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Abstract— This paper studies peer-to-peer networks with
the objective of imposing a proportionally fair allocation of
peer upload capacity. We begin with a tutorial review on the
feasibility of achieving these allocations with idealized assump-
tions on connectivity and rate control, as well as a distributed
algorithm based on peer reciprocity that can achieve it. To
impose some of the constraints of real networks (limited number
of connections, with bandwidth imposed by lower layers) we
introduce an energy function that measures the deviations from
ideal reciprocity, and analyze methods to minimize this energy
in a decentralized way. To avoid combinatoric difficulties, as
well as to enable new peer exploration, we use a Gibbs sampler
approach, in which a Markov chain is designed with stationary
distribution determined by our energy function. This proposal is
implemented and tested in simulation, and results are compared
with other existing and proposed P2P exchange systems.

I. INTRODUCTION

In peer-to-peer (P2P) file sharing networks, scalability of

the service capacity is obtained by requiring each download-

ing client to become a server to others, contributing upload

bandwidth. Consider a scenario where a set of peers upload at

rates µi, i = 1, . . .N ; assume there are no other bottlenecks

in the network, and enough diversity of pieces so that the

total bandwidth
∑

i µi can be used for download; how should

it be distributed among the same peers, now seen as clients?

This question has been addressed by many researchers, as

will be reviewed below; often, the discussion is combined

with efforts to characterize the behavior of prevailing P2P

protocols such as BitTorrent [5]. In this paper we follow

the route of selecting a desirable objective, studying first

its feasibility in ideal terms, and progressively imposing the

design constraints of practical systems. In this process we

will provide a tutorial review of earlier literature, add some

new results, and develop a new proposal, which is then

analyzed mathematically and tested in simulation.

In general, there could be a tradeoff between performance

and fairness in the allocation rule, as studied in [7]; however,

in the scenario (dominant in practice) of only uplink bottle-

necks the second issue prevails. In this regard, a natural,

simple answer to our question is: you should get as much

as you give [11]. This proportionally fair [17] allocation

provides direct, transparent incentives for peers to contribute

[9]; additional interpretations are given in Section II. Its

feasibility can be studied by writing the mutual peer ex-

change bandwidths in matrix form [16]: the question reduces
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to a problem of matrix row and column renormalization,

studied classically by Sinkhorn [13]–[15]. Indeed, the natural

iteration of renormalizing rows and columns leads to a

reciprocity algorithm that can achieve the desired allocation,

whenever feasible.

This ideal reciprocity scheme is not easily taken to

practice. In Section III we consider two important imple-

mentation restrictions: (i) for overhead reasons, peers must

maintain simultaneous connections with only a small amount

of peers; and, (ii) due to the underlying TCP protocol, these

connections will receive an equal share of the peer’s upload

bandwidth. To study these limitations we introduce an energy

function which is zero under ideal reciprocity, and which a

practical scheme should try to reduce. Although optimizing

energy under constraints (i)-(ii) has combinatoric complexity,

we identify cases where zero energy is indeed achievable;

more generally, we characterize the algorithm in which each

peer tries to myopically reduce its portion of the energy: a

tit-for-tat structure similar to BitTorrent’s comes out naturally

from this procedure.

The final step in the implementation road is to introduce

some randomness in peer selection, which avoids traps in

a deterministic myopic algorithm, and also explores the set

of peers which will in practice vary in time. For this task

we turn in Section IV to a Gibbs’ sampler [4], designing a

Markov process guided by a potential defined in terms of our

energy function. In this regard, we note that recent papers

[12], [18] have introduced this technique in the study of P2P

systems from a network utility maximization perspective.

As we will explain, there are differences between the two

proposals, reflected in the potential functions used.

The resulting neighbor selection algorithm was tested in

simulation and compared to other existing protocols: stan-

dard BitTorrent implementations, the PropShare algorithm of

[9] which also aims for proportional reciprocity, as well as

the proposal in [12], performing well against the alternatives

in terms of reciprocity and fairness. Results are reported in

Section V and conclusions are given in Section VI.

II. PROPORTIONAL FAIRNESS AND RECIPROCITY

In this section we analyze the allocation objective outlined

above (receive as much as you get) from the point of view of

its feasibility, as well as the search for a decentralized peer

reciprocity scheme that can reach this allocation.

We begin by defining some notation. A set of N peers

shares information through a connectivity graph G: two peers

are neighbors in this graph if they can exchange information.



Let A = (aij) be the adjacency matrix of the graph, assumed

symmetric. Note that in BitTorrent parlance, we are only

modeling the behavior of leechers, who are both uploading

and downloading content. We note that aii = 0 ∀i.
We model the bandwidth sharing by a matrix Z ∈ R

N×N
+

in which the entry zij corresponds to the throughput of the

connection from peer i to peer j. The matrix Z has the

following properties:

zij = 0 if aij = 0,
∑

j

zij = µi ∀i, (1)

where we recall µi is the total upload rate of peer i.
On the other hand, the received bandwidth per peer is

obtained through the column sums

rj(Z) =
∑

i

zij ∀j.

The question that arises is how to allocate the total upload

capacity
∑

i µi among all the peers. This problem is different

from most graph-based resource allocation problems, as the

bottlenecks are in the nodes instead of in the edges.

A. Proportional allocation

We consider as target allocation the situation where each

peer receives the same bandwidth that it gives to the net-

work, that is rj = µj ∀j. This property was called global

proportional fairness in [17].

We argue that this rule provides the correct incentives

to contribute to the network. Clearly, a minimal fairness

incentive is the weaker statement that the rates rj increase

with the µj , i.e. no one receives less when contributing

more. However since by construction
∑

j rj =
∑

j µj , the

easiest way to achieve monotonicity is to set rj = µj . An

alternative, economic viewpoint is to say that all peers are

trading a single commodity, with a single price, hence the

market equilibrium requires all individual trades to balance

out. For further discussion of the incentives in proportional

allocation, including resistance to attacks, we refer to [9].

See also [1], [10] for related game-theoretic studies.

A first question is whether a matrix Z exists satisfying

rj(Z) = µj , i.e. with prescribed row and column sums; we

will call this a feasible allocation. A characterization of this

feasibility was given in [2]:

Proposition 1: Given an adjacency matrix A and a vector

of capacities µ, the following are equivalent:

(i) there exists a matrix Z with column a row sums µ and

with at least the same zero structure as A;

(ii) if A has a zero minor defined by subsets of rows R and

columns C, then
∑

i∈Rc

µi ≥
∑

j∈C

µj .

As a special case, if one only imposes a zero diagonal struc-

ture (that is, the network graph G is complete), feasibility

will hold provided no single µi is greater than the sum of

the rest. This is a mild restriction if the peer population is

large.

We note also that a feasible allocation, if it exists, solves

the optimization problem

max
∑

j

µj log(rj(Z)),with Z subject to (1);

in the language of utility maximization this is a weighted

proportional fairness criterion. To see the above, note that

the above maximization is equivalent to minimizing the

Kullback-Leibler divergence (see e.g. [3])

D(µ||r) =
∑

j

µj log

(

µj

rj

)

,

which is always non-negative (recall
∑

j rj =
∑

j µj) and

zero when r = µ.

Remark 1: This also suggests that when r = µ is infeasi-

ble, the above optimization may be a desirable objective.

B. Proportional reciprocity and the Sinkhorn iteration

The next important issue is whether the above allocation

admits a decentralized implementation, i.e. a set of mutual

exchange rules peers can follow to achieve it, without the

intervention of a central authority. In this section we review

a proportional reciprocity scheme that can achieve the pro-

portionally fair allocation, assuming a fine control of mutual

rates.

Let k be a discrete-time index that represents an exchange

slot, and let z
(k)
ij denote the bandwidth devoted by peer i

to peer j in the k-th slot. That is, for each k we have an

allocation matrix Z(k) for this network. Based on received

rates, peers must select their allocation for the following slot;

a natural rule considered in [9], [16], [17] is proportional

reciprocity: give to others in proportion to what is received

from them. Mathematically

z
(k+1)
ij = µi.

z
(k)
ji

r
(k)
i

,

or Z(k+1) = diag(µi/r
(k)
i )[Z(k)]T . This means to transpose

the matrix and renormalize rows to have sum µ. Equivalently,

one could first renormalize the columns to have sum µT , and

then take transpose. In this sense, except for the transpose op-

eration, this iteration amounts to an iterative row and column

renormalization of a non-negative matrix, a topic that was

studied classically by Sinkhorn [13]–[15] who established

conditions for convergence. This connection, found in [16],

makes it possible to obtain several results for the proportional

response iteration from the extensive literature that studied

the Sinkhorn renormalization (see [2] and references therein).

The conditions for the convergence of the Sinkhorn algorithm

are presented in the following proposition.

Proposition 2: If the scaling problem with adjacency ma-

trix A and capacities µ is feasible, then for any initial matrix

Y (with the zero structure of A) the Sinkhorn iteration

converges to a matrix Z which is a proportional allocation.

Proportional allocations are not, in general, unique, and

the limit point Z will depend on the initial condition. The

following result gives a precise characterization.



Proposition 3: Under the conditions of Proposition 2, the

limit allocation for initial condition Y is the solution to the

following convex optimization problem:

min D(Z||Y ) :=

N
∑

i=1

N
∑

j=1

zij log

(

zij
yij

)

(2)

s.t.

N
∑

j=1

zij = µi ∀i = 1, . . . , N

N
∑

i=1

zij = µj ∀j = 1, . . . , N

zij ≥ 0 ∀i, j.
Interestingly, the limit point is the closest to the initial

condition in K-L divergence (for the matrices, componen-

twise, both matrices having the same overall sum) within

the feasible set.

While the Sinkhorn iteration may converge under the

feasibility condition, we cannot say the same for the propor-

tional response. The transposing of the matrices could make

the sequence oscillate between a matrix and its transpose.

Fortunately, if the initial matrix is symmetric, then the

Sinkhorn iteration will converge to a symmetric proportional

allocation and so will the proportional response dynamics.

Corollary 4: If the initial matrix Y is symmetric, then the

limit matrix of the Sinkhorn iteration is symmetric.

Proof: Let Zopt be the optimal matrix in (2). Since

Y symmetric, the cost is a symmetric function of Z and so

are the constraints, therefore ZT
opt is also optimal. But the

objective function is strictly convex and thus it has a unique

minimum, therefore Zopt = ZT
opt.

It has further been shown in [16] that the even and odd

subsequences of the Sinkhorn algorithm always converge,

regardless of feasibility, and thus the even and odd iterations

of the proportional reciprocity algorithm also converge to

some limits. When the problem is not feasible, the Sinkhorn

iteration oscillates between two matrices in the limit. To the

best of our knowledge, it is still an open question whether

these matrices are one the transpose of the other. In that case,

the proportional response dynamics would converge even if

the Sinkhorn iteration does not.

III. IMPLEMENTATION RESTRICTIONS: DISCRETE

CONNECTIONS

The proportional response is a decentralized algorithm that

achieves the desired allocation in a P2P network. However,

problems arise if we wish to implement such algorithm in

practice. First of all, it needs a constant connection with

each neighbor peer in the network; this is impractical as

there would be too many active connections, which leads to

more overhead than is desired. Secondly, each connection

would have to be fine-tuned to a desired rate. This is

difficult to achieve, specially if you are planning on using

TCP as underlying protocol. Finally, this is a completely

deterministic algorithm and as such lacks the necessary

randomness to explore the different peering options as the

network evolves.

Before moving on to incorporate such restrictions in

the analysis, we briefly review how things are handled in

BitTorrent [5], the most popular P2P protocol. BitTorrent

peers open a maximum amount (usually four) of connections

to other peers. Using TCP connections, under normal circum-

stances (bottleneck in the upload) this leads to a uniform

split of its bandwidth between them. The main source

of (uncontrolled) differences between TCP rates would be

round-trip-times; we will ignore this issue in what follows.

The resource allocation results from the neighbor selection

algorithm, which has essentially two parts:

• The tit-for-tat part: in which each peer, every 10s,

decides to connect only with the three peers that gave

it the most in the last 20s.

• The optimistic unchoke: in which each peer, every 30s,

opens a connection to a random peer for 30s.

The result is that every peer is at any time only connected to

4 peers at most, 3 of them that are chosen based on a ranking

of the received bandwidths and the other one at random.

This algorithm, although practical and easy to implement,

yields an allocation which is not proportional in most cases.

While the tit-for-tat portion is a form of reciprocity, it falls

short of the desired proportionality: as shown in [9], it

amounts to a bandwidth auction and as a result, a peer has

only the incentive to contribute with the minimum amount

of bandwidth that will win the auction, and nothing more.

Furthermore, it does not always give the incentive for peers

to contribute to the network, since the optimistic unchoke

portion, meant to ensure randomness, gives each peer a

lower bound on received bandwidth from other peers (at least

one fourth), regardless of its contribution. This breaks the

reciprocity incentives and makes room for free riders.

There is thus room left for exploring alternatives to the

BitTorrent neighbor selection, that will more closely reflect

our design objective of proportional allocation, within the

practical constraints that have been identified. In this Section

we will address two of these constraints, which stem from

the discrete nature of connections and reliance of transport

protocols that impose bandwidth sharing:

1) Each peer can only open a maximum amount of N0

connections.

2) The upload capacity of each peer is equally distributed

between all outbound connections.

We postpone to the following section the issue of in-

corporating randomness in peer selection. Throughout this

section, N will denote the number of peers, with their upload

capacities in decreasing order: µ1 ≥ µ2 ≥ · · · ≥ µN . Again,

it is assumed there are no other bottlenecks in the network.

A. Energy driven allocations

As a means to study the impact of the above discrete

constraints on the desired reciprocity, we will introduce

an energy function E ′(Z), sum of squares of the peerwise

discrepancies in exchange rates, as follows:

E ′(Z) =
1

2

∑

i,j

(zij − zji)
2.



This function is defined over the set of allocation matrices

Z which we recall always satisfy the restrictions in (1), for

a given vector of upload capacities µ and a given adjacency

matrix A, assumed symmetric.

Proposition 5: If the row and column scaling problem

with adjacency matrix A and capacities µ is feasible, then

the allocations of minimal energy E ′(Z) = 0 are precisely

the symmetric proportional allocations

M∗ =
{

Z satisfies (1), Z = ZT
}

6= ∅.
The above follows from the theory reviewed in Section

II. The set M∗ is convex and is the intersection of the limit

sets of the Sinkhorn algorithm and the proportional response

dynamics, which make this a proper energy for our purposes.

We now begin to incorporate the discrete restrictions

imposed by the number N0 of peer connections, and the

equal bandwidth between them. At this point it is convenient

to factor out the peer bandwidths and introduce a matrix

X with coefficients in {0, 1
N0

} that stores the neighboring

configurations in terms of the fractions xij of its own

bandwidth that peer i allocates to each peer j. From it, the

rate allocation can be obtained as

Z = diag (µi)X.

Based on this, we can redefine the energy as a function of

the neighboring configurations X

E(X) =
1

2

∑

i,j

(µixij − µjxji)
2. (3)

We would like to minimize the energy E(X) with the

incorporated restrictions. The minimization now is over the

subset of stochastic matrices

ΛS =

{

X ∈
{

0, 1
N0

}N2

: xij = 0 if aij = 0;
∑

j∈S

xij = 1

}

In general, there is no explicit solution for this discrete

optimization problem, but in certain cases we can find

properties of the solution. One such case is where there

are repeated values in the sequence of upload bandwidths

{µi}, of enough multiplicity with respect to the connectivity

parameter N0. We state the following result:

Proposition 6: Suppose that N0 is even. Divide the set of

peers into K groups with the same upload bandwidth µ(k)

for each member of group k. If every group has Nk > N0

peers, there exists at least one configuration X∗ such that

E(X∗) = 0, resulting in the proportional allocation.

Proof: As we have groups of peers with the same

bandwidth, we could hope to form independent sets of

peers with the same bandwidth connected to each other, but

disconnected from the rest, thus obtaining a configuration X∗

with E(X∗) = 0. Equivalently, for each group of Nk peers

we have to find a N0-regular graph (undirected, where every

node has N0 neighbors). Fortunately, the existence of such

graphs is a known result in graph theory when N0 is even

[6] (for instance, a solution is a so-called Cayley graph). As

a result, every group of N0-regular graphs would make the

energy equal to 0 and thus yield a proportional allocation.

Remark 2: A N0-regular graph is fundamentally different

to the formation of cliques (complete subgraphs) which

has been shown to be a property of the BitTorrent tit-for-

tat mechanism [7]. A N0-order clique has by definition

N0 + 1 nodes; so unless the cardinality of the repeated

bandwidths happens to coincide with this value, the result

will be different. In fact, an algorithm that forces cliques of

fixed size can lead to severe loss in proportional reciprocity,

as portrayed in the following example.

Example 1: Suppose that N0 = 4 and N = 15, where

seven peers have µi = 10 and the other eight have µi =
1. The method of Proposition 6 forms two regular graphs

and achieves proportional reciprocity. If instead we form 3

cliques of size N0 + 1 = 5, only two of these can involve

homogeneous peers and deliver proportional reciprocity. The

third clique will have two fast peers (µi = 10) and three

slow peers (µi = 1), resulting in an allocation of r = 3.25
for the fast peers, and r = 5.5 for the slow ones. Not only is

proportionality broken, but the fast peers are being penalized!

One might think that having exact repetition of the upload

bandwidths is a very special case. However, if peers can be

grouped in classes with approximately equal bandwidth, we

can bound the minimum energy as follows.

Proposition 7: Suppose that N0 is even. Divide the set of

peers into K groups, where the bandwidths {µi} for peers

in each group occupy an interval of length δ. If every group

has Nk > N0 peers, there exists at least one configuration

X∗ such that E(X∗) ≤ δ2 N
2N0

.

Proof: Consider the same X∗ constructed in Propo-

sition 6. Write the total energy as E(X∗) =
∑

k Ek(X
∗),

adding the energy contributions of each disconnected group.

For group k we have NkN0 mutual connections, each with

energy

1

2
(µixij − µjxji)

2 ≤
δ2

2N2
0

.

Therefore Ek(X∗) ≤ δ2 Nk

2N0
and the result follows from

∑

k Nk = N .

Thus suggests that grouping peers in subsets of similar

bandwidth, of any size greater than N0, is a good strategy

to approximate the goal of proportional reciprocity. The size

of the classes will be a function of the existing set of µi’s;

the flexibility of going beyond cliques of size N0 + 1 can

lead to significant improvements.

B. Decentralized energy minimization and tit-for-tat

The question to ask at this point is: can the energy by

minimized by a decentralized algorithm? Given the combi-

natoric nature of the problem we do not expect the global

optimum to be computable, but a reasonable heuristic is to

have each peer i choose its outgoing connections seeking to

myopically reduce its own portion of the energy,

Ei(X) :=
∑

j

(µixij − µjxji)
2.



In this minimization we assume given the rates xji received

by peer i, and we introduce the notation J in = {j : xji 6= 0}
for the set of peers from which peer i is currently receiving

data. Let N in be the cardinality of this set, and note that

there are no a priori constraints on it, in principle 0 ≤ N in ≤
N − 1.

Since peer i will divide its bandwidth uniformly among

its N0 outgoing connections, the myopic optimization is just

to choose the set Jout = {j : xij 6= 0}, of cardinality

N0, to minimize the energy portion Ei(X). The following

proposition characterizes the optimal configuration.

Proposition 8: Given a set J in of peers uploading to i, a

configuration X∗ minimizes the local energy Ei(X) if and

only if it solves

max
Jout

∑

Jin∩Jout

µj . (4)

Proof: For convenience we will denote by µ̃j :=
µj

N0
,

the fraction of bandwidth allocated in a single connection

from peer j. The local energy of a given configuration X
can then be expressed as follows:

Ei(X) =
∑

j∈Jin∩Jout

(µ̃i − µ̃j)
2
+

∑

j∈Jin\Jout

µ̃2
j+

∑

j∈Jout\Jin

µ̃2
i .

Expanding the square (µ̃i − µ̃j)
2 = µ̃2

i + µ̃2
j − 2µ̃iµ̃j and

rearranging terms leads to the equivalent expression

Ei(X) =
∑

j∈Jin

µ̃2
j +

∑

j∈Jout

µ̃2
i − 2

∑

j∈Jin∩Jout

µ̃iµ̃j .

The first term above is given, and the second is fixed at N0µ̃
2
i

for all allowable configurations, so only the third term can

be minimized by choice of Jout; noting that µ̃i is fixed, and

µj = N0µ̃j , we arrive at the equivalent maximization (4).

To interpret the max-weight type condition (4), we distin-

guish two cases:

(i) N in ≤ N0. In this case it is clearly optimal in (4) to

cover the entire set J in with Jout, assigning any extra

elements arbitrarily.

(i) N in > N0. In this case only a portion of the µj

can be included. The maximum weight is achieved by

assigning Jout to the largest N0 values of {µj , j ∈
J in}.

So we see that the local reciprocity energy is minimized

by picking N0 peers that are currently giving the most

bandwidth to peer i, and assigning any extra slots arbitrarily.

Interestingly, this corresponds exactly to the tit-for-tat part of

the BitTorrent algorithm. Therefore, the myopic optimization

of our energy cost is consistent with this widespread reci-

procity mechanism.

What happens if we iterate on the above deterministic

algorithm, each peer successively updating its configuration

based on the tit-for-tat like reciprocity scheme? In general, it

is difficult to characterize the behavior of such dynamics over

a discrete set of configurations. The trajectory will depend

on initial conditions, and there is no reason to expect the

global energy-minimizing configuration will be found.

For example, the initial file-exchange may break the graph

into components, leaving some peers disconnected from

their optimal neighbors; these will never be discovered by

the above deterministic reciprocity. This suggests that a

certain amount of random exploration is required. BitTorrent

addresses this issue through the optimistic unchoke portion;

however this egalitarian file-sharing implies an important

deviation from proportionality. An alternative is studied in

the following section.

IV. INCORPORATING RANDOMNESS THROUGH THE

GIBBS SAMPLER

The fact that we have established a configuration energy

that we are attempting to minimize, suggests introducing

randomness by means of a Markov process on the set of

configurations, designed so that its invariant distribution can

be explicitly computed and concentrated on states of low

energy. This approach is often termed a Gibbs sampler [4]

and the corresponding law a Gibbs distribution. Another

commonly used name is “Glauber dynamics”.

We remark at this point that in recent work by [12], [18], it

was proposed to use this kind of approach for a P2P network

utility maximization problem, and it was argued that this

“reverse engineered” BitTorrent. In this regard, we make the

following remarks:

• The energy function used in the Gibbs approach of [12],

[18] is defined in terms of a network utility, aimed

more at performance than at fairness. This would have

impact in a situation where the rate of upload of peer

i is not equivalent for all peers j, due to other network

bottlenecks.

• The dynamics proposed in these references implies

choking one of the current peers and replacing by a

new one; the peer most likely to be choked is the one

with lowest current rate to it in the upload sense. Such a

rule is in fact consistent with the algorithm for seeders

in the BitTorrent protocol (peers who already own the

file). It is different, however, to a reciprocity scheme

based on download rates received from other peers, as

in the tit-for-tat mechanism used by leechers. The latter

is the focus of our work, and so our Gibbs proposal will

be complementary to these references.

We overview the main concepts of Gibbs measures as

applied to the problem at hand, relying extensively on the

reference [4]. A Gibbs distribution on a finite space of

configurations X is a probability measure

πT (X) =
1

ZT

e−
E(X)

T ,

where E(X) is a potential energy function, and the real

parameter is T called the “temperature”. Here ZT is a

suitable normalization constant. From the chosen form it is

intuitively clear that as the temperature becomes lower, the

distribution becomes concentrated on the minima of E . The

following is a known result in this regard.

Proposition 9: Let {X∗
1 , . . . , X

∗
K} be the set of config-

urations that minimize the energy E(X), then as T →



0+ the distribution πT converges to
∑K

i=1
1
K
δX∗

i
, uniform

distribution on the optimal set.

The above outlines an approximate method for a general

optimization problem over a discrete set X : construct a

Markov chain on X in such a way that the stationary

distribution turns out to be πT , for small T .

We are interested, however, in a special case of the above

procedure with a graph structure, and where the Markov

chain results from neighbor interactions. In our case this

graph will represent peer interactions.

Consider a finite set of sites S (the peers) and a graph

G with nodes in S and edges describing the allowable

interactions. In our case, the graph G has the adjacency

matrix A as described previously. The configuration state X
is obtained by assigning to each site i ∈ S a row vector

Xi ∈ {0, 1
N0

}N , with unit sum and xij = 0 whenever

aij = 0 (in other words, a vector of unchoked peers). The

overall configuration space coincides with ΛS given before.

Transitions in configuration space must be based on de-

centralized information to each site. In the Gibbs’ theory,

this requires the energy to be defined in a special way. First,

assign a potential to subgraphs of G, which must be zero

except for cliques. The sum of all these potentials defines

the energy. In our case, we will assign a potential VC only

to the two-node cliques C = {i, j}, by

VC(x) = (µixij − µjxji)
2

The resulting energy is the sum over all such cliques,

E(x) =
∑

C⊂S

VC(x) =
1

2

∑

i,j∈S

(µixij − µjxji)
2,

which coincides with our definition in (3). The Gibbs prob-

ability measure based on this energy is

πT (X) =

exp

(

− 1
2T

∑

i,j∈S

(µixij − µjxji)
2

)

∑

X′∈ΛS

exp

(

− 1
2T

∑

i,j∈S

(µix′
ij − µjx′

ji)
2

) .

A. Random sweep Gibbs sampler

We now define a continuous time Markov chain which

has stationary distribution πT and only involves neighbor

interactions. The only transitions that are admissible are

between configurations X and X ′ that only differ in one

row, that is, in the connections of one peer. Given X , denote

by ΛS
i (X) = {X ′′ ∈ ΛS : x′′

kj = xkj , ∀k 6= i, ∀j}, that

is, all the possible configurations that can be reached from

X changing only row i. For any X ′ ∈ ΛS
i (X), define the

transition rate

qTX,X′ = τ · pTX,X′ , where (5)

pTX,X′ =

exp

(

− 1
T

∑

j∈S

(µix
′
ij − µjxji)

2

)

∑

X′′∈ΛS
i (X)

exp

(

− 1
T

∑

j∈S

(µix′′
ij − µjxji)2

) ,

and τ > 0 is a parameter.

The main property of the chosen transition rates is that

πT (X)qTX,X′ = πT (X ′)qTX′,X ,

where we note that ΛS
i (X

′) = ΛS
i (X) for every X ′ ∈

ΛS
i (X). The above detailed balance equations imply that the

Markov chain 5 is reversible [8] and has invariant distribution

πT as required.

Additionally, note that by construction we have

qTi :=
∑

X′∈ΛS
i (X)

qTX,X′ = τ
∑

X′∈ΛS
i (X)

pTX,X′ = τ.

Therefore, the rate at which each site i transitions is common

to all sites. This kind of Markov chain is called a random

sweep Gibbs sampler. Peers stay at each configuration an

exponential amount of time, of parameter τ , after which they

choose a new configuration X ′ ∈ ΛS
i (X) with probability

pTX,X′ .

Remark 3: When the temperature T goes to zero, the

transitions of peer i are dominated by configurations that

minimize the local energy Ei; as we saw in the previous

section, these correspond to a tit-for-tat rule unchoking peers

from whom it is currently downloading the fastest, similar

to BitTorrent. The difference between this algorithm and

BitTorrent lies in the manner that we introduce its ran-

domness. Instead of having always an optimistic connection

that blindly explores another peering options, this algorithm

chooses all of its connections using the same distribution. If

at some point we reach a state with local energy close to zero

(e.g. when the peer is exchanging with other peers with the

same upload capacity), the probability of choosing a different

peer is very small, making the current configuration stable.

This is the key to obtaining an allocation as close as possible

to proportional fairness, while retaining the capability of

random search.

B. Systematic sweep Gibbs sampler

An alternative to the random sweep Gibbs sampler is

the systematic sweep Gibbs sampler, in which each site is

updated in a particular deterministic order, multiplying the

transition probabilities of each row as the sequence goes

along. It is most convenient here to define a discrete-time

Markov chain that tracks the configuration state after each

full sweep, with transition probabilities pTX,X′ now involving

changes in all matrix rows, with the following form:

pTX,X′ =
N
∏

i=1

e−
1
T
Ei(X,X′)

ZT
i

,

where

Ei(X,X ′) =
i−1
∑

j=1

(µix
′
ij − µjx

′
ji)

2 +
N
∑

j=i

(µix
′
ij − µjxji)

2,

and ZT
i are appropriate normalizing constants. Ei(X,X ′)

reflects the local energy of the i-th intermediate configuration

when transitioning between X and X ′.



The Markov chain defined before has a finite state space

and is irreducible and aperiodic, thus it eventually converges

to its invariant distribution, which can be shown to be equal

to πT . Furthermore, in this case we can bound the speed of

convergence. We state the following result, but the proof is

omitted due to space limitations.

Proposition 10: Let η be the initial distribution and P
be the transition matrix of the discrete-time Markov chain.

Denote by dV (·, ·) the total variation distance between two

probability measures. If the network is full mesh, then

dV (ηP
n, πT ) ≤

1

2
dV (η, πT )

(

1− e
−

∑

i

2µiµmax
TN0

)n

.

The systematic sweep sampler would correspond in prac-

tice to the case where each peer updates its connections after

a fixed amount of time. this is the version that we chose to

implement in the simulations below.

V. IMPLEMENTATION AND SIMULATIONS

We now evaluate the devised systematic sweep Gibbs

algorithm as a means to achieve reciprocity and fairness.

We implemented the algorithm in Matlab, and in order

to perform comparisons, we also implemented idealized

versions of the BitTorrent unchoking mechanism, as well

as the ideal proportional reciprocity based on the Sinkhorn

iteration discussed in Section II, the PropShare unchoking

algorithm of [9] and the Markov approximation approach

devised in [12].

Let us begin by briefly recalling the different algorithms.

The standard BitTorrent unchoking mechanism maintains for

each peer N0 = 4 outgoing connections. Three of these

connections are used to reciprocate other peers, and the

remaining connection is an optimistic unchoke, designed to

explore new peers. The latter is kept for several iterations

in order to allow time for the optimistically unchoked peer

to reciprocate. This algorithm has low overhead and enables

peers to find appropriate partners [7], but it has two main

disadvantages: the unchokes are based only on the ranking of

better contributors, and not in the bandwidth they provided,

which has incentives problems [9]. It also constantly searches

for new peers, allocating a substantial proportion of the

uplink bandwidth to this end, and possibly drifting away

from good configurations.

The Sinkhorn algorithm, on the other hand, focuses on

reciprocating only, by allocating proportional shares to each

connected peer. To this end, it is the best one can do

and achieves a fast convergence time. A pure proportional

response however, has two main drawbacks from a practical

perspective: it requires to keep a large amount of connections

with several peers, as well as controlling exactly the amount

of bandwidth allocated to each unchoked peer, which may be

difficult to implement in practice. More importantly, it can

get stuck in bad configurations if the initial connectivity of

peers is sparse.

The PropShare algorithm is based on the Sinkhorn iter-

ation, and was devised to correct this last problem, among

other optimizations. This algorithm allocates proportionally

to the received contributions 80% of the uplink bandwidth of
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Fig. 1. Gibbs energy evolution for the different algorithms.

a given peer. It uses the remaining 20% to explore new peers

through optimistic unchokes, much like BitTorrent. This

exploration mechanism enables the algorithm to increase

the number of connected peers. While this may achieve a

higher level of fairness, the bandwidth committed to the

optimistic search can make the algorithm drift away from

good configurations. This algorithm still suffers from the

burden of maintaining many connections and controlling the

amount of bandwidth given to each. In our simulations we

implemented an idealized version of PropShare based on

these features, not taking into account these problems, and

thus we expect our results to provide an upper bound on real

life PropShare performance.

Finally, the Markov approximation algorithm of [12] has

points in common with the one proposed in this paper. How-

ever, the main emphasis is on achieving optimal throughput

allocation by discovering the best neighbors to upload to.

Reciprocity is not taken into account and therefore it suffers

on the fairness side, as we will show.

To evaluate the algorithms, we simulated a scenario with

N = 100 peers, which belong to two categories: half of

the peers have a fast uplink connection, and the other half

are 5 times slower. Ideally, all peers should get as much

bandwidth as they give to achieve proportional fairness.

All peers can potentially connect to each other, and in the

case of Gibbs and BitTorrent, dividing bandwidth equally

between all outgoing connections. All algorithms start from

the same initial connectivity condition with N0 = 4 outgoing

connections per peer.

As a measure of the achieved reciprocity and fairness,

we evaluate two metrics: the Gibbs energy E(X) from (3)

defined in Section III, which is intended to be minimized

by the Gibbs algorithm, and also the Kullback-Leibler (KL)

divergence D(µ‖r) between the offered bandwidths µi and

the rates received by each peer ri. Recall from Section II

that the KL divergence is related to a weighted proportional
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fairness criterion, and in the optimal allocation D(µ‖r∗) = 0.

In order to correctly assess the performance of each algo-

rithm, we simulate several replications of each one of them

starting from a random initial condition, and plot the average

results for each metric. In Fig. 1, we plot the evolution of the

Gibbs energy E(x) for the different algorithms in log scale.

The Gibbs algorithm (with N0 = 4 in this case for

comparison) is designed to find a minimum of the energy

and it does so in a competitive number of iterations, at

the expense of a convergence time somewhat slower than

the remaining algorithms. The Markov approximation algo-

rithm is not good at achieving reciprocity, remaining with a

high energy. The (ideal) Sinkhorn iteration is theoretically

the best, but when facing random initial conditions with

sparse connectivity the algorithm cannot fully renormalize

the allocation, and thus it does not reach minimum energy.

The BitTorrent algorithm is assigning too many optimistic

unchokes, and this reflects on the energy achieved. Finally,

PropShare is the best alternative, at the expense of having a

greater number of simultaneous connections for each peer,

and controlling bandwidth on each one of them. The Gibbs

algorithm achieves a better reciprocity while at the same time

having only N0 = 4 open connections per peer sharing the

uplink rate equally.

As for the fairness in the resulting allocation, in Fig. 2 we

plot the aforementioned KL divergence for each algorithm.

In this case we omit the Markov approximation algorithm

since it does not pursue proportional fairness. Note that also

for this metric the best algorithms are the proposed Gibbs

sampler and the PropShare algorithm, with the Gibbs sampler

achieving better results.

VI. CONCLUSIONS

In this paper we discussed the resource allocation of

P2P networks under heterogeneity in access bandwidth. We

reviewed the proportional response dynamics and its con-

nection with the Sinkhorn iteration, remarking the benefits of

this allocation over the resulting one with BitTorrent through

its incentives. We proposed a decentralized algorithm based

on a Gibbs sampler that approximates the proportional allo-

cation while being easier to implement than the proportional

response dynamics, reaching a middle ground between the

simplicity of BitTorrent and the fairness and incentives of

the proportional response. Moreover, we explored through

simulations how the new algorithm compares to several

alternatives in an heterogeneous P2P environment, showing

good results.
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