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Abstract— This paper considers the role of a demand ag-
gregator that manages a large number of consumer loads,
with the objective of participating in the frequency regulation
market. The key feature to be exploited is load deferrability in
time, which enables the aggregator to adapt the consumption
profile and thus reduce its own consumption of regulation, and
even be a provider of regulation services to others. Rather
than a microscopic model that considers individual loads and
their scheduling, we consider here a macroscopic viewpoint
drawn from fluid models of queueing systems. Here the state
variable is the quantity of currently dispatchable loads, and the

control input dictates the fraction of those which are currently
active. The dynamics is a simple nonlinear ODE that allows
us to design a controller with a feedforward term to track an
external regulation reference, and a feedback term to reduce
the impact of random load oscillations, in an agnostic way to
the microscopic scheduling. The performance of this controller
is evaluated by simulation using practical regulation signals.

I. INTRODUCTION

Matching demand and supply in electric power systems is

a complex task, given the well-known limitations in storage.

Typical solutions involve markets at different time-scales

(day ahead, hour ahead) in which quantities of power are

traded to match demand forecasts, and ancillary services

(reserves and regulation, see [9]) that are summoned close

to real-time by the system operator (SO) to achieve the

necessary balance. Of these services, frequency regulation

occurs at the shorter time basis, with the objective of keeping

frequency in its nominal value (50 or 60Hz). Providers

of such regulation service receive a SO signal every few

seconds, and must alter their power to track this reference.

This service has been traditionally provided by fast re-

sponding generators like hydro or gas turbines, which are

already in the system providing some nominal power, and

offer variations around it. For example, a seller of 500

MW of energy who commits 100 MW of regulation must

be able to quickly vary its generation output in the range

[400MW, 600MW], following a normalized SO command

in the range [−1, 1]; when receiving for instance the signal

value 0.5 it moves to deliver 550 MW of power.

The requirement for regulation, which traditionally arose

from load uncertainty, is increasing due to the rise of renew-

able energy sources. These are non-dispatchable and face

significant real-time variability; their impact on regulation

requirements is expected to be significant [7]. A natural

alternative to supply-side regulation is to exploit the response

capabilities of the demand side, which are becoming avail-

able with the deployment of smart grid technologies [15].
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Indeed, the intrinsic deferrability of some loads (heating, AC,

EV battery charging, etc.) may help with regulation. A fully

distributed proposal in this vein is [17], where appliances

individually respond to measured frequency deviations.

Now, to have impact on frequency regulation similar to

a medium sized hydro turbine it is necessary to control

thousands of individual loads, so it makes sense to frame

the problem at the level of a load aggregator (e.g. [2], [4]).

By making load dispatch decisions for a cluster of loads,

such aggregators could provide similar ancillary services as

generators provide today.

Some recent work that considers this approach is now

briefly surveyed. In [5], [6], [10] the focus is on Thermostat-

ically Controlled Loads (TCLs) which maintain temperatures

using a hysteretic ON-OFF control. Manipulating such cycle

within the temperature constraints allows for flexibility in

power consumption, exploited to provide ancillary services.

In [5] a collection of TCLs is characterized by an equivalent

battery model. In [6] the potential of this approach is demon-

strated with practical data from California. More relevant to

this paper is another line of work [11], [18] that exploits the

time deferrability of generic loads, characterized by arrival

times, deadlines, and power and energy requirements. In

particular [18] investigates different options for scheduling

such deferrable loads, comparing classical approaches from

processor scheduling (earliest deadline first, least laxity first,

see e.g. [8]) with a model predictive control proposal tailored

to the power setting. In [11] the authors attempt to charac-

terize the aggregate flexibility provided by such load arrival

profile, again in terms of electricity storage.

The present paper also employs an aggregate characteriza-

tion, in this case with techniques from large-scale queueing

systems1. We employ a fluid ordinary differential equation

model to track the population of loads under the potential

of being serviced, and the macroscopic control decision of

load deferral becomes a continuous control input. This allows

standard methods from control theory to be brought to bear

to analyze the regulation capabilities of such an aggregate.

We start in Section II with a deterministic ODE model, and

derive a suitable feedforward controller to achieve regulation

tracking. Our model is refined in Section III by incorporating

noise fluctuations, and a feedback control is designed to

reduce them. In Section IV we combine noise reduction

and reference tracking into an overall control design, whose

performance is evaluated with real-life regulation signals

from [14]. Conclusions are given in Section V.

1See also [1] for queueing analysis of aggregation, without deferrability.



II. REGULATION TRACKING THROUGH LOAD DEFERRING

Consider a demand aggregator that manages a large set

of loads on the power system. This agent should have an

estimation of the aggregate power demand profile for a time

period (e.g. the following day), and will use the forecast

to purchase this average power in the forward market.

Regulation comes into play to deal with real-time variations

around these predicted values.

Assume first that none of the loads are deferrable: in that

case the aggregator has a randomly varying load profile that

deviates from the forecast and so it becomes a consumer

of regulation services, which must be obtained through the

SO. Suppose instead that a portion of the loads is deferrable

in time; this flexibility can be exploited to align as much

as possible the consumed power to the forecast, reducing

the regulation power requirement. When load deferrability

is large the aggregator could eliminate the need to purchase

regulation, as long as the total energy requirement has no

bias. Furthermore, it could exploit the flexibility to become

a supplier of regulation services to others in the network.

We begin in this section with the last scenario. We assume

load demands arrive according to a predictable profile, and

will use the option of deferring service to match the power

consumption to an external reference. Suppose demands

arrive at the aggregator at a rate λ, each requiring a mean

amount of energy Q0 and power output p0. In real life such

quantities will be time-varying, following a time-of-day load

profile; since regulation occurs at a fast time scale we will

ignore this issue, working over a time horizon where these

quantities can be considered constant.

Let n(t) denote the number of loads at disposal in the

system to be serviced. Each load requires an average service

time τ = Q0

p0

from the system, provided it is serviced at full

power. To characterize the deferrability of loads we introduce

a time window parameter h that represents the mean deadline

for service. The loads are deferrable if this time exceeds the

minimum service time, i.e.

h > τ =
Q0

p0
.

A. Fluid model of load deferrals

The load aggregator may choose to serve the loads at a

fraction of the power, or alternatively, serve only a fraction of

the loads and defer the others. Our macroscopic model will

be agnostic to these details. Let u(t) ∈ [0, 1] be the service

fraction. A simple model for the evolution of the system is

the following first-order state-space system:

ṅ(t) = λ− 1

τ
n(t)u(t), (1a)

p(t) = p0n(t)u(t). (1b)

Here, the number of dispatchable loads grows as new de-

mands arrive, whereas the second term accounts for service

completions: n(t)u(t) is the number of active loads, each

completed at rate 1/τ . The instantaneous power consumption

is then the average power times the number of active loads. A

more complete justification of this model from a queueing

perspective is given in Section III, but we begin here by

analyzing some of its properties.

Let us analyze first this system for a fixed value of u(t) =
u∗. Imposing equilibrium in (1) we obtain:

n∗ =
λτ

u∗
, p∗ = p0λτ = λQ0. (2)

In equilibrium, the amount of serviceable loads in the system

is increased by the deferral action u∗. Note however that

the average power output from the system is independent

of u∗, and equal to the average energy per request times

the frequency of requests. This amount of power is the

predictable component of the demand and can be purchased

in advance for the time-period considered.

A second conclusion of (2) is that, if only a fraction u∗ of

the loads are active at a given time, the average time spent

by each request in the system is τ/u∗. We would like this

to be below the deadline h, which imposes a first condition

on the choice of u∗:

u∗ >
τ

h
=

Q0

p0h
=: η.

Here η ∈ [0, 1] is a measure of deferrability of the loads

(more deferrability for smaller η).

We would like to analyze this system with input u(t)
and output p(t), in order to understand which class of

signals can be tracked by using the power fraction as a

control input, while keeping with the deadline constraint.

We do so by linearizing the system around the equilibrium

point n∗, p∗, u∗. Denoting by δn, δp and δu the deviation of

variables from equilibrium, the linearized dynamics are:

˙δn = − 1

τ
u∗δn− 1

τ
n∗δu, (3a)

δp = p0 (u
∗δn+ n∗δu) . (3b)

The transfer functions associated with the above system in

the Laplace domain can be readily computed to yield:

Gun(s) :=
δ̂n

δ̂u
=

−n∗

τ

s+ u∗

τ

,

Gup(s) :=
δ̂p

δ̂u
=

p0n
∗s

s+ u∗

τ

;

and will be useful in the subsequent analysis.

B. Tracking a reference signal

The control objective is for the power output to track a

reference signal r(t), which is of the form r(t) = r∗+δr(t).
Here r∗ is the nominal power consumption negotiated with

the grid in advance, thus r∗ = p∗ = λQ0 assuming the

forecast for the mean load is accurate. The variation to track

will have the form

δr(t) = θ r∗ρ(t), (4)

where θ ∈ [0, 1] is the fraction of the nominal consumption

power that is offered for regulation, and ρ(t) ∈ [−1, 1] is the

regulation signal sent by the SO, as discussed in Section I.
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Fig. 1. Controller design for tracking the regulation signal

A first proposal to achieve the desired tracking is through

a feedforward controller, as depicted in Fig. 1. Observe that

by choosing C(s) as:

C(s) =
1

Gup(s)
=

s+ u∗

τ

p0n∗s
=

1

p0n∗

(

1 +
u∗

τs

)

, (5)

the linearized system should be able to match deviations in

the regulation signal δr.

Noting that p0n
∗ = p0λτ/u

∗ = r∗/u∗, the above

proportional-integral law can be expressed in the time do-

main as follows:

δu(t) =
u∗

r∗

[

δr(t) +
u∗

τ

∫ t

0

δr(w) dw

]

.

Now replacing with (4) and noting τ = ηh leads to

δu(t) = u∗θ

[

ρ(t) +
u∗

ηh

∫ t

0

ρ(w) dw

]

. (6)

Of course, the control input is subject to the saturation

constraint u(t) ∈ [0, 1] (or even u(t) > η for all t to be

covered for deadlines). Consequently, the above expression

indirectly constrains the class of regulation signals ρ(t) that

our system can track; in particular ρ(t) must have mean-

value zero, otherwise the integral term will necessarily lead

to saturation; in fact ρ(t) should not have a persistent sign

for too long, in relation to the mean deadline h.

To illustrate the behavior of the proposed controller, we

simulated the system driven by a real-life regulation signal

ρ(t) taken from [14]. We considered a random profile of

loads arriving at the aggregator as a Poisson process, of

rate λ = 4 jobs per minute, with (exponentially distributed)

energy request of mean Q0 = 2 kWh, and power p0 = 1 kW

when serviced. The fraction of serviced loads u(t) is driven

by (6), the output of the linear controller around a fixed

equilibrium value of u∗ = 0.5 and includes the effect of the

saturation constraint u(t) ∈ [0, 1]. Of the possible scheduling

policies based on u(t) (described in more detail in Section

III) we chose here a random selection for the fraction of

served loads; however this choice has minimal impact.

Simulation results are shown in Fig. 2, corresponding to

θ = 0.5; we see that the aggregator output closely matches

the regulation request. Thus the aggregator can offer 50%
regulation around the average power p∗ = 240 kW.

We do notice, however, some tracking errors which are

attributed to the randomness in the system. Depending on

their entity, such errors may result in practice in penalties

for not following the correct profile [12]. It is thus important

to understand these fluctuations, which are not captured by

our ODE model (1). In the next section we tackle this issue

with tools from queueing theory analysis.
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Fig. 2. Tracking of a power regulation signal via service deferrals.

III. IMPACT OF UNCERTAINTY ON REGULATION

To incorporate randomness we will consider a more de-

scriptive stochastic model. Assume that loads arrive at the

aggregator as a Poisson process of intensity λ, each request-

ing a random amount of energy following a exponential

distribution of mean Q0. If the system feeds loads at a

fraction u∗ of the maximum power, the number of loads

present in the system N(t) behaves as an M/M/∞ queue

[16] with arrival rate λ and service completion rate:

µ =
p0u

∗

Q0

=
u∗

τ
.

If the arrival rate λ is large, the random process N(t) can

be well approximated by a deterministic trajectory following

the ODE (1); perturbations around the equilibrium value can

be approximated by a random noise input to (1).

In mathematical terms, let L a scaling factor, and NL(t)
represent the random process with arrival rate Lλ. Provided

NL(0)/L → n(0), the rescaled random process satisfies:

N̄L(t) =
NL(t)

L
→L→∞ n(t)

uniformly over compact sets, where n(t) is the solution of

(1) with fixed u = u∗ and initial condition n(0) [16].

As for variability around equilibrium, a diffusion approx-

imation can be performed. If the initial condition satisfies

NL(0)/L = n∗, then n(t) = n∗ ∀ t and the random process

δNL(t) =
NL(t)− Ln∗

√
L

converges in distribution [16] to the solution of the following

stochastic differential equation:

˙δn = −µδn+
√
2λv0(t),

where v0(t) is stationary white noise of unit power spectral

density2. The factor 2λ in the net noise power spectrum

comes from the two sources of variability, arrivals and depar-

tures, each contributing a term λ, associated with the Poisson

arrival and departures. This type of variability analysis has

been used before by the authors to track population profiles

2A more formal version is d(δn) = −µδndt +
√
2λdW , where W (t)

is standard Brownian motion. Such δn constitutes an Ornstein-Uhlenbeck
process. For second order analysis, however, the above description suffices.



in P2P network applications [3], [13], which have the same

type of fluid model as our present system.

A. The impact of uncertainty on regulated power

The presence of noise at the input of our system means

that the output power will deviate from its intended value.

To evaluate this impact we begin with the situation of a

fixed deferral policy u ≡ u∗, which in the absence of noise

would produce a constant consumption of power p ≡ p∗.

In the presence of noise, the output variations in power are

characterized by incorporating the noise into (3):

˙δn = − 1

τ
u∗δn+ v, (7a)

δp = p0u
∗δn; (7b)

where v(t) is white noise of power spectral density Sv(ω) ≡
2λ. The transfer function from the noise input to the output

δp is given by

Gvp(s) =
p0u

∗

s+ u∗

τ

. (8)

The noise variance at the output of this stable filter can be

found (see e.g., [19]) from the corresponding H2 norm:

E
[

(δp)2
]

=

∫ ∞

−∞

|Gvp(jω)|2Sv(ω)
dω

2π

= ‖Gvp(s)‖2H2
2λ

= (p0u
∗)2

τ

2u∗
2λ = p∗p0u

∗. (9)

A first conclusion is that choosing u∗ < 1 can reduce

the variability of the instantaneous power consumption p(t),
with respect to the case of non-deferrable loads. Here we

see the favorable impact of the flexibility of deferring loads

in smoothing out the power profile, even if this deferral is

chosen in a fixed, uncontrolled way. It appears one should

work with u∗ as small as possible, but of course this runs

against the deadline constraint expressed in mean value by

u∗ > η; indeed, as u∗ → η there will be increased probability

of loads missing their deadlines.

To further optimize the system to minimize this possibility,

the exact scheduling of the loads must be taken into account.

Proposals such as earliest deadline first (EDF) or least laxity

first (LLF) [8] should be incorporated to cope with the

deadlines. Here we analyze three possibilities:

• Equal sharing: The load aggregator chooses to serve

all present jobs with power p0u
∗. While this may be

an infeasible policy in practice, it serves as a reference

point for analysis. It corresponds to the Processor Shar-

ing discipline of queueing theory.

• Random: The load aggregator chooses a fraction u∗ of

the available jobs at random. This policy is very easy to

implement in a decentralized environment, by distribut-

ing the value of u∗ and the loads choose whether to

become active or not based on a local random variable.

• Least-Laxity-First (LLF): Here, the load aggregator

chooses a fraction u∗ of the loads ordered by decreasing

laxity, i.e. the remaining amount of time before the job

needs to become active in order to meet its deadline [8].

We simulated the system using these scheduling policies

and different values of u∗. In Fig. 3 we show confidence

intervals (obtained through multiple runs) for the standard

deviation of the measured noise power, and compare them

with the theoretical value. We observe that power variability

is oblivious to the exact scheduling performed, and correctly

captured by the analysis. In other words, the main knob a

load aggregator has to reduce variability in power consump-

tion is reducing the fraction of serviced loads u∗.
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Scheduling does have an impact, however, in meeting the

load deadline requirements. In Fig. 4, we plot the fraction

of loads that finish with expired deadlines for the different

scheduling policies. The equal sharing and random policies

behave in the same way, with a smooth decrease of expired

jobs as a function of u∗. In the case of LLF, which takes

deadlines explicitly into account, there is a sharp decrease

in expired jobs after u∗ > η. This means that, provided

the system can implement a suitable scheduling policy, the

value of u∗ can be reduced towards the minimum η, thereby

reducing regulation requirements.
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different scheduling policies.

B. Optimizing regulation requirements through feedback

In our analysis of system noise so far we only considered

a fixed, static choice of the load deferral fraction, captured

by the parameter u∗. However, further improvements could



be sought by controlling the variable u(t) in feedback, in

this case using as natural measurement the state n(t).
We now analyze such a scenario. Consider again the

linearized system from (3) restoring the input δu and adding

the noise v, with output δp:

˙δn = − 1

τ
u∗δn− 1

τ
n∗δu+ v, (10a)

δp = p0 (u
∗δn+ n∗δu) ; (10b)

where again v(t) is white noise of power spectrum 2λ.

Since we are working with stochastic noise and signal

variances for performance, a natural feedback design strategy

is H2-optimal control, seeking to minimize for instance

J := E[(δp)2 + β(p∗)2(δu)2], (11)

weighted sum of the regulation error variance with a penalty

on control effort. The latter penalization is natural to induce

the control input to stay within its saturation limits3.

Noting that we are in a state-feedback situation, the

optimal H2 control [19] will have the form of a static state

feedback δu = −Kδn; in this scalar case we can work

directly with the gain K , more conveniently written as

K =
u∗

n∗
a (12)

with the parameter 0 6 a < 1.

Substituting the feedback law in the linearized state-space

model (10), we arrive at the closed loop:

˙δn = −u∗

τ
(1− a)δn+ v, (13a)

δp = p0u
∗(1 − a)δn, (13b)

δu = −u∗

n∗
aδn. (13c)

The closed loop transfer function from noise to state is

Ga
vn(s) =

1

s+ u∗

τ
(1− a)

, (14)

from where we compute the stationary state variance

E
[

(δn)2
]

= ‖Ga
vn(s)‖

2

H2
2λ =

τλ

u∗(1− a)
=

n∗

1− a
.

Expressions for the variances in (11) follow from (13):

E[(δp)2] = (p0u
∗(1− a))2

n∗

1− a
=

(p∗)2

n∗
(1 − a), (15)

E[(δu)2] =
(u∗)2a2

n∗(1− a)
. (16)

Therefore our cost from (11) becomes

J =
(p∗)2

n∗

[

(1 − a) + β(u∗)2
a2

1− a

]

.

The above expression clearly expresses the tradeoff be-

tween regulation and control effort as a function of the gain

parameter a ∈ [0, 1). If a = 0 there is no feedback control

and we are back in the situation of Section III-A, with the

3Other control designs that explicitly incorporate L∞ bounds on u would
be more precise, we choose this version for simplicity. β is dimensionless.
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Fig. 5. Noise rejection via state feedback.

same performance. Setting a → 1 would eliminate noise

from the regulated power output, but make the control signal

variance explode beyond its constraints. Intermediate values

could potentially reduce the regulation variance while still

keeping control within its admitted bound.

We now simulate the system with this fixed value of

u∗ = 0.5 against a system that continuously updates u to the

deviations in δn following equation (13c). For this simulation

we choose a = 0.8, which is a compromise between noise

reduction and deviations in the control signal that may move

the system far away from the nominal values.

In Fig. 5 we plot the results, showing the value of

the control signal u(t) (above) and the output power p(t)
(below). We can see that the state feedback is able to achieve

an important reduction in the power variability, while the

control signal u(t) stays near the nominal value u∗.

As an additional remark, simulations with different

scheduling policies show that, again in this case, the results

are agnostic to the exact job scheduling policy.

IV. REGULATION TRACKING UNDER UNCERTAINTY

In the previous two sections we analyzed separately two

aspects of the regulation control problem based on the

deferral of aggregates of loads: tracking a reference signal

and reducing noise. The natural conclusion is to now inte-

grate these separate efforts into a control strategy that seeks

reference tracking under noise.

We pursue this using again linearized models around the

nominal operating point. The open loop model coincides

with (10), but now we must consider in addition an external

reference δr(t) which the power output must track, so the

performance specification will involve the tracking error

e(t) := δp(t)− δr(t). The integrated controller should have

access to measurements of the state variable δn(t), and also

to the external reference δr(t), producing an action δu(t) on

the plant (10) so as to minimize the error variance, while

keeping a check on control effort. This could be framed as

a joint H2-optimal control design with cost

J ′ := E[e2 + β(p∗)2(δu)2] (17)
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Fig. 6. Tracking a reference signal for the system with noise rejection.

which generalizes (11). A complete design of this kind would

require a characterization of the class of reference signals

to be tracked, for instance through a frequency weighting

function. At this point we will opt for the simpler strategy of

combining the feedback and feedforward components from

the earlier sections, using a controller of the form

δu(t) = −Kδn+ ũ(t),

where K has the form (12) and ũ is a function of the

reference input. Substitution into (10) gives

˙δn = − 1

τ
u∗(1 − a)δn− 1

τ
n∗ũ+ v, (18a)

δp = p0[u
∗(1 − a)δn+ n∗ũ], . (18b)

which leads in the Laplace transform domain to δp(s) =
Ga

ũp(s)ũ(s) +Ga
vp(s)v(s), with

Ga
ũp(s) =

p0n
∗s

s+ u∗

τ
(1− a)

, Ga
vp(s) =

p0u
∗(1− a)

s+ u∗

τ
(1− a)

.

This suggests choosing the feedforward component ũ as

ũ(s) =
1

Ga
ũp(s)

δr(s) =
1

p0n∗

(

1 +
u∗(1− a)

τs

)

δr(s),

which results in the following closed loop transfer function

from noise to tracking error:

e(s) = δp(s)− δr(s) = Ga
vp(s)v(s); (19)

therefore the noise penalty on performance will be exactly

the one computed in (15). The control effort will also have

the noise term of (16), but in addition there is the impact of

the reference signal analogous to (6).

To end we show a simulation of the complete system. We

use the same signal and parameters of Fig. 2 adding the

feedback for noise reduction. Again we choose a = 0.8. We

can see in Fig. 6 that the tracking is clearly improved.

V. CONCLUSIONS

In this paper, we analyzed a model for a load demand ag-

gregator that manages a large number of consumer deferrable

loads and is capable of adjusting the number of active jobs

to control its power. The proposed macroscopic model is

oblivious to the exact management of the loads and captures

the essential behavior of the system through the service

fraction the aggregator provides. Using this model, we were

able to analyze the impact of variability in the demands, and

design tracking and noise rejection controllers. These simple

mechanisms enable a load aggregator to reduce its need

for regulation services, and even offer regulation services

to others. The results were evaluated through simulation,

illustrating the performance of the designed mechanisms.

Several lines of future work remain open. A more thorough

controller design to take into account the constraints in the

input signal, as well as to cope with the nonlinearities in the

system can be performed. From the queueing perspective, it

would be interesting to analyze more precise fluid models

for the different scheduling mechanisms involved.
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