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Introduction

Electrical vehicle (EV) adoption is currently growing exponentially.

Less carbon emissions, noise and other e�iciency benefits.

Problems:

Charging is power and energy intensive for the network.

Still, charging requires a lot of time.

We need to build a charging infrastructure to replace gas stations.
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Introduction
Some open questions...

How to estimate charging demand in a region.

How to design the public charging infrastructure.

How to design incentives for users to reduce network congestion.

What can we do to exploit flexibility in user demand to reduce power draw.
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Spatial demand problem

Spatially distributed requests
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Spatial demand problem

Spatially distributed servers
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Spatial demand problem

Minimum distance assignment, does it make sense?

Andres Ferragut, Univ. ORT Uruguay AI4OPT Seminar 2023 7/53



Spatial demand problem

Maybe it’s be�er to balance more evenly...
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Classical assignment problem

Define:

q̄i cars arrive at location i.
There are s̄j chargers at location j.
C is the cost matrix, cij > 0 is the cost of ge�ing from i→ j.

Then one would like to solve:
min

∑
i,j

cijγij,

subject to: ∑
j

γij = q̄i, ∀i,

∑
i

γij = s̄j, ∀j,

γij ∈ {0, 1}.
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Classical assignment problem
Monge transport problem, Kantorovich relaxation...

It is easier to relax the integrality constraint:

min
Π>0

∑
i,j

cijπij,

subject to: ∑
j

πij = q̄i, ∀i,

∑
i

πij = s̄j, ∀j.

Relaxation is exact if quantities are integers... [Paganini et al CDC 2022]
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Classical assignment problem
A simple example...

Assume q̄i ≡ 1 and s̄j ≡ 1, and the number of cars and chargers is the same, then:

min
Π>0

∑
i,j

cijπij,

subject to: ∑
i

πij = 1 ∀j,
∑
j

πij = 1, ∀i

i.e. Π is a doubly stochastic matrix.

The vertices of the feasibility region are exactly the permutation matrices (Birkho�
theorem), so the solution is integer valued.
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Allocation problem

If instead supply is abundant (
∑

j s̄j >
∑

i q̄i) then we can formulate:

Problem 1

min
Π>0

∑
i,j

cijπij,

subject to: ∑
j

πij = q̄i, ∀i,

∑
i

πij 6 s̄j, ∀j.
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Dual formulation

Let’s write the Lagrangian of Problem 1:

L1(Π, µ) =
∑
i,j

cijπij +
∑
j

µj

[∑
i

πij − s̄j

]
=
∑
i,j

(cij + µj)πij −
∑
j

µj s̄j.

Now minimize over Π subject to
∑

j πij = q̄i:

min
Π

∑
i,j

(cij + µj)πij −
∑
j

µj s̄j,

subject to: ∑
j

πij = q̄i ∀i.

Remark: the problem decouples over i.
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Solution structure of Problem 1

For each i, send the “mass” q̄i from location i to the “cheapest” station using the
modified cost cij + µj .

µj naturally acts as a congestion price on station j.

Example: Let cij be the Euclidean distance then:

If supply s̄j is abundant, µj ≡ 0 and the routing splits tra�ic along Voronoï cells.

When congestion occurs, µj > 0 and the a�raction region of station j is such that:

d(x, yj) + µj 6 d(x, yk) + µk ∀k 6= j

Andres Ferragut, Univ. ORT Uruguay AI4OPT Seminar 2023 13/53



Solution structure of Problem 1

For each i, send the “mass” q̄i from location i to the “cheapest” station using the
modified cost cij + µj .

µj naturally acts as a congestion price on station j.

Example: Let cij be the Euclidean distance then:

If supply s̄j is abundant, µj ≡ 0 and the routing splits tra�ic along Voronoï cells.

When congestion occurs, µj > 0 and the a�raction region of station j is such that:

d(x, yj) + µj 6 d(x, yk) + µk ∀k 6= j

Andres Ferragut, Univ. ORT Uruguay AI4OPT Seminar 2023 13/53



Examples

Gaussian distribution for demand, centered at the origin.
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Dual function

Define now:

γi(C, µ) = arg min
z∈∆

n∑
j=1

(cij + µj)zj.

where ∆ is the unit simplex, then:

π∗ij(C, µ) = q̄iγij(C, µ),

and
D1(µ) =

∑
i

q̄i min
j

(cij + µj)−
∑
j

µj s̄j,

piecewise-linear and concave, with super-gradient

∂jD1 =
∑
i

q̄iγij(cij + µj)− s̄j.
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Explicit congestion penalty

We may also use a so� constraint on s̄j :

Problem 2

min
Π>0,s>0

∑
i,j

cijπij +
∑
j

φj(sj),

subject to: ∑
j

πij = q̄i, ∀i,

∑
i

πij = sj, ∀j.

Here φj(·), increasing and convex, φj(0) = 0, measures congestion at node j.
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Explicit congestion
Lagrangian duality

Problem 2 is always feasible, and extends the range to sj > s̄j which amounts to waiting
for service. Its Lagrangian is:

L2(Π, s, µ) =
∑
i,j

cijπij +
∑
j

φj(sj) +
∑
j

µj

[∑
i

πij − sj
]

=
∑
i,j

(cij + µj)πij +
∑
j

[φj(sj)− µjsj] .

The minimum over Π is the same as before.
The minimum over s is the negative of the Fenchel transform of φ:

φ∗j (µj) = min
sj
{µjsj − φj(sj)}.
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Dual function

The dual function becomes:

D2(µ) =
∑
i

q̄i min
j

(cij + µj)−
∑
j

φ∗j (µj).

If φj is increasing and di�erentiable, then the optimum should satisfy:

φ′j(s
∗
j ) = µj,

and we have the following gradient:

∂jD2(µ) =
∑
i

q̄iγij(cij + µj)− [φ′j]
−1(µj).
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Dynamic load balancing

The previous analysis considered a “one-shot” allocation, but in practice:

Requests will arrive asynchronously.

The system should generate incentive compatible congestion signals.

If demand is stationary, the dynamics should converge to an equilibrium consistent
with what a central planner would do.

Here is when queueing theory and fluid models come into play!
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System model

Each location i receives a flow of requests at rate ri(t) requests/sec.

The load balancing rule (to be designed) splits input flows into rates rij(t) from
location i to station j.

The total flow rate into station j is thus aj :=
∑

i rij .

The state variable sj(t) reflects the current assignment of station j; if it exceeds
capacity s̄j , we allow the possibility of waiting for service.

The state evolution corresponds to the fluid queue

ṡj = aj − dj(sj),

where dj is the departure rate from station j, dj(0) = 0.
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System model
Adding congestion signals

Key idea

Use time as the common ground for transportation and congestion costs.

Let cij be the transport time from i→ j (e.g. 1
ν d(xi, yj))

Let µj be the waiting time at server j.

Then cij + µj is the total delay before service.

Selfish drivers then split according to

rij(t) = riγij(C, µ(t))

with γij as before.
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System model
Fluid queue model

A natural fluid model for the waiting time would be:

µj :=
[sj − s̄j]+

dj(sj)

[sj − s̄j]+ is the excess number of requests at station j, i.e. the queue.

Dividing by the departure rate we get the time to get service.
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System dynamics

The complete dynamics in the occupation state varible sj are then:

ṡj =
∑
i

riγij(C, µ)− dj(sj),

µj =
[sj − s̄j]+

dj(sj)

Remark: We still need to model the departure rate. We developed two di�erent choices:

Sojourn-time model→ customers have fixed sojourn times.

Service-time model→ customers have fixed service requirements.
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Sojourn time model

Assume users have a time budget that must be split between reaching the station,
waiting for service and ge�ing service.

In order to maximize service time, selfish users will seek to minimize cij + µj .

If T is the average sojourn time, the departure rate is:

dj(t) =
1
T
sj(t),

The queueing delay (congestion price) becomes:

µj(sj) =
[sj − s̄j]+

dj(sj)
= T

[
1− s̄j

sj

]+

.
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Sojourn time model

Congestion price:

µj(sj) = T
[
1− s̄j

sj

]+

.

s̄ s

µ

Penalty function:

φj(sj) :=

{
0 sj ≤ s̄j,

T
(
sj − s̄j + s̄j log

(
s̄j
sj

))
sj > s̄j.

s̄

φ′(s) = µ(s)

s

φ
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Equilibrium

Let q̄i = riT be the steady state number of customers in the system from location i, then:

Theorem
The following are equivalent:

(a) s∗ is an equilibrium point of the dynamics. In particular, with µ∗j = φ′j(s
∗
j ) there exists

a split γ∗ ∈ γ(c, µ∗) such that a∗j =
∑

i riγ
∗
ij = dj(s∗j ). Set π∗ij = q̄iγ∗ij .

(b) (π∗, s∗, µ∗) is a saddle point of the Lagrangian L2 of Problem 2.

So the distributed load balancing equilibrium solves:

min
Π>0

∑
i,j

cijπij +
∑
j

φj(sj),

with the preceding barrier function.
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Stability

Theorem
The dual function D2(µ) for Problem 2 is non-decreasing along trajectories of µ(t) arising
from the sojourn-time dynamics.

Proof:

d
dt
D2(µ(t)) =

∑
j

∂D2

∂µj
µ̇j =

∑
j∈J

[∑
i

riTγj(cij + µj)− [φ′j]
−1(µj)

]
︸ ︷︷ ︸

=Taj−sj

µ̇j

=
∑
j

[Taj − sj)]︸ ︷︷ ︸
=T ṡj

T
s̄j
s2j
ṡj =

∑
j∈J

s̄j

(
T ṡj
sj

)2
> 0.

Combined with a LaSalle type of argument, we get asymptotic stability.
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Service time model

Assume users arrive at location i with rate ri.

They have a service requirement, with average service time T0.

The number of tasks in service at station j is min{sj, s̄j} so the departure rate is:

dj(t) =
min{sj, s̄j}

T0
.

The congestion signal becomes:

µj(sj) =
[sj − s̄j]+

dj(sj)
= T0

[
sj
s̄j
− 1
]+

.
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Service time model
Complete dynamics

The complete dynamics are:

ṡj =
∑
i

riγij − dj,

dj =
1
T0

min{sj, s̄j},

µj = T0

[
sj
s̄j
− 1
]+

,

γij = arg min
j
{cij + µj}
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Service time model
Stability condition

Now the total service rate available is
∑

j s̄j .

So the natural stability condition is:∑
i

riT0︸︷︷︸
q̄i

6
∑
j

s̄j

This is exactly Problem 1 feasibility condition!
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Service time model
Equilibrium

Theorem
Let q̄i = riT0 and that the stability condition holds, then:

(a) If s∗ is an equilibrium point of the dynamics, there exists a choice of split
γ∗ ∈ γ(c, µ∗) such that a∗j =

∑
i riγ

∗
ij = dj(s∗j ). Set π∗ij = q̄iγ∗ij ; then (π∗, µ∗) is a

saddle point of the Lagrangian L1.
(b) Let (π∗, µ∗) be a saddle point of the Lagrangian L1 of Problem 1. Define:

s∗j =

{∑
i π
∗
ij if µ∗j = 0;

s̄j
(
1 +

µj
T0

)
if µ∗j > 0;

Then s∗ is an equlibrium of the dynamics.
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Service time model
Equilibrium

Remark: Note the di�erence between the equilibrium occupation s∗ per station, and the
allocation of Problem 1, ŝ. The la�er will always be bounded by capacity, whereas the
former will exceed it at congested stations.

Remark: Part (b) requires condition
∑

j s̄j ≥
∑

i q̄i for feasibility of Problem 1 and
therefore existence of equilibria. Substituting q̄i = riT0 we arrive at the stability
condition stated prior to the theorem.
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Service time model
Stability

The dynamic analysis in this case strongly parallels that of the previous problem.

Proposition

The dual function D1(µ) for Problem 1 with q̄i = riT0 is non-decreasing along trajectories.

Proof:

d
dt
D1(µ(t)) =

∑
j

∂D2

∂µj
µ̇j =

∑
j

[∑
i

riTγj(cij + µj)− s̄j

]
︸ ︷︷ ︸

=T0aj−sj

µ̇j

=
∑
j∈J

[T0aj − s̄j]
T0
s̄

[aj − s̄j] =
∑
j∈J

T 2
0
s̄j

(ṡj)
2 ≥ 0;
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Simulations

We now present some simulations for the sojourn time model:

Cars arrive as a Poisson process of intensity r = 4 EV/min. in the square
[0, 1]× [0, 1].

Spatial distribution is a centered Gaussian.

Exponential sojourn times with T = 60 min.

Average number of customers: rT = 240.

Car speed is v = 0.1, so the maximum travel time is ≈ 7 min.
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Simulations
Example 1

t

Stations located at the center of the
square and on the vertices.
s̄j ≡ 60 amounts to 300 chargers.
The central location becomes
congested due to high demand in the
region.
Problem 2 equilibrium:

s∗1 = 64.4, s∗j = 42.4, j = 2, . . . , 5,

and the congestion price µ1 = 4.1
minutes.

A�raction regions
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Simulations
Example 1
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Simulations
Example 2: randomly chosen locations

Again 5 stations, but located at random
points in the square.
Rest of the parameters as before.
Problem 2 equilibrium:

s∗1 = 48.9, s∗2 = 61.8, s∗3 = 61.6,
s∗4 = 49.5, s∗5 = 12.3.

Two stations become congested (the
ones near the center of the region).
µ∗2 ≈ 1.7 and µ∗3 ≈ 1.5 according to
Problem 2.

A�raction regions
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Open questions

Space is discretized in our model, but it works great for distributed arrivals.

Show convergence of the underlying stochastic model to the fluid limit.

• Should be farly straightforward, but devil is in the details...

Di�usion approximations around equilibrium?

• Switching equations pose an issue (the min{sj, s̄j} term)...

Consider abandonments, incoming vehicles, etc. etc.
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Spatial estimation
Ongoing work...

Motivation:

We would like to know how much energy will EV cars need and where.

Idea: use current consumption measures at gas stations.

Convert to kilometers and then to energy using e�iciencies.
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Spatial estimation
Main problem

Let X ⊂ R2 be a region of the plane.

Assume you have a demand density g(x) : X → R+ that you want to estimate.

Problem:
You can only have an estimate of:

yi =

∫
Vi

g(x)dx

where Vi is a cell associated to measurement site si.

Example: si are the gas stations, you only have access to total demand, Vi is the
“a�raction region” of the gas station.
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Spatial estimation
Radial basis functions

We use Gaussian Radial Basis Functions to approximate g(x).

Using a sum of squares loss:

L =
∑
i

[∫
Vi

g(x; θ)dx − yi

]2
we can perform gradient descent.

Nice Montecarlo trick to estimate the integrals, relates to stochastic gradient
descent.
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Spatial estimation
Radial basis functions
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Spatial estimation
Radial basis functions
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Spatial estimation
More detailed model

A second model distinguishes among requests:

Requests come from a spatial Poisson process of intensity λ(x).

Each request needs some exponential amount of service of parameter ν.

You only have access to:
yi =

∑
n

σn1{n∈Vi}

where σn are the (iid) individual requests.
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Spatial estimation
Maximum likelihood approach

For the second model, there is a hidden variable which is the number of requests.

Using ideas from hidden Markov models, we can perform a maximum likelihood
estimation of both λ(x) and ν.

For the λ(x; θ) we use RBFs again.
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Take home messages...

EVs are popping up, we have to prepare the infrastructure.

We showed how a simple routing rule can handle congestion.

Lagrangian duality decentralizes the problem using natural congestion signals.

The algorithm is incentive compatible, so users’ choices are natural.

We also discussed how to estimate demand in order to build the correct
infrastructure.
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Thank you!

Andres Ferragut
ferragut@ort.edu.uy
h�p://aferragu.github.io


	Spatial load balancing
	Dynamic queueing model
	Stability results
	Simulations
	Estimating spatially distributed demand
	Final remarks

