp(t) = p(t) − p̄ this real-time deviation. Then our

first objective is to reduce the steady state variance of p(t),
E[(δp)2], a measure of the regulation cost.

The second objective is to serve as many load requests as
possible before their deadlines. To quantify this aspect we
introduce the deferability factor of the load profile:

∆ :=
E[`k]

E[σk]
=
µ

γ
. (3)

Let Tk denote the time load k spends in the system, and
T̄ its mean. Applying Little’s law, we have from equation
(2):

n̄ = λT̄ =⇒ T̄ =
1

uµ
=
E[σk]

u
.

This imposes a first constraint on u: in order to meet
deadlines on average we should have T̄ < E[σk + `k] i.e.

u >
E[σk]

E[σk] + E[`k]
=

1

1 + ∆
. (4)

Here η := 1
1+∆ is the minimum service level that loads

should receive to meet their deadlines, in terms of the
deferability factor. As deferability increases, η → 0 and the
system gains in flexibility, meaning that loads arrive with
larger slack time. Of course, to evaluate system performance,
other metrics should also be included, mainly the missed
deadline probability α := P (Tk > σk + `k).

Using this characterization of the load aggregator as
a queueing system, we now explore the aforementioned
tradeoffs between consumed power variability and missed
deadlines, in terms of the service level u and the scheduling
policies implemented by the system.

III. FIXED SERVICE DEFERRAL–IMPACT ON POWER
CONSUMPTION VARIABILITY AND MISSED DEADLINES

Our definition of the queueing system states that the
total output power for service level u is given by p(t) =
p0n(t)u. We now analyze two simple scheduling policies
operating under this constraint: first we consider an equal
sharing policy, where every load is served at individual
rate p0u. While this is not always possible in the context
of energy distribution, it serves as a baseline to compare
other policies. Also, it can be approximately implemented by
serving a subset of the current jobs taken at random from the
population, with probability u. This scheduling was analyzed
through a fluid model by the authors in [12].

The second case is the least-laxity-first (LLF) policy,
introduced by [10] in the context of scheduling and discussed
in [6], [7] in the context of power systems. Here the idea is
to serve first the loads with least spare time remaining, up
to the aggregate power determined by the service level.

A. Equal sharing policy

Under the equal sharing policy, every load present in the
system is served at the reduced rate p0u, thus taking longer
to finish. The time in the system is given by:

Tk =
Qk
p0u

=
σk
u



Since all requests are served in parallel, the system behaves
as an infinite server queue, with arrival rate λ and average
service time E[Tk] = 1/(uµ). In particular, the number of
loads in steady state satisfies:

n(t) ∼ Poisson

(
λ

uµ

)
.

We remark here that, since the steady state population in an
M/G/∞ queue is insensitive to the detailed characteristics
of the job size distribution, the above result holds for general
distribution of σk.

We conclude that, in steady state,

n̄ = E[n(t)] =
λ

µu
, p̄ = E[p(t)] = E[p0n(t)u] =

p0λ

µ

consistently with our previous analysis.
Our analysis can however now go further, computing the

variance of consumed power

E[(δp)2] = E[p2
0u

2(n(t)− n̄)2] = p2
0u

2Var(n(t))

= p0p̄u, (5)

where we have invoked the variance of the Poisson distribu-
tion. A more normalized way of expressing variability is the
coefficient of variation cv2(p) defined by

cv2(p) =
Var(p)

p̄2
,

which can be readily computed from (1), (5) to yield:

cv2(p) =
p0

p̄
u. (6)

So we find that variability reduces linearly with the service
level u. Also, as aggregation grows large in the sense that
p̄/p0 is large, the system reduces its variability in consumed
power.

We now turn our attention to deadline misses. The prob-
ability of missing the deadline is:

α = P (Tk > σk + `k) = P
(σk
u
> σk + `k

)
= P

(
σk
u
>

`k
1− u

)
. (7)

The previous equation can be reinterpreted as follows:
when a job arrives with service time σk and initial laxity
`k and is served at rate u, after a time dt the remaining
service time will be σ′ = σk − udt. Since its deadline is
σk + `k − dt time units ahead, the remaining laxity after a
time dt will be:

`′ = σk + `k − dt− (σk − udt) = `k − (1− u)dt.

This means that for service level u, laxity is consumed at
rate 1 − u, and (7) simply states that laxity is consumed
before service. A depiction of the equal sharing policy in
the service-laxity space is given in Fig. 1: all loads present
in the system consume service and laxity in certain fixed
proportions, therefore points move following the same vector.

Under the exponential assumptions, α can be readily
calculated by observing that σk

u ∼ exp(uµ) and `k
1−u ∼

σ

`

Fig. 1. Equal sharing scheduling for u = 1/3.
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Fig. 2. Missed deadline probability as a function of u for ∆ = 2.

exp((1 − u)γ). Using the minimum of two exponential
random variables we get:

α =
γ(1− u)

µu+ γ(1− u)
=

(1− u)

∆u+ (1− u)
. (8)

Deadline misses are decreasing in u as expected. In particu-
lar, for u = η = 1/(1 + ∆), α = 1/2.

Analogous calculations can be performed for any joint
distribution in (σ, `). For comparison purposes we compute
also the probability for deterministic service time σk ≡ 1

µ
which yields:

αds = P

(
1

µu
>

`k
1− u

)
= 1− e− 1

∆
1−u
u .

For deterministic laxity `k ≡ 1
γ the corresponding expression

is:

αdl = P

(
σk
u
>

1

γ(1− u)

)
= e−∆ u

1−u .

The three cases are depicted in Fig. 2 for a deferability
parameter of ∆ = 2. As we can see, deadline misses are
rather high even for moderate values of u > η. We turn to
an alternate policy that seeks to minimize deadline misses.
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Fig. 3. LLF scheduling for u = 1/3.

B. Least-laxity-first
The previous policy is agnostic to whether the deadlines

are about to expire. Assuming global information and central
control, it would be better to schedule service taking into
account the remaining laxity of the loads. The least-laxity-
first (LLF) policy is defined in the following way: sort
the current jobs by increasing laxity, and serve the first
k(t) = n(t)u at nominal power.2 The remaining jobs will
consume laxity until they are scheduled. The LLF policy
was introduced in the context of processor time scheduling
[10], and has been thoroughly analyzed in the case of single-
server queues (cf. [14] for a recent treatment). The difference
here is that we are dealing with an infinite server system.

A depiction of the LLF policy in service-laxity space is
given in Fig. 3. It is convenient to define the frontier process

θ(t) := sup

` :

n(t)∑
k=1

1{`k6`} < n(t)u

 . (9)

Then θ(t) represents the maximum laxity of the loads
currently in service. Loads with laxity greater than θ(t) only
consume laxity and are not served.

We now analyze the steady state occupation and power
output of the LLF policy for exponentially distributed service
times. We begin by the following:

Proposition 1: Under the LLF policy and exponential
service times, the total occupation of the system n(t) evolves
as in the equal sharing policy.

Proof: Due to the LLF definition, at any time t there are
n(t)u loads in service. Due to the memoryless property of
the exponential distribution, the service process of the system
for occupation state n(t) and service level u corresponds
to n(t)u exponential servers in parallel. Therefore, the total
population evolves as a birth-death process with birth rate
λ and death rate µnu, i.e. as in the M/M/∞ of the equal
sharing policy.

In particular we conclude that in steady state, n ∼
Poisson (λ/(µu)), the average system occupation is again

2More precisely, bn(t)uc are served at full power. The remaining power
should be allocated proportionally to the difference between n(t)u and k(t)
but this rounding error is negligible in a large scale system.
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Fig. 4. Remaining service and laxities for LLF when u > η (above) and
u < η (below), with λ/µ = 500.

n̄ = λ/(µu) and the output variance is again given by (6),
i.e. it is linear in u. This was observed empirically in [12].

We now analyze the behavior of the system when the scale
is large (λ → ∞). It was also observed in [12] that under
the LLF policy deadline misses show a sharp decline when
the service level satisfies u > η. To understand this, we
plot in Fig. 4 two simulation experiments for a system with
λ/µ = 500 and ∆ = 2 (η = 1/3). In the first case u = 0.5 >
η and the frontier process θ(t) finds a positive equilibrium
θ∗. Loads arriving with laxity greater that θ∗ consume laxity
down to level θ∗ and then they are served. In the second case,
with u = 0.2 < η, loads expire their laxities before being
served when they reach an equilibrium value of θ∗ < 0.

By applying Little’s law, we can characterize the equi-
librium value θ∗ through a fixed-point analysis. We do so
in the case where laxity is exponentially distributed. Recall
that, from Proposition 1, the average number of clients in
the system is n̄ = λ/(µu). Therefore, the average time in
the system by Little’s law is T̄ = 1/(µu). If θ∗ > 0 we can
compute the average time as:

T̄ =
1

µu
= E[`k − θ∗ | `k > θ∗]P (`n > θ∗) + E[σk].

The first term simply states that loads arriving with laxity
greater that θ∗ should wait to consume their laxity up to level
θ∗ before being served. If `k ∼ exp(γ) the above equation
becomes:

1

µu
=

1

γ
e−γθ

∗
+

1

µ
,
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Fig. 5. Empirical missed deadline probability as a function of u for LLF
scheduling with ∆ = 2 (η = 1/3) and λ/µ = 500.

or equivalently:

θ∗ =
1

γ
log

[
∆u

1− u

]
. (10)

Note that (10) yields a positive solution provided ∆u >
1 − u, i.e. u > 1

1+∆ = η. Therefore, provided u > η, the
frontier converges to a positive equilibrium and deadlines are
attained.

If θ∗ < 0, the average time must be computed as:

T̄ =
1

µu
= (E[`k]− θ∗) +

1

µ
,

which follows from the fact that loads must wait an extra
time |θ∗| before receiving service. Solving for θ∗ we get:

θ∗ =
1

γ
− 1

µ

1− u
u

. (11)

Note that provided u < η, (11) gives a negative solution, as
expected. Therefore, in steady state, the frontier converges
to a negative equilibrium and all deadlines are missed.

While the above discussion is valid in the large scale limit
(where the process θ(t) becomes constant), the approxima-
tion is indeed good for moderate values of λ, as depicted in
Fig. 5.

The main conclusion of this analysis is that, for large
scale systems using LLF, the service level can be reduced
almost up to η (thereby reducing variance), without great
impact on deadline misses. Of course, this comes at the cost
of having a complex scheduling policy: the load aggregator
should possess detailed information of the remaining laxity
of each job request in order to perform scheduling. In the
next Section we analyze a different class of policies that cope
with deadlines in a way more amenable to decentralization.

IV. POLICIES THAT STRONGLY ENFORCE DEADLINES

In the previous section the focus was on scheduling poli-
cies that reduce the global service level by a fixed amount,
and we analyzed the impact of this choice in the amount of
variability in consumed power as well as on deadline misses.
We now turn our attention to a different class of scheduling
policies: in these, we impose that no deadlines are missed,
and analyze the impact on steady state variance.

A. Exact scheduling

The first policy in this family is called exact scheduling.
Here, service requests arrive as a Poisson process of intensity
λ, each load bringing a service time σk and initial laxity `k
given by a joint density f(σ, `) in the positive orthant. Given
σk and `k, the service level for load k is chosen as:

uk =
σk

σk + `k
,

and therefore the time spent by load k in the system is:

Tk =
σk
uk

= σk + `k.

Namely, each request is served at exactly the amount of
power needed to meet its deadline. A depiction of the policy
is given in the first graph of Fig. 6. Note that this policy is
very easy to decentralize provided that loads can tune their
service level, since job requests are already aware of their
energy requests and deadline.

We would like to compute the steady state variance of
consumed power E[(δp)2] for this system. The main chal-
lenge here is that the service level is determined by the job
request characteristics. In order to express the steady state
characteristics it is better to perform the following change of
variables:

z = σ + `,

u =
σ

σ + `
.

Here z > 0 represents the amount of time spent in the system
and u ∈ [0, 1] the service level. For given z and u we can
recover the original variables as σ = uz, ` = (1− u)z. The
Jacobian is given by |J(σ,`)(z, u)| = z. The joint distribution
of (zk, uk) can be readily computed as:

g(z, u) = zf(uz, (1− u)z). (12)

Note that in these new variables, requests are served in
parallel at rate 1 along the variable z, while u is fixed
throughout service, as depicted in the second graph of Fig.
6.

The state of the system at time t is expressed through the
following counting measure [15] in R+ × [0, 1]:

Φt =

n(t)∑
i=1

δ(zi,ui), (13)

where zi represents the remaining service time of job i and
ui its service level.

With the above definitions, Φt is a measure-valued Markov
process with simple dynamics: current jobs are translated to
the left at rate 1 while new jobs arrive as a Poisson process
with marks zk, uk distributed as g(z, u) given by (12). Since
all jobs are served in parallel at rate 1 the system behaves as
an M/G/∞ queue. We have the following Theorem, derived
from the steady state characteristics of the M/G/∞ queue
[15], [16]:

Theorem 1: Under the exact scheduling policy with re-
quests distributed as f(σ, `), the distribution of Φt in steady
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Fig. 6. Exact scheduling depicted in service-laxity space and in the time-
service level coordinates.

state is a Poisson point process on R+ × [0, 1] with mean
measure density:

h(z, u) = λ

∫ ∞
z

g(w, u)dw. (14)

As a consequence of this result, average characteristics
of the steady-state process can be computed by suitable
integrals with respect to the above density; we refer to [17]
for these derivations. In particular:
• The mean number of loads present in the system is

n̄ = E[n(t)] =

∫ ∞
0

∫ 1

0

h(z, u)dzdu. (15)

• The mean aggregate power of the loads is given by

E[p(t)] = p0E [
∑
i ui] = p0

∫ ∞
0

∫ 1

0

uh(z, u)dzdu. (16)

• The variance of aggregate power is given by

Var[p(t)] = p2
0Var [

∑
i ui] = p2

0

∫ ∞
0

∫ 1

0

u2h(z, u)dzdu.

(17)

To gain some intuition, it is worth specializing the above
results to the case of exponential requests. In that case we
have:

f(σ, `) = µγe−µσ−γ`, σ, ` > 0,

and in consequence:

g(z, u) = µγze(µu+γ(1−u))z

Define ν := µu+ γ(1− u), then the steady state density is
given by computing the integral in (14) to yield:

h(z, u) = λµγ

[
νz + 1

ν2

]
e−νz.

With this density we can carry out the calculations indicated
in (15-17). In particular, it is easily checked that∫ ∞

0

h(z, u)dz =
2λµγ

ν3
,

so the mean number of customers is given by

n̄ =

∫ 1

0

2λµγ

(µu+ γ(1− u))3
du

=
λµγ

µ− γ

∫ γ

µ

2

ν3
dν

=
λµγ

µ− γ

(
1

µ2
− 1

γ2

)
= λ

(
1

µ
+

1

γ

)
. (18)

Equation (18) simply states that the average number of
customers in the system is the arrival rate λ, times the
expected service time E[σk+`k] = 1

µ+ 1
γ , consistent with the

fact that the system behaves as an M/G/∞ queue. It can also
be readily verified that E[p(t)] = p0E[

∑
i ui] = p0λ/µ = p̄,

as expected.
While service level in this system is load dependent,

an effective service level can be computed as point of
comparison, dividing the mean power consumed by the mean
nominal power of the loads present:

ueff =
E[p(t)]

p0E[n(t)]
=

λ/µ

λ
(

1
µ + 1

γ

) =
γ

µ+ γ
= η,

i.e. the exact scheduling policy works at a service level
comparable to taking u = η in the preceding policies.

More importantly, using (17) and integration by parts we
can compute the steady state power variance to be

E[(δp)2] = p2
0λµγ

[
− 1

(µ− γ)µ2
− 2

(µ− γ)2µ

+
2

(µ− γ)3
log

(
µ

γ

)]
. (19)

A more amenable measure is again the coefficient of
variation cv2(p) = E[(δp)2]/p̄2 which can be derived from
(19) and expressed in terms of the deferability factor:

cv2(p) =
p0

p̄

[
1

1−∆
− 2∆

(1−∆)2
− 2∆2 log(∆)

(1−∆)3

]
. (20)

We shall use the above expression to compare the perfor-
mance of the different policies at the end of the Section.

B. Laxity expiring policy

Finally, let us consider the following simple policy:
• Apply a fixed service level ũ ∈ (0, 1] only to loads with

positive remaining laxity3.
• If laxity of load k expires, serve the load at full power.

A depiction of the trajectories of this policy is given in Fig.
7. The main advantage of this policy is that it is very easy
to decentralize. The system operator fixes a service level ũ

3This is not an overall service level, hence the new notation ũ.
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Fig. 7. Laxity expiring scheduling for u = 1/3.

for those loads that still have laxity, and distributes this as a
common signal. When a given load reaches the point where
it cannot be deferred any longer, it starts consuming power
at maximum rate.

Under the exponential job/laxity size assumption, the
above queue has a very simple model. Let n(t) denote
the number of jobs with positive laxity and m(t) those
whose laxity has expired. Then (n(t),m(t)) is a continuous
time Markov chain with state space N2 and the following
transition rates:

(n,m) 7→ (n+ 1,m) : λ
(n,m) 7→ (n− 1,m) : µũn
(n,m) 7→ (n− 1,m+ 1) : γ(1− ũ)n
(n,m) 7→ (n,m− 1) : µm

(21)

λ

γ(1− ũ)n

µm

µũn

n

m

The above Markov chain has a product form solution:
Proposition 2: The equilibrium distribution of the Markov

process defined by (21) is given by:

π(n,m) = e−ρn−ρm
ρnn
n!

ρmm
m!

, n,m ∈ N (22)

i.e. in steady-state n and m behave as independent Poisson
random variables with parameters:

ρn =
λ

µũ+ γ(1− ũ)
, ρm =

γ(1− ũ)

µ
ρn

These average values can be rewritten in terms of the
following:

ν := µũ+ γ(1− ũ),

α :=
γ(1− ũ)

µũ+ γ(1− ũ)

With the above definition, 1/ν is the average time before
either the laxity or the service of a given job ends, and α
is the probability that the laxity expires before the job ends,
and thus the job starts service in the second queue. Note that
α has the same form as the missed deadline probability for
the equal sharing policy in the previous section. We can then
rewrite:

ρn =
λ

ν
, ρm =

αλ

µ

Noting that the output power p is p0ũ for the first n loads
and p0 for the remaining m loads, we can compute:

p̄ = E[p(t)] = E[p0(nũ+m)] = p0

(
ũ
λ

ν
+
αλ

µ

)
= p0

λ

µ

[
ũµ+ να

ν

]
︸ ︷︷ ︸

=1

= p0
λ

µ
,

as expected.
We can also quantify the deviations from equilibrium in

steady-state as:

E[(δp)2] = Var[p0(n(t)ũ+m(t))]

= p2
0(ũ2Var(n(t)) + Var(m(t)))

= p2
0

(
ρnũ

2 + ρm
)

= p2
0

λ

µ

[
1− µũ(1− ũ)

ν

]
.

where we have used that n and m are independent random
variables in steady state due to the product form distribution.

We can see that E[(δp)2] 6 p2
0
λ
µ and in fact this is

achieved for ũ = 0 or ũ = 1. The case ũ = 0 corresponds
to not giving any service until laxity expires, effectively
delaying arrival for all jobs to the second queue and losing
control on deferability. The case ũ = 1 corresponds to
serving the loads at full power upon arrival, so in steady
state m ≡ 0 and the system behaves as in the equal sharing
policy with u = 1.

Again, it is better to express the variability in normalized
units, by computing the coefficient of variation as:

cv2(p) =
E[(δp)2]

p̄2
=
p0

p̄

[
1− ∆ũ(1− ũ)

∆ũ+ (1− ũ)

]
(23)

The above expression is minimized at:

ũ∗ =
1

1 +
√

∆
,

and the minimal value of cv2(p) for this policy is:

cv2(p)
∣∣
ũ=ũ∗ =

p0

p̄

[
1− 1

(1 +
√

1/∆)2

]
.

Note that both the optimal value of ũ as well as the ratio
between optimal and maximal variance do not depend on the
arrival rate, and only on the ratio between the parameters µ
and γ for the load service and laxity times. The effective
service level in the optimal value can be computed as:

u∗eff =
p̄

p0 E[n(t) +m(t)]|ũ=ũ∗
=

1 +
√

∆

1 + ∆ +
√

∆
.
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Fig. 8. Normalized coefficient of variation for the different scheduling
policies.

It turns out that u∗eff > 1
1+∆ , consistent with the fact that

some of the loads are given full power and thus losing control
on their deferral.

As a final comparison, we summarize below the variability
measures for the four scheduling policies discussed in the
paper. For Equal Sharing and LLF we use the coefficient of
variation for the case u = η; this is the minimum value for
which LLF can comply with deadlines with high probability,
as shown before4. For the laxity expiring policy we use the
optimal value u∗ discussed above. The expressions are:

cv2(p)ES = cv2(p)LLF =
p0

p̄

1

1 + ∆
, (24a)

cv2(p)ExS =
p0

p̄

[
1

1−∆
− 2∆

(1−∆)2
− 2∆2 log(∆)

(1−∆)3

]
,

(24b)

cv2(p)ExpL =
p0

p̄

[
1− 1

(1 +
√

1/∆)2

]
. (24c)

The above expressions are plotted for comparison in Fig. 8.
As deferability increases (∆ grows), the best policy is LLF,
at the cost of having a detailed information of the current
system state. The laxity expiring policy is consequently the
worst since it only controls a fraction of the loads, with the
exact scheduling achieving intermediate results.

V. CONCLUSIONS

In this paper, we analyzed how deferring service of power
loads can be used to reduce power consumption variability,
an important problem in Smart-grid deployments aimed at
reducing frequency regulation needs. We derived a queueing
model for a load aggregator entity that manages service
requests, characterized by service times and deadlines. We
analyzed different queueing policies with different degrees of

4For Equal Sharing the fraction of missed deadlines would be high.

complexity and attention to deadlines. For these policies, we
computed the coefficient of variation of power consumption
in terms of the deferability characteristics of the load profile,
as well as the probability of missed deadlines, therefore
quantifying the tradeoff between variance reduction and
quality of service.

Several lines of future work remain open. In the case of
the least-laxity-first scheduling, a more detailed model for
general service times and laxities is in order, as well as
the transient behavior of in-service/not-in-service loads and
the frontier process. In more general terms, an economic
analysis of how users may be incentivized to cooperate by
adjusting the service level and declare their true deadlines is
an interesting line to pursue.
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